1 |
张传祥, 张效铭, 程敢. 褐煤腐植酸提取技术及应用研究进展[J]. 洁净煤技术, 2018, 24(1): 6-12.
|
|
ZHANG Chuanxiang, ZHANG Xiaoming, CHENG Gan. Research progress on extraction technology and application of lignite humic acid[J]. Clean Coal Technology, 2018, 24(1): 6-12.
|
2 |
程亮, 侯翠红, 徐丽, 等. 纳米腐殖酸动态吸附废水中镉离子及其洗脱特性[J]. 化工学报, 2016, 67(4): 1348-1356.
|
|
CHENG Liang, HOU Cuihong, XU Li, et al. Dynamic adsorption and de-sorption characteristics of wastewater containing cadmium ion on nanoscale humic acid[J]. CIESC Journal, 2016, 67(4): 1348-1356.
|
3 |
隋明炜, 沈一丁, 赖小娟, 等. 腐植酸系水煤浆分散剂的合成表征及应用[J]. 煤炭科学技术, 2017, 45(10): 209-212.
|
|
SUI Mingwei, SHEN Yiding, LAI Xiaojuan, et al. Synthesis characters and application of humic acid base dispersant applied to coal water mixture[J]. Coal Science and Technology, 2017, 45(10): 209-212.
|
4 |
司东永, 黄光许, 张传祥, 等. 腐殖酸基石墨化材料的制备及其电化学性能[J]. 材料导报, 2018, 32(3): 368-372.
|
|
SI Dongyong, HUANG Guangxu, ZHANG Chuanxiang, et al. Preparation and electrochemical performance of humic acid-based graphitized materials[J]. Materials Review, 2018, 32(3): 368-372.
|
5 |
郭雅妮, 李金成, 惠璠, 等. 超声辅助法制备风化煤腐植酸-丙烯酸吸水树脂[J]. 功能材料, 2020, 51(4): 4164-4169.
|
|
GUO Yani, LI Jincheng, HUI Fan, et al. Preparation of humic acid-acrylic acid absorbent resin from weathered coal by ultrasonic-assisted method[J]. Journal of Functional Materials, 2020, 51(4): 4164-4169.
|
6 |
FRANKE N W, KIEBLER M W, RUOF C H, et al. Water-soluble polycarboxylic acids by oxidation of coal[J]. Industrial & Engineering Chemistry, 1952, 44(11): 2784-2792.
|
7 |
WANG Wenhua, HOU Yucui, WU Weize, et al. Simultaneous production of small-molecule fatty acids and benzene polycarboxylic acids from lignite by alkali-oxygen oxidation[J]. Fuel Processing Technology, 2013, 112: 7-11.
|
8 |
LIU Fangjing, WEI Xianyong, ZHU Ying, et al. Oxidation of Shengli lignite with aqueous sodium hypochlorite promoted by pretreatment with aqueous hydrogen peroxide[J]. Fuel, 2013, 111: 211-215.
|
9 |
DOSKOČIL L, GRASSET L, VÁLKOVÁ D, et al. Hydrogen peroxide oxidation of humic acids and lignite[J]. Fuel, 2014, 134: 406-413.
|
10 |
GONG Lijiao, HOU Yucui, WU Weize, et al. Catalytic O2 oxidation of lignite to carboxylic acids with iron-based catalysts in acidic aqueous solutions[J]. Fuel Processing Technology, 2019, 191: 54-59.
|
11 |
MIURA K, MAE K, OKUTSU H, et al. New oxidative degradation method for producing fatty acids in high yields and high selectivity from low-rank coals[J]. Energy & Fuels, 1996, 10(6): 1196-1201.
|
12 |
WANG Zhicai, WU Tao, WU Zequan, et al. A low carbon footprint method for converting low-rank coals to oxygen-containing chemicals[J]. Fuel, 2022, 315: 123277.
|
13 |
WANG Z C, WU Z Q, WANG Q, et al. Efficient oxidative depolymerization of Xilinguole lignite to produce humic acids with little CO2 production[J]. Solid Fuel Chemistry, 2021, 55(5): 348-356.
|
14 |
WU Zequan, WANG Zhicai, WU Tao, et al. Boosting conversion efficiency of lignite to oxygen-containing chemicals by thermal extraction and subsequent oxidative depolymerization[J]. Fuel, 2022, 308: 122043.
|
15 |
莫祥银, 景颖杰, 邓敏, 等. 聚羧酸盐系高性能减水剂研究进展及评述[J]. 混凝土, 2009(3): 60-63.
|
|
MO Xiangyin, JING Yingjie, DENG Min, et al. New research progress and summarization of polycarboxylate-type high performance superplasticizer[J]. Concrete, 2009(3): 60-63.
|
16 |
马正先, 宋沛霖, 周在波, 等. 新型高保坍降黏型聚羧酸减水剂制备及性能评价[J]. 硅酸盐通报, 2018, 37(11): 3386-3391.
|
|
MA Zhengxian, SONG Peilin, ZHOU Zaibo, et al. Preparation and performance evaluation of new high slump reducing viscosity polycarboxylate superplasticizer[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(11): 3386-3391.
|
17 |
高瑞军, 吕生华. 聚羧酸系减水剂的构性关系及其作用机理研究[J]. 材料导报, 2012, 26(3): 57-60.
|
|
GAO Ruijun, Shenghua LYU. Study on the structure and performances and acting mechanisms of polycarboaylate-type superplasticizers[J]. Materials Review, 2012, 26(3): 57-60.
|
18 |
LEI Lei, PALACIOS M, PLANK J, et al. Interaction between polycarboxylate superplasticizers and non-calcined clays and calcined clays: A review[J]. Cement and Concrete Research, 2022, 154: 106717.
|
19 |
LIN Xiuju, PANG Hao, WEI Daidong, et al. Effect of superplasticizers with different anchor groups on the properties of cementitious systems[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 630: 127207.
|
20 |
ZHANG Tailong, GAO Jianming, DENG Xuan, et al. Graft copolymerization of black liquor and sulfonated acetone formaldehyde and research on concrete performance[J]. Construction and Building Materials, 2015, 83: 308-313.
|
21 |
CRÉPY L, PETIT J Y, WIRQUIN E, et al. Synthesis and evaluation of starch-based polymers as potential dispersants in cement pastes and self leveling compounds[J]. Cement and Concrete Composites, 2014, 45: 29-38.
|
22 |
陈宝璠. 水溶液中共聚合成MPEGAA-AA-AMPS聚羧酸高效减水剂及其性能[J]. 化工进展, 2013, 32(4): 898-904.
|
|
CHEN Baofan. Synthesis and performance of superplasticizer of MPEGAA-AA-AMPS by free radical copolymerization in aqueous solution[J]. Chemical Industry and Engineering Progress, 2013, 32(4): 898-904.
|
23 |
李悦, 赵冰垠, 黄舟, 等. 抗泥型聚羧酸减水剂的研究进展[J]. 混凝土, 2020(11): 48-51.
|
|
LI Yue, ZHAO Bingyin, HUANG Zhou, et al. Research status of anti-mud polycarboxylate superplasticizer[J]. Concrete, 2020(11): 48-51.
|
24 |
朱红姣, 张光华, 何志琴, 等. 抗泥型聚羧酸减水剂的制备及性能[J]. 化工进展, 2016, 35(9): 2920-2925.
|
|
ZHU Hongjiao, ZHANG Guanghua, HE Zhiqin, et al. Preparation and properties of polycarboxylic superplasticizer with high tolerance to clay[J]. Chemical Industry and Engineering Progress, 2016, 35(9): 2920-2925.
|
25 |
李艳红, 庄锐, 张政, 等. 褐煤腐植酸的结构、组成及性质的研究进展[J]. 化工进展, 2015, 34(8): 3147-3157.
|
|
LI Yanhong, ZHUANG Rui, ZHANG Zheng, et al. Research on the structure, chemical composition and characterization of humic acid from lignite[J]. Chemical Industry and Engineering Progress, 2015, 34(8): 3147-3157.
|
26 |
BEDDAA H, FRAJ A B, LAVERGNE F, et al. Effect of potassium humate as humic substances from river sediments on the rheology, the hydration and the strength development of a cement paste[J]. Cement and Concrete Composites, 2019, 104: 103400.
|
27 |
OZUZUN S, UZAL B. Performance of leonardite humic acid as a novel superplasticizer in Portland cement systems[J]. Journal of Building Engineering, 2021, 42: 103070.
|
28 |
ILG M, PLANK J. A novel kind of concrete superplasticizer based on lignite graft copolymers[J]. Cement and Concrete Research, 2016, 79: 123-130.
|
29 |
张光华, 刘龙, 李俊国, 等. 磺化腐植酸接枝改性共聚物合成及性能研究[J]. 煤炭转化, 2013, 36(2): 92-96.
|
|
ZHANG Guanghua, LIU Long, LI Junguo, et al. Synthesis and properties research of sulfonated humic acid grafted copolymer[J]. Coal Conversion, 2013, 36(2): 92-96.
|
30 |
CHANG Xiaofeng, SUN Jinsheng, XU Zhe, et al. Synthesis of a novel environment-friendly filtration reducer and its application in water-based drilling fluids[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 568: 284-293.
|
31 |
WATANABE K, NISHIDA I, IMAI H. Dispersion of hydroxyapatite nanocrystals stabilized by polymeric molecules bearing carboxy and sulfo groups[J]. Colloid and Polymer Science, 2017, 295(9): 1491-1498.
|
32 |
王秀梅, 杨勇, 舒鑫, 等. 聚羧酸减水剂在水泥颗粒表面的吸附行为研究[J]. 新型建筑材料, 2017, 44(11): 13-16.
|
|
WANG Xiumei, YANG Yong, SHU Xin, et al. Adsorption behavior of polycarboxylate superplascticizer on cement particle surfaces[J]. New Building Materials, 2017, 44(11): 13-16.
|