化工进展 ›› 2019, Vol. 38 ›› Issue (07): 3265-3273.DOI: 10.16085/j.issn.1000-6613.2018-2002
收稿日期:
2018-10-09
出版日期:
2019-07-05
发布日期:
2019-07-05
通讯作者:
李安
作者简介:
陈涛(1991—),男,硕士研究生,研究方向为相变储能材料。E-mail:<email>610469512@qq.com</email>。
基金资助:
Tao CHEN(),Hanxue SUN,Zhaoqi ZHU,An LI()
Received:
2018-10-09
Online:
2019-07-05
Published:
2019-07-05
Contact:
An LI
摘要:
节能技术的发展是当今非常现实的问题,这些技术的发展方向之一是各行业的热能储存。相变储能材料由于其较大的潜热和恒温性,被广泛应用于潜热储能系统和热管理系统中。然而,单一相变材料的相变温度和潜热比较固定,难以同时满足多种储能应用对各种潜热、相变温度等性质的要求。因此,人们开展了关于二元或多元共晶相变体系的研究。本文介绍了近年来国内外(准)共晶相变储能材料及其复合材料的研究进展,探讨了(准)共晶相变储能材料的理论设计机理,指出了(准)共晶相变储能材料存在的不同问题并提出建议,最后指出了(准)共晶系相变储能材料在实际应用领域的局限,提出未来在寻找新型相变储能材料,建立传热理论模型,对(准)共晶系复合相变储能材料的力学性能、耐老化性能、储能密度低和高温条件下的耐久性差等方面需要进一步探索。
中图分类号:
陈涛, 孙寒雪, 朱照琪, 李安. (准)共晶系相变储能材料的研究进展[J]. 化工进展, 2019, 38(07): 3265-3273.
Tao CHEN, Hanxue SUN, Zhaoqi ZHU, An LI. Progress in studies of (quasi-)eutectic phase change energy storage materials[J]. Chemical Industry and Engineering Progress, 2019, 38(07): 3265-3273.
1 | GARGH P, MULLICKS C, BHARGAVAA K. Solar thermal energy storage [M]. Netherlands, Dordrecht : Springer, 1985: 154-291. |
2 | GHAIBK. Latent heat storage: storage materials, heat transfer, and applications[J]. Chemie Ingenieur Technik., 2017, 89(9): 1115-1125. |
3 | KURAVIS, TRAHANJ, GOSWASID Y, et al. Thermal energy storage technologies and systems for concentrating solar power plants[J]. Progress in Energy and Combustion Science, 2013, 39(4): 285-319. |
4 | 于永生, 井强山, 孙雅倩. 低温相变储能材料研究进展[J]. 化工进展, 2010, 29(5): 896-900. |
YUYongsheng, JINGQiangshan, SUNYaqian. Progress in studies of low temperature phase-change energy storage materials[J]. Chemical Industry and Engineering Progress, 2010, 29(5): 896-900. | |
5 | 朱茂川, 周国兵, 杨霏, 等. 过冷水合盐相变材料跨季节储存太阳能研究进展[J]. 化工进展, 2018,37(6): 2256-2268. |
ZHUMaochuan, ZHOUGuobing, YANGFei, et al. Progress of seasonal solar energy storage using supercooled salt hydrate phase change materials[J]. Chemical Industry and Engineering Progress,2018,37(6): 2256-2268. | |
6 | SAN A. Eutectic mixtures of some fatty acids for low temperature solar heating applications: thermal properties and thermal reliability[J].Applied Thermal Engineering, 2005, 25(14/15): 2100-2107. |
7 | ZHANGP, XIAOX, MA Z W. A review of the composite phase change materials: fabrication, characterization, mathematical modeling and application to performance enhancement[J]. Applied Energy, 2016, 165: 472-510. |
8 | SHARMAA, TYAGIV V, CHENC R, et al. Review on thermal energy storage with phase change materials and applications[J]. Renewable and Sustainable Energy Reviews, 2009, 13(2): 318-345. |
9 | RATHODM K, BANERJEEEJ. Thermal stability of phase change materials used in latent heat energy storage systems: a review[J]. Renewable and Sustainable Energy Reviews, 2013, 18: 246-258. |
10 | MEHLINGH, CABEZAL F. Heat and cold storage with PCM [M]. Berlin : Springer, 2008: 11-55. |
11 | 张寅平, 苏跃红, 葛新石. (准)共晶系相变材料融点及融解热的理论预测[J]. 中国科学技术大学学报, 1995(4): 474-478. |
ZHANGYinping, SUYuehong, GEXinshi. Prediction of the melting temperature and the fusion heat of (Quasi-)eutectic PCM[J]. Journal of China University of Science and Technology, 1995(4): 474-478. | |
12 | DIARCEG, GANDARIASI, CAMPOS-CELADORA, et al. Eutectic mixtures of sugar alcohols for thermal energy storage in the 50–90℃ temperature range[J]. Solar Energy Materials & Solar Cells, 2015, 134(3): 215-226. |
13 | RAMIREZB M L G, GLORIEUXC, MARTINEZE S M, et al. Tuning of thermal properties of sodium acetate trihydrate by blending with polymer and silver nanoparticles[J]. Applied Thermal Engineering, 2014, 62(3): 838-844. |
14 | KUMARR, VYASS, DIXITA. Fatty acids/1-dodecanol binary eutectic phase change materials for low temperature solar thermal applications: design, development and thermal analysis[J]. Solar Energy, 2017, 155: 1373-1379. |
15 | KUMARR, KUMARR, DIXITA. Thermal phase diagram of acetamide-benzoic acid and benzoic acid-phthalimide binary systems for solar thermal applications[C]//AIP Conference Proceedings.AIP Publishing, 2016, 1728(1): 020687. |
16 | GEZ, HUANGY, DINGY. Eutectic composition-dependence of latent heat of binary carbonates (Na2CO3/Li2CO3)[J]. Solar Energy Materials and Solar Cells, 2018, 179: 202-206. |
17 | LIUM, BELLS, SEGARRAM, et al. A eutectic salt high temperature phase change material: thermal stability and corrosion of SS316 with respect to thermal cycling[J]. Solar Energy Materials and Solar Cells, 2017, 170: 1-7. |
18 | WANGZ, WANGH, YANGM, et al. Thermal reliability of Al-Si eutectic alloy for thermal energy storage[J]. Materials Research Bulletin, 2017, 95: 300-306. |
19 | 纪珺, 陈跃, 章学来, 等. 甘露醇水溶液低温储能相变材料的制备及热物性[J]. 化工进展, 2018, 37(3): 1111-1117. |
JIJun, CHENYue, ZHANGXuelai, et al. Preparation and thermophysical properties of mannitol aqueous solution PCMs for thermal energy storage[J]. Chemical Industry and Engineering Progress, 2018, 37(3): 1111-1117. | |
20 | XIES, SUNJ, WANGZ, et al. A thermally stable phase change material with high latent heat based on an oxalic acid dihydrate/boric acid binary eutectic system[J]. Solar Energy Materials and Solar Cells, 2017, 168: 38-44. |
21 | DIARCEG, CORRO-MARTÍNEZE, QUANTL, et al. The sodium nitrate–urea binary mixture as a phase change material for medium temperature thermal energy storage. Part Ⅰ: Determination of the phase diagram and main thermal properties[J]. Solar Energy Materials and Solar Cells, 2016, 157: 1065-1075. |
22 | DIARCEG, CORRO-MARTÍNEZE, ÁCAMPOS-CELADOR, et al. The sodium nitrate–urea eutectic binary mixture as a phase change material for medium temperature thermal energy storage. Part Ⅱ: Accelerated thermal cycling test and water uptake behavior of the material[J]. Solar Energy Materials and Solar Cells, 2016, 157: 1076-1083. |
23 | GUNASEKARAS N, CHIUJ N W, MARTINV, et al. The experimental phase diagram study of the binary polyols system erythritol-xylitol[J]. Solar Energy Materials and Solar Cells, 2018, 174: 248-262. |
24 | ZENGJ L, CHENY H, SHUL, et al. Preparation and thermal properties of exfoliated graphite/erythritol/mannitol eutectic composite as form-stable phase change material for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2018, 178: 84-90. |
25 | VEERAKUMARC, SREEKUMARA. Preparation, thermophysical studies, and corrosion analysis of a stable capric acid/cetyl alcohol binary eutectic phase change material for cold thermal energy storage[J]. Energy Technology, 2018, 6(2):397-405. |
26 | HANL, MA G, XIES, et al. Thermal properties and stabilities of the eutectic mixture: 1, 6-hexanediol/lauric acid as a phase change material for thermal energy storage[J]. Applied Thermal Engineering, 2017, 116: 153-159. |
27 | WANGZ, SUNJ, XIES, et al. Thermal properties and reliability of a lauric acid/nonanoic acid binary mixture as a phase‐change material for thermal energy storage[J]. Energy Technology, 2017, 5(12): 2309-2316. |
28 | MA G, SUNJ, XIES, et al. Solid-liquid phase equilibria of stearic acid and dicarboxylic acids binary mixtures as low temperature thermal energy storage materials[J].The Journal of Chemical Thermodynamics, 2018, 120: 60-71. |
29 | TIANH, DUL, WEIX, et al. Enhanced thermal conductivity of ternary carbonate salt phase change material with Mg particles for solar thermal energy storage[J]. Applied Energy, 2017, 204: 525-530. |
30 | KEH. Phase diagrams, eutectic mass ratios and thermal energy storage properties of multiple fatty acid eutectics as novel solid-liquid phase change materials for storage and retrieval of thermal energy[J]. Applied Thermal Engineering, 2017, 113: 1319-1331. |
31 | GUNASEKARAS N, KUMOVAS, CHIUJ N W, et al. Experimental phase diagram of the dodecane–tridecane system as phase change material in cold storage[J]. International Journal of Refrigeration, 2017, 82: 130-140. |
32 | DONGO, ZHANGZ, FUZ, et al. A novel composite phase-change material: CaCl2·6H2O+ MgCl2·6H2O+ NH4Cl[J]. Australian Journal of Chemistry, 2018, 71(6): 416-421. |
33 | RISUEÑOE, GIL A, RODRÍGUEZ-ASEGUINOLAZAJ, et al. Thermal cycling testing of Zn–Mg–Al eutectic metal alloys as potential high-temperature phase change materials for latent heat storage[J]. Journal of Thermal Analysis and Calorimetry, 2017, 129(2): 885-894. |
34 | SARIA, ALKANC, BILGINC. Micro/nano encapsulation of some paraffin eutectic mixtures with poly (methyl methacrylate) shell: preparation, characterization and latent heat thermal energy storage properties[J]. Applied Energy, 2014, 136: 217-227. |
35 | ALVAG, HUANGX, LIUL, et al. Synthesis and characterization of microencapsulated myristic acid–palmitic acid eutectic mixture as phase change material for thermal energy storage[J]. Applied Energy, 2017, 203: 677-685. |
36 | DÖĞÜŞCÜD K, ÇKIZIL, BIÇERA, et al. Microencapsulated n-alkane eutectics in polystyrene for solar thermal applications[J]. Solar Energy, 2018, 160: 32-42. |
37 | RENY X, XUC, YUANM D, et al. Ca (NO3)(2)-NaNO3/expanded graphite composite as a novel shape-stable phase change material for mid-to high-temperature thermal energy storage[J]. Energy Conversion and Management, 2018, 163: 50-58. |
38 | ZHOUY, SUNW, LINGZ, et al. Hydrophilic modification of expanded graphite to prepare a high-performance composite phase change block containing a hydrate salt[J]. Industrial & Engineering Chemistry Research, 2017, 56(50): 14799-14806. |
39 | LIUY, YANGY. Form-stable phase change material based on Na2CO3·10H2O-Na2HPO4·12H2O eutectic hydrated salt/expanded graphite oxide composite: the influence of chemical structures of expanded graphite oxide[J]. Renewable Energy, 2018, 115: 734-740. |
40 | LIUS, HANL, XIES, et al. A novel medium-temperature form-stable phase change material based on dicarboxylic acid eutectic mixture/expanded graphite composites[J]. Solar Energy, 2017, 143: 22-30. |
41 | CHENGF, WENR, ZHANGX, et al. Synthesis and characterization of beeswax-tetradecanol-carbon fiber/expanded perlite form-stable composite phase change material for solar energy storage[J]. Composites Part A: Applied Science and Manufacturing, 2018, 107: 180-188. |
42 | WEIH, LIX. Preparation and characterization of a lauric-myristic-stearic acid/Al2O3-loaded expanded vermiculite composite phase change material with enhanced thermal conductivity[J]. Solar Energy Materials and Solar Cells, 2017, 166: 1-8. |
43 | WENR, ZHANGX, HUANGZ, et al. Preparation and thermal properties of fatty acid/diatomite form-stable composite phase change material for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2018, 178: 273-279. |
44 | MENGX, ZHANGH, SUNL, et al. Preparation and thermal properties of fatty acids/CNTs composite as shape-stabilized phase change materials[J]. Journal of thermal analysis and calorimetry, 2013, 111(1): 377-384. |
45 | ZHANGN, YUANY, YUANY, et al. Effect of carbon nanotubes on the thermal behavior of palmitic-stearic acid eutectic mixtures as phase change materials for energy storage[J]. Solar Energy, 2014, 110: 64-70. |
46 | TANGY, ALVAG, HUANGX, et al. Thermal properties and morphologies of MA-SA eutectics/CNTs as composite PCMs in thermal energy storage[J]. Energy and Buildings, 2016, 127: 603-610. |
47 | AHMEDS F, KHALIDM, AMINN, et al. Investigation of rheological and corrosion properties of graphene-based eutectic salt[J]. Journal of Materials Science, 2018, 53(1): 692-707. |
48 | SINGHR P, KAUSHIKS C, RAKSHITD. Solidification behavior of binary eutectic phase change material in a vertical finned thermal storage system dispersed with graphene nano-plates[J]. Energy Conversion and Management, 2018, 171: 825-838. |
49 | ATINAFUD G, DONGW, HUANGX, et al. Introduction of organic-organic eutectic PCM in mesoporous N-doped carbons for enhanced thermal conductivity and energy storage capacity[J]. Applied Energy, 2018, 211: 1203-1215. |
50 | LINGZ, LIUJ, WANGQ, et al. MgCl2·6H2O-Mg (NO3)2·6H2O eutectic/SiO2 composite phase change material with improved thermal reliability and enhanced thermal conductivity[J]. Solar Energy Materials and Solar Cells, 2017, 172: 195-201. |
51 | SUD, JIAY, ALVAG, et al. Preparation and thermal properties of n-octadecane/stearic acid eutectic mixtures with hexagonal boron nitride as phase change materials for thermal energy storage[J]. Energy and Buildings, 2016, 131: 35-41. |
52 | SARIA, BICERA, AL-AHMEDA, et al. Silica fume/capric acid-palmitic acid composite phase change material doped with CNTs for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2018, 179: 353-361. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 胡喜, 王明珊, 李恩智, 黄思鸣, 陈俊臣, 郭秉淑, 于博, 马志远, 李星. 二硫化钨复合材料制备与储钠性能研究进展[J]. 化工进展, 2023, 42(S1): 344-355. |
[3] | 林晓鹏, 肖友华, 管奕琛, 鲁晓东, 宗文杰, 傅深渊. 离子聚合物-金属复合材料(IPMC)柔性电极的研究进展[J]. 化工进展, 2023, 42(9): 4770-4782. |
[4] | 时雨, 赵运超, 樊智轩, 蒋达华. 夏热冬冷地区相变屋面最佳相变温度的实验研究[J]. 化工进展, 2023, 42(9): 4828-4836. |
[5] | 卜治丞, 焦波, 林海花, 孙洪源. 脉动热管计算流体力学模型与研究进展[J]. 化工进展, 2023, 42(8): 4167-4181. |
[6] | 张超, 杨鹏, 刘广林, 赵伟, 杨绪飞, 张伟, 宇波. 表面微结构对阵列微射流沸腾换热的影响[J]. 化工进展, 2023, 42(8): 4193-4203. |
[7] | 汪健生, 张辉鹏, 刘雪玲, 傅煜郭, 朱剑啸. 多孔介质结构对储层内流动和换热特性的影响[J]. 化工进展, 2023, 42(8): 4212-4220. |
[8] | 王帅晴, 杨思文, 李娜, 孙占英, 安浩然. 元素掺杂生物质炭材料在电化学储能中的研究进展[J]. 化工进展, 2023, 42(8): 4296-4306. |
[9] | 叶振东, 刘涵, 吕静, 张亚宁, 刘洪芝. 基于钙镁二元盐的热化学储能反应器的性能优化[J]. 化工进展, 2023, 42(8): 4307-4314. |
[10] | 汤磊, 曾德森, 凌子夜, 张正国, 方晓明. 相变蓄冷材料及系统应用研究进展[J]. 化工进展, 2023, 42(8): 4322-4339. |
[11] | 杨鹏威, 于琳竹, 王放放, 蒋昊轩, 赵光金, 李琦, 杜铭哲, 马双忱. 氨储能在新型电力系统的应用前景、挑战及发展[J]. 化工进展, 2023, 42(8): 4432-4446. |
[12] | 李艳玲, 卓振, 池亮, 陈曦, 孙堂磊, 刘鹏, 雷廷宙. 氮掺杂生物炭的制备与应用研究进展[J]. 化工进展, 2023, 42(7): 3720-3735. |
[13] | 单雪影, 张濛, 张家傅, 李玲玉, 宋艳, 李锦春. 阻燃型环氧树脂的燃烧数值模拟[J]. 化工进展, 2023, 42(7): 3413-3419. |
[14] | 于志庆, 黄文斌, 王晓晗, 邓开鑫, 魏强, 周亚松, 姜鹏. B掺杂Al2O3@C负载CoMo型加氢脱硫催化剂性能[J]. 化工进展, 2023, 42(7): 3550-3560. |
[15] | 杨竞莹, 施万胜, 黄振兴, 谢利娟, 赵明星, 阮文权. 改性纳米零价铁材料制备的研究进展[J]. 化工进展, 2023, 42(6): 2975-2986. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |