化工进展 ›› 2023, Vol. 42 ›› Issue (7): 3652-3663.DOI: 10.16085/j.issn.1000-6613.2022-1588
李海东1(), 杨远坤1,2, 郭姝姝1, 汪本金1, 岳婷婷1, 傅开彬1,2, 王哲1,2, 何守琴3, 姚俊4, 谌书1,2()
收稿日期:
2022-08-29
修回日期:
2022-11-02
出版日期:
2023-07-15
发布日期:
2023-08-14
通讯作者:
谌书
作者简介:
李海东(1997—),男,硕士研究生,研究方向为水污染治理。E-mail:3064651627@qq.com。
基金资助:
LI Haidong1(), YANG Yuankun1,2, GUO Shushu1, WANG Benjin1, YUE Tingting1, FU Kaibin1,2, WANG Zhe1,2, HE Shouqin3, YAO Jun4, CHEN Shu1,2()
Received:
2022-08-29
Revised:
2022-11-02
Online:
2023-07-15
Published:
2023-08-14
Contact:
CHEN Shu
摘要:
以美人蕉、还原铁粉和膨润土为原材料制备植物基铁碳微电解材料,先通过单因素实验确定Fe/C物质的量比、炭化温度和焙烧温度3个影响因素,后采用Box-Behnken响应面法对“均质化-炭化-焙烧”制备工艺进行优化,以确定最优制备条件。并结合X射线衍射(XRD)、电子顺磁共振波谱仪(EPR)、傅里叶红外光谱仪(FTIR)等表征方法,探究烧制温度对植物基铁碳微电解材料固有性质及其去除As(Ⅲ)性能的影响。结果表明,最优制备条件为Fe/C=1.05、炭化温度502.87℃、焙烧温度760.92℃。烧制温度的升高,有利于增强碳基组分得电子能力,加速As(Ⅲ)氧化为As(Ⅴ),降低水体生物毒性的同时提高对As(Ⅲ)的去除率;当焙烧温度高于700℃时,膨润土晶体结构层瓦解,渗透性提高的同时加速Ca2+、Mg2+离子释放,并促进Fe3+的水解沉积物互斥作用减弱,提高对As(Ⅲ)的吸附容量;还原铁粉过量5%,在保证反应时微原电池数量的同时,表面氧化产生的Fe3O4、Fe2O3在酸性条件下易反应形成Fe2+、Fe3+,对As(Ⅲ)的吸附去除作用加强。
中图分类号:
李海东, 杨远坤, 郭姝姝, 汪本金, 岳婷婷, 傅开彬, 王哲, 何守琴, 姚俊, 谌书. 炭化与焙烧温度对植物基铁碳微电解材料去除As(Ⅲ)性能的影响[J]. 化工进展, 2023, 42(7): 3652-3663.
LI Haidong, YANG Yuankun, GUO Shushu, WANG Benjin, YUE Tingting, FU Kaibin, WANG Zhe, HE Shouqin, YAO Jun, CHEN Shu. Effect of carbonization and calcination temperature on As(Ⅲ) removal performance of plant-based Fe-C microelectrolytic materials[J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3652-3663.
样品 名称 | 元素组成(质量分数)/% | 原子比 | 灰分 /% | |||||||
---|---|---|---|---|---|---|---|---|---|---|
C | H | N | O | S | H/C | O/C | (O+N/C) | |||
美人蕉 | 36.35 | 3.72 | 1.68 | 50.09 | 0.29 | 1.23 | 1.03 | 1.07 | 11.23 |
表1 美人蕉植物材料元素组成及原子比
样品 名称 | 元素组成(质量分数)/% | 原子比 | 灰分 /% | |||||||
---|---|---|---|---|---|---|---|---|---|---|
C | H | N | O | S | H/C | O/C | (O+N/C) | |||
美人蕉 | 36.35 | 3.72 | 1.68 | 50.09 | 0.29 | 1.23 | 1.03 | 1.07 | 11.23 |
自变量 | 因数 | 范围和水平 | ||
---|---|---|---|---|
低(-1) | 中(0) | 高(+1) | ||
Fe/C | A | 0.8 | 1.0 | 1.2 |
炭化温度/℃ | B | 450 | 500 | 550 |
焙烧温度/℃ | C | 600 | 700 | 800 |
表2 Box-Behnken设计实验因数与水平
自变量 | 因数 | 范围和水平 | ||
---|---|---|---|---|
低(-1) | 中(0) | 高(+1) | ||
Fe/C | A | 0.8 | 1.0 | 1.2 |
炭化温度/℃ | B | 450 | 500 | 550 |
焙烧温度/℃ | C | 600 | 700 | 800 |
实验 编号 | 因素 | As(Ⅲ)去除率(美人蕉) /% | ||
---|---|---|---|---|
A | B | C | ||
1 | 0.8 | 450 | 700 | 85.47 |
2 | 1.2 | 450 | 700 | 91.86 |
3 | 0.8 | 550 | 700 | 88.83 |
4 | 1.2 | 550 | 700 | 93.36 |
5 | 0.8 | 500 | 600 | 68.36 |
6 | 1.2 | 500 | 600 | 77.39 |
7 | 0.8 | 500 | 800 | 95.49 |
8 | 1.2 | 500 | 800 | 98.56 |
9 | 1 | 450 | 600 | 68.18 |
10 | 1 | 550 | 600 | 74.68 |
11 | 1 | 450 | 800 | 96.04 |
12 | 1 | 550 | 800 | 96.48 |
13 | 1 | 500 | 700 | 95.53 |
14 | 1 | 500 | 700 | 95.05 |
15 | 1 | 500 | 700 | 94.81 |
16 | 1 | 500 | 700 | 95.42 |
17 | 1 | 500 | 700 | 95.63 |
表3 Box-Bennken响应面实验设计及结果
实验 编号 | 因素 | As(Ⅲ)去除率(美人蕉) /% | ||
---|---|---|---|---|
A | B | C | ||
1 | 0.8 | 450 | 700 | 85.47 |
2 | 1.2 | 450 | 700 | 91.86 |
3 | 0.8 | 550 | 700 | 88.83 |
4 | 1.2 | 550 | 700 | 93.36 |
5 | 0.8 | 500 | 600 | 68.36 |
6 | 1.2 | 500 | 600 | 77.39 |
7 | 0.8 | 500 | 800 | 95.49 |
8 | 1.2 | 500 | 800 | 98.56 |
9 | 1 | 450 | 600 | 68.18 |
10 | 1 | 550 | 600 | 74.68 |
11 | 1 | 450 | 800 | 96.04 |
12 | 1 | 550 | 800 | 96.48 |
13 | 1 | 500 | 700 | 95.53 |
14 | 1 | 500 | 700 | 95.05 |
15 | 1 | 500 | 700 | 94.81 |
16 | 1 | 500 | 700 | 95.42 |
17 | 1 | 500 | 700 | 95.63 |
模型项 | 平方和 | 自由度 | 均方 | F值 | P值 |
---|---|---|---|---|---|
模型 | 1674.59 | 9 | 186.07 | 914.56 | <0.0001 |
Fe/C(A) | 66.24 | 1 | 66.24 | 325.59 | <0.0001 |
炭化温度(B) | 17.41 | 1 | 17.41 | 85.55 | <0.0001 |
焙烧温度(C) | 1199.52 | 1 | 1199.52 | 5895.98 | <0.0001 |
AB | 0.8649 | 1 | 0.8649 | 4.25 | 0.0482 |
AC | 8.88 | 1 | 8.88 | 43.65 | 0.0003 |
BC | 9.18 | 1 | 9.18 | 45.13 | 0.0003 |
A² | 19.49 | 1 | 19.49 | 95.80 | <0.0001 |
B² | 44.65 | 1 | 44.65 | 219.48 | <0.0001 |
C² | 282.18 | 1 | 282.18 | 1387.02 | <0.0001 |
残差 | 1.42 | 7 | 0.2034 | ||
失拟项 | 0.9460 | 3 | 0.3153 | 2.64 | 0.1859 |
误差值 | 0.4781 | 4 | 0.1195 | ||
总和 | 1676.01 | 16 | |||
R2adj | 0.9981 | R2 | 0.9992 | ||
精密度 | 87.4283 | R2Pred | 0.9905 |
表4 二次回归模型检验及方差分析
模型项 | 平方和 | 自由度 | 均方 | F值 | P值 |
---|---|---|---|---|---|
模型 | 1674.59 | 9 | 186.07 | 914.56 | <0.0001 |
Fe/C(A) | 66.24 | 1 | 66.24 | 325.59 | <0.0001 |
炭化温度(B) | 17.41 | 1 | 17.41 | 85.55 | <0.0001 |
焙烧温度(C) | 1199.52 | 1 | 1199.52 | 5895.98 | <0.0001 |
AB | 0.8649 | 1 | 0.8649 | 4.25 | 0.0482 |
AC | 8.88 | 1 | 8.88 | 43.65 | 0.0003 |
BC | 9.18 | 1 | 9.18 | 45.13 | 0.0003 |
A² | 19.49 | 1 | 19.49 | 95.80 | <0.0001 |
B² | 44.65 | 1 | 44.65 | 219.48 | <0.0001 |
C² | 282.18 | 1 | 282.18 | 1387.02 | <0.0001 |
残差 | 1.42 | 7 | 0.2034 | ||
失拟项 | 0.9460 | 3 | 0.3153 | 2.64 | 0.1859 |
误差值 | 0.4781 | 4 | 0.1195 | ||
总和 | 1676.01 | 16 | |||
R2adj | 0.9981 | R2 | 0.9992 | ||
精密度 | 87.4283 | R2Pred | 0.9905 |
样品 | g值 | 线宽/Gs |
---|---|---|
400 | 2.00452±0.00006 | 6.27 |
500 | 2.00386±0.00002 | 5.29 |
600 | 2.00377±0.00003 | 4.75 |
700 | 2.00342±0.00001 | 4.38 |
800 | 2.00337±0.00002 | 3.65 |
表5 生物炭PFRs参数
样品 | g值 | 线宽/Gs |
---|---|---|
400 | 2.00452±0.00006 | 6.27 |
500 | 2.00386±0.00002 | 5.29 |
600 | 2.00377±0.00003 | 4.75 |
700 | 2.00342±0.00001 | 4.38 |
800 | 2.00337±0.00002 | 3.65 |
编号 | 反应式 | 标准摩尔吉布斯自由能变化表达式 |
---|---|---|
Y1 | 4Fe3O4+O2 | |
Y2 | 3/2Fe+O2 | |
Y3 | 6Fe+O2 | |
Y4 | 6Fe+O2 |
表6 铁氧化反应的标准摩尔吉布斯自由能变化表达式
编号 | 反应式 | 标准摩尔吉布斯自由能变化表达式 |
---|---|---|
Y1 | 4Fe3O4+O2 | |
Y2 | 3/2Fe+O2 | |
Y3 | 6Fe+O2 | |
Y4 | 6Fe+O2 |
碳基 材料 | Fe/C 摩尔比 | 炭化温度 /℃ | 焙烧温度 /℃ | As(Ⅲ)去除率/% | 相对偏差 /% | |
---|---|---|---|---|---|---|
预测值 | 实验值 | |||||
美人蕉 | 1.05 | 502.87 | 760.92 | 98.69 | 97.32 | 1.39 |
表7 美人蕉植物基铁碳微电解材料最优制备条件
碳基 材料 | Fe/C 摩尔比 | 炭化温度 /℃ | 焙烧温度 /℃ | As(Ⅲ)去除率/% | 相对偏差 /% | |
---|---|---|---|---|---|---|
预测值 | 实验值 | |||||
美人蕉 | 1.05 | 502.87 | 760.92 | 98.69 | 97.32 | 1.39 |
1 | 肖细元, 陈同斌, 廖晓勇, 等. 中国主要含砷矿产资源的区域分布与砷污染问题[J]. 地理研究, 2008, 27(1): 201-212. |
XIAO Xiyuan, CHEN Tongbin, LIAO Xiaoyong, et al. Regional distribution of arsenic contained minerals and arsenic pollution in China[J]. Geographical Research, 2008, 27(1): 201-212. | |
2 | HE Zongliang, TIAN Senlin, NING Ping. Adsorption of arsenate and arsenite from aqueous solutions by cerium-loaded cation exchange resin[J]. Journal of Rare Earths, 2012, 30(6): 563-572. |
3 | 包稚群, 丘克强. 关于我国砷污染现状与治理砷建议[J]. 云南冶金, 2019, 48(3): 60-64. |
BAO Zhiqun, QIU Keqiang. The current status and treatment suggestions of arsenic pollution in China[J]. Yunnan Metallurgy, 2019, 48(3): 60-64. | |
4 | ZENG L, WANG Y P. 200 Million people in the world drink arsenic exceeding the standard[J]. Ecological Economy, 2018, 34(11): 6-9. |
5 | SARWAR T, KHAN S, MUHAMMAD S, et al. Arsenic speciation, mechanisms, and factors affecting rice uptake and potential human health risk: A systematic review[J]. Environmental Technology & Innovation, 2021, 22: 101392. |
6 | DAS A, JOARDAR M, CHOWDHURY N R, et al. Arsenic toxicity in livestock growing in arsenic endemic and control sites of West Bengal: Risk for human and environment[J]. Environmental Geochemistry and Health, 2021, 43(8): 3005-3025. |
7 | 国家市场监督管理总局, 国家标准化管理委员会. 关于批准发布《生活饮用水卫生标准》等5项强制性国家标准的公告[J]. 中国标准化, 2022(7): 272. |
State Administration for Market Regulation, Administration Standardization. Notice on the approval and promulgation of five mandatory national standards, including the sanitary standards for drinking water[J]. China Standardization, 2022(7): 272. | |
8 | 国家环境保护总局、国家质量监督检验检疫总局发布地表水环境质量标准[J]. 中国环保产业, 2002(6): 8-9. |
The State Environmental Protection Administration and the General Administration of Quality Supervision, Inspection and Quarantine issue standards for surface water environmental quality[J]. China Environmental Protection Industry, 2002(6): 8-9. | |
9 | SHUKLA R, SARIM K M, SINGH D P. Microbe-mediated management of arsenic contamination: Current status and future prospects[J]. Environmental Sustainability, 2020, 3(1): 83-90. |
10 | BO Y, YAN L. Preparation and application of modified biochar for arsenic pollution remediation[J]. International Core Journal of Engineering, 2021, 7(11): 46-50. |
11 | 贾艳萍, 张真, 毕朕豪, 等. 铁碳微电解处理印染废水的效能及生物毒性变化[J]. 化工进展, 2020, 39(2): 790-797. |
JIA Yanping, ZHANG Zhen, BI Zhenhao, et al. Efficiency and biological toxicity of iron-carbon microelectrolysis in treatment of the dye wastewater[J]. Chemical Industry and Engineering Progress, 2020, 39(2): 790-797. | |
12 | MOHINDRU J, GARG U, GUPTA R. Coagulation-flocculation technologies for arsenic removal—A review[J]. Asian Journal of Research in Chemistry, 2017, 10(3): 405-413. |
13 | BHATTACHARYA S, SHARMA P, MITRA S, et al. Arsenic uptake and bioaccumulation in plants: A review on remediation and socio-economic perspective in Southeast Asia[J]. Environmental Nanotechnology, Monitoring & Management, 2021, 15: 100430. |
14 | ARIF S, SAQIB H, MUBASHIR M, et al. Comparison of Nigella sativa and Trachyspermum ammi via experimental investigation and biotechnological potential[J]. Chemical Engineering and Processing: Process Intensification, 2021, 161: 108313. |
15 | KANG Yan, SUN Huiling, GAO Balai, et al. Enhanced reduction of Cr( Ⅵ ) in iron-carbon micro-electrolysis constructed wetlands: Mechanisms of iron cycle and microbial interactions[J]. Chemical Engineering Journal, 2022, 439: 135742. |
16 | PENG Changsheng, CHEN Linheng, WU Xiange, et al. Identification of adsorption or degradation mechanism for the removal of different ionic dyes with iron-carbon micro-electrolysis process[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105690. |
17 | ZHU Xinyan, CHEN Xinjian, YANG Zemeng, et al. Investigating the influences of electrode material property on degradation behavior of organic wastewaters by iron-carbon micro-electrolysis[J]. Chemical Engineering Journal, 2018, 338: 46-54. |
18 | ZHENG Xiaoying, JIN Mengqi, ZHOU Xiang, et al. Enhanced removal mechanism of iron carbon micro-electrolysis constructed wetland on C, N, and P in salty permitted effluent of wastewater treatment plant[J]. Science of the Total Environment, 2019, 649: 21-30. |
19 | 张啸跃, 闻帅, 张海艳, 等. 铁碳微电解技术预处理抗生素制药废水的研究[J]. 环境科学与技术, 2021, 44(10): 144-151. |
ZHANG Xiaoyue, WEN Shuai, ZHANG Haiyan, et al. Study on the application of iron-carbon micro-electrolysis in antibiotic wastewater treatment[J]. Environmental Science & Technology, 2021, 44(10): 144-151. | |
20 | HAN Yanhe, WU Chuantao, FU Xiaolu, et al. Sulfate removal mechanism by internal circulation iron-carbon micro-electrolysis[J]. Separation and Purification Technology, 2021, 279: 119762. |
21 | 中华人民共和国水利部. 铅、镉、钒、磷等34种元素的测定: [S]. |
Ministry of Water Resources of the People’s Republic of China. Determination of 34 elements (Pb, Cd, V, P,etc.) : [S]. | |
22 | 陶厚永, 曹伟. 多项式回归与响应面分析的原理及应用[J]. 统计与决策, 2020, 36(8): 36-40. |
TAO Houyong, CAO Wei. Principle and application of polynomial regression and response surface analysis[J]. Statistics & Decision, 2020, 36(8): 36-40. | |
23 | HAMMOUDI A, MOUSSACEB K, BELEBCHOUCHE C, et al. Comparison of artificial neural network (ANN) and response surface methodology (RSM) prediction in compressive strength of recycled concrete aggregates[J]. Construction and Building Materials, 2019, 209: 425-436. |
24 | KUMAR S, MAZUMDER R. Development and optimization of venlafaxine hydrochloride floating microspheres using response surface plots[J]. Marmara Pharmaceutical Journal, 2018, 22(2): 277-285. |
25 | ZHAO Ling, CAO Xinde, MAŠEK O, et al. Heterogeneity of biochar properties as a function of feedstock sources and production temperatures[J]. Journal of Hazardous Materials, 2013, 256/257: 1-9. |
26 | LIBRA J A, RO K S, KAMMANN C, et al. Hydrothermal carbonization of biomass residuals: A comparative review of the chemistry, processes and applications of wet and dry pyrolysis[J]. Biofuels, 2011, 2(1): 71-106. |
27 | PATWARDHAN P R, BROWN R C, SHANKS B H. Product distribution from the fast pyrolysis of hemicellulose[J]. ChemSusChem, 2011, 4(5): 636-643. |
28 | 程辉, 余剑, 姚梅琴, 等. 木质素慢速热解机理[J]. 化工学报, 2013, 64(5): 1757-1765. |
CHENG Hui, YU Jian, YAO Meiqin, et al. Mechanism analysis of lignin slow pyrolysis[J]. CIESC Journal, 2013, 64(5): 1757-1765. | |
29 | KLÜPFEL L, KEILUWEIT M, KLEBER M, et al. Redox properties of plant biomass-derived black carbon (biochar)[J]. Environmental Science & Technology, 2014, 48(10): 5601-5611. |
30 | PFAFFENEDER-KMEN M, CASAS I F, NAGHILOU A, et al. A multivariate curve resolution evaluation of an in situ ATR-FTIR spectroscopy investigation of the electrochemical reduction of graphene oxide[J]. Electrochimica Acta, 2017, 255: 160-167. |
31 | KEILUWEIT M, NICO P, JOHNSON Mark G, et al. Dynamic molecular structure of plant biomass-derived black carbon (biochar) [J]. Environmental Science & Technology, 2010, 44(4): 1247-1253. |
32 | 唐正, 赵松, 钱雅洁, 等. 生物炭持久性自由基形成机制及环境应用研究进展[J]. 化工进展, 2020, 39(4): 1521-1527. |
TANG Zheng, ZHAO Song, QIAN Yajie, et al. Formation mechanisms and environmental applications of persistent free radicals in biochar: A review[J]. Chemical Industry and Engineering Progress, 2020, 39(4): 1521-1527. | |
33 | ARANGIO A M, TONG Haijie, SOCORRO J, et al. Quantification of environmentally persistent free radicals and reactive oxygen species in atmospheric aerosol particles[J]. Atmospheric Chemistry and Physics, 2016, 16(20): 13105-13119. |
34 | DELA CRUZ A L N, COOK R L, LOMNICKI S M, et al. Effect of low temperature thermal treatment on soils contaminated with pentachlorophenol and environmentally persistent free radicals[J]. Environmental Science & Technology, 2012, 46(11): 5971-5978. |
35 | RABIA A, HAMNA B, IRSHAD B, et al. A critical review on arsenic removal from water using biochar-based sorbents: The significance of modification and redox reactions[J]. Chemical Engineering Journal, 2020, 396(C): 125195. |
36 | DONG Xiaoling, MA L Q, GRESS J, et al. Enhanced Cr(Ⅵ) reduction and As(Ⅲ) oxidation in ice phase: Important role of dissolved organic matter from biochar[J]. Journal of Hazardous Materials, 2014, 267: 62-70. |
37 | RINKLEBE J, SHAHEEN S, FROHNE T. Amendment of biochar reduces the release of toxic elements under dynamic redox conditions in a contaminated floodplain soil[J]. Chemosphere, 2016,142 (7):41-47. |
38 | 张伟彬. Fe2O3和Fe3O4相变机制研究[D]. 沈阳: 东北大学, 2017. |
ZHANG Weibin. Investigation on phase transition mechanism of iron(Ⅲ) oxide and ferroferric oxide[D]. Shenyang: Northeastern University, 2017. | |
39 | 王玉霞. 铁盐混凝去除As(Ⅲ)和As(Ⅴ)及钛盐光催化氧化混凝去除As(Ⅲ)的机理研究[D]. 西安: 西安建筑科技大学, 2015. |
WANG Yuxia. Mechanism of As( Ⅲ ) and As( ) removal by coagulation of ferric salts and As( Ⅲ ) removal by simultaneous photocatalytic oxidation-coagulation of titanium salts[D]. Xi’an: Xi’an University of Architecture and Technology, 2015. | |
40 | WOLTERS F, EMMERICH K. Thermal reactions of smectites—Relation of dehydroxylation temperature to octahedral structure[J]. Thermochimica Acta, 2007, 462(1/2): 80-88. |
41 | JELÍNEK P, DOBOSZ St M, BEŇO J, et al. The behavior of bentonite binders for the elevated and high temperatures[J]. Archives of Metallurgy and Materials, 2014, 59(3): 1041-1044. |
42 | LIU Ruiping, LI Xing, XIA Shengji, et al. Calcium-enhanced ferric hydroxide co-precipitation of arsenic in the presence of silicate[J]. Water Environment Research: a Research Publication of the Water Environment Federation, 2007, 79(11): 2260-2264. |
43 | GUAN Xiaohong, MA Jun, DONG Haoran, et al. Removal of arsenic from water: Effect of calcium ions on As(Ⅲ) removal in the KMnO4-Fe(Ⅱ) process[J]. Water Research, 2009, 43(20): 5119-5128. |
44 | WEI Z, SOMASUNDARAN P. Cyclic voltammetric study of arsenic reduction and oxidation in hydrochloric acid using a Pt RDE[J]. Journal of Applied Electrochemistry, 2004, 34(2): 241-244. |
45 | OTTAKAM THOTIYL M M, BASIT H, SÁNCHEZ J A, et al. Multilayer assemblies of polyelectrolyte-gold nanoparticles for the electrocatalytic oxidation and detection of arsenic(Ⅲ)[J]. Journal of Colloid and Interface Science, 2012, 383(1): 130-139. |
46 | WU Chuan, AN Wenhui, LIU Ziyu, et al. The effects of biochar as the electron shuttle on the ferrihydrite reduction and related arsenic (As) fate[J]. Journal of Hazardous Materials, 2020, 390: 121391. |
[1] | 孙继鹏, 韩靖, 唐杨超, 闫汉博, 张杰瑶, 肖苹, 吴峰. 硫黄湿法成型过程数值模拟与操作参数优化[J]. 化工进展, 2023, 42(S1): 189-196. |
[2] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[3] | 胡喜, 王明珊, 李恩智, 黄思鸣, 陈俊臣, 郭秉淑, 于博, 马志远, 李星. 二硫化钨复合材料制备与储钠性能研究进展[J]. 化工进展, 2023, 42(S1): 344-355. |
[4] | 张杰, 白忠波, 冯宝鑫, 彭肖林, 任伟伟, 张菁丽, 刘二勇. PEG及其复合添加剂对电解铜箔后处理的影响[J]. 化工进展, 2023, 42(S1): 374-381. |
[5] | 雷伟, 姜维佳, 王玉高, 和明豪, 申峻. N、S共掺杂煤基碳量子点的电化学氧化法制备及用于Fe3+检测[J]. 化工进展, 2023, 42(9): 4799-4807. |
[6] | 邵志国, 任雯, 许世佩, 聂凡, 许毓, 刘龙杰, 谢水祥, 李兴春, 王庆吉, 谢加才. 终温对油基钻屑热解产物分布和特性影响[J]. 化工进展, 2023, 42(9): 4929-4938. |
[7] | 李志远, 黄亚继, 赵佳琪, 于梦竹, 朱志成, 程好强, 时浩, 王圣. 污泥与聚氯乙烯共热解重金属特性[J]. 化工进展, 2023, 42(9): 4947-4956. |
[8] | 王耀刚, 韩子姗, 高嘉辰, 王新宇, 李思琪, 杨全红, 翁哲. 铜基催化剂电还原二氧化碳选择性的调控策略[J]. 化工进展, 2023, 42(8): 4043-4057. |
[9] | 刘毅, 房强, 钟达忠, 赵强, 李晋平. Ag/Cu耦合催化剂的Cu晶面调控用于电催化二氧化碳还原[J]. 化工进展, 2023, 42(8): 4136-4142. |
[10] | 张亚娟, 徐惠, 胡贝, 史星伟. 化学镀法制备NiCoP/rGO/NF高效电解水析氢催化剂[J]. 化工进展, 2023, 42(8): 4275-4282. |
[11] | 王帅晴, 杨思文, 李娜, 孙占英, 安浩然. 元素掺杂生物质炭材料在电化学储能中的研究进展[J]. 化工进展, 2023, 42(8): 4296-4306. |
[12] | 姚丽铭, 王亚琢, 范洪刚, 顾菁, 袁浩然, 陈勇. 餐厨垃圾处理现状及其热解技术研究进展[J]. 化工进展, 2023, 42(7): 3791-3801. |
[13] | 张杉, 仲兆平, 杨宇轩, 杜浩然, 李骞. 磷酸盐改性高岭土对生活垃圾热解过程中重金属的富集[J]. 化工进展, 2023, 42(7): 3893-3903. |
[14] | 徐伟, 李凯军, 宋林烨, 张兴惠, 姚舜华. 光催化及其协同电化学降解VOCs的研究进展[J]. 化工进展, 2023, 42(7): 3520-3531. |
[15] | 李若琳, 何少林, 苑宏英, 刘伯约, 纪冬丽, 宋阳, 刘博, 余绩庆, 徐英俊. 原位热解对油页岩物性及地下水水质影响探索[J]. 化工进展, 2023, 42(6): 3309-3318. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |