化工进展 ›› 2023, Vol. 42 ›› Issue (4): 1811-1821.DOI: 10.16085/j.issn.1000-6613.2022-1062
收稿日期:
2022-06-06
修回日期:
2022-09-30
出版日期:
2023-04-25
发布日期:
2023-05-08
通讯作者:
彭冲,陆安慧
作者简介:
王嘉(1997—),女,博士研究生,研究方向为渣油加氢。E-mail:jiajiawang@mail.dlut.edu.cn。
基金资助:
WANG Jia1(), PENG Chong2(), TANG Lei1, LU Anhui1()
Received:
2022-06-06
Revised:
2022-09-30
Online:
2023-04-25
Published:
2023-05-08
Contact:
PENG Chong, LU Anhui
摘要:
开发高性能催化剂是渣油加氢提质的关键。本文重点介绍了氧化铝载体及催化剂制备方法对活性相结构和稳定性的影响。从氧化铝载体出发,分析了氧化铝表面性质(表面羟基种类和浓度、载体表面取向)、晶相(γ-Al2O3、η-Al2O3、δ-Al2O3、θ-Al2O3、α-Al2O3等)及孔结构(孔径分布和比表面积)对金属-载体相互作用、反应物分子在载体表面吸附和内部扩散的影响。从催化剂制备方法出发,总结了水热处理对氧化铝表面羟基、酸性、孔结构改性的方法。此外,概述了催化剂制备过程中助剂类型和硫化条件对活性相结构的影响,并分析了活性相与催化性能的构效关系。最后,指出了工业催化剂制备时大孔径和高机械强度需要匹配的问题,提出根据实际应用需求来调控活性组分在载体上的宏观分布,并展望了催化剂孔道结构设计与原位表征技术的开发等未来发展方向。
中图分类号:
王嘉, 彭冲, 唐磊, 陆安慧. 渣油加氢催化剂活性相结构调控及对反应性能影响[J]. 化工进展, 2023, 42(4): 1811-1821.
WANG Jia, PENG Chong, TANG Lei, LU Anhui. Modification of the active phase structure of residue hydrogenation catalyst and its catalytic performance[J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1811-1821.
1 | ZHU Huihong, MAO Zhiwei, LIU Bin, et al. Regulating catalyst morphology to boost the stability of Ni-Mo/Al2O3 catalyst for ebullated-bed residue hydrotreating[J]. Green Energy & Environment, 2021, 6(2): 283-290. |
2 | Victor GARCIA-MONTOTO, VERDIER Sylvain, MAROUN Zeina, et al. Understanding the removal of V, Ni and S in crude oil atmospheric residue hydrodemetallization and hydrodesulfurization[J]. Fuel Processing Technology, 2020, 201: 106341. |
3 | PENG Chong, LIU Bin, FENG Xiang, et al. Engineering dual bed hydrocracking catalyst towards enhanced high-octane gasoline generation from light cycle oil[J]. Chemical Engineering Journal, 2020, 389: 123461. |
4 | KOHLI K, PRAJAPATI R, MAITY Samir K, et al. Accelerated pre-coking of NiMo/γ-Al2O3 catalyst: Effect on the hydroprocessing activity of vacuum residue[J]. Fuel, 2019, 235: 437-447. |
5 | ZHANG Di, LIU Xinmei, LIU Yuxiang, et al. Impact of γ-alumina pore structure on structure and performance of Ni-Mo/γ-Al2O3 catalyst for 4,6-dimethyldibenzothiophene desulfurization[J]. Microporous and Mesoporous Materials, 2021, 310: 110637. |
6 | WANG Haiyan, LIU Shida, SMITH Kevin J. Understanding selectivity changes during hydrodesulfurization of dibenzothiophene on Mo2C/carbon catalysts[J]. Journal of Catalysis, 2019, 369: 427-439. |
7 | SALEH Tawfik A, SULAIMAN Kazeem O, AL-HAMMADI Saddam A. Effect of carbon on the hydrodesulfurization activity of MoCo catalysts supported on zeolite/active carbon hybrid supports[J]. Applied Catalysis B: Environmental, 2020, 263: 117661. |
8 | Dragana PROKIĆ-VIDOJEVIĆ, GLIŠIĆ Sandra B, KRSTIĆ Jugoslav B, et al. Aerogel Re/Pd-TiO2/SiO2 and Co/Mo-Al2O3/SiO2 catalysts for hydrodesulphurisation of dibenzothiophene and 4,6-dimethyldibenzothiophene[J]. Catalysis Today, 2021, 378: 10-23. |
9 | WANG Youhe, KOU Long, LU Jinzhi, et al. One-step synthesis of egg-tray-like layered ordered macro-mesoporous SiO2-Al2O3 composites for enhanced hydrodesulfurization performance[J]. Microporous and Mesoporous Materials, 2021, 322: 111131. |
10 | VÁZQUEZ-SALAS P J, HUIRACHE-ACUÑA R, ZEPEDA T A, et al. Enhancement of dibenzothiophene hydrodesulphurization via hydrogenation route on NiMoW catalyst supported on HMS modified with Ti[J]. Catalysis Today, 2018, 305: 65-74. |
11 | ROY Teddy, ROUSSEAU Julie, DAUDIN Antoine, et al. Deep hydrodesulfurization of 4,6-dimethydibenzothiophene over CoMoS/TiO2 catalysts: Impact of the TiO2 treatment[J]. Catalysis Today, 2021, 377: 17-25. |
12 | ONFROY Thomas, LI Wencui, Ferdi SCHÜTH, et al. Surface chemistry of carbon-templated mesoporous aluminas[J]. Physical Chemistry Chemical Physics, 2009, 11(19): 3671-3679. |
13 | WANG Fei, MA Jinzhu, XIN Shaohui, et al. Resolving the puzzle of single-atom silver dispersion on nanosized γ-Al2O3 surface for high catalytic performance[J]. Nature Communications, 2020, 11: 529. |
14 | WANG Yi, HUANG Bin, XU Jing, et al. Hydroxyl groups promoted Ag dispersion and excellent performance of Ag/Al2O3 catalyst for HCHO oxidation[J]. Catalysis Letters, 2021, 151(8): 2376-2683. |
15 | KWAK Jahun, HU Jianzhi, MEI Donghai, et al. Coordinatively unsaturated Al3+ centers as binding sites for active catalyst phases of platinum on gamma-Al2O3 [J]. Science, 2009, 325(5948): 1670-1673. |
16 | LI Mingfeng, LI Huifeng, JIANG Feng, et al. Effect of surface characteristics of different alumina on metal-support interaction and hydrodesulfurization activity[J]. Fuel, 2009, 88(7): 1281-1285. |
17 | SAKASHITA Yukio, ARAKI Yasuhiro, SHIMADA Hiromichi. Effects of surface orientation of alumina supports on the catalytic functionality of molybdenum sulfide catalysts[J]. Applied Catalysis A: General, 2001, 215(1/2): 101-110. |
18 | SAKASHITA Y, YONEDA T. Orientation of MoS2 clusters supported on two kinds of γ-Al2O3 single crystal surfaces with different indices[J]. Journal of Catalysis, 1999, 185(2): 487-495. |
19 | BARA Cédric, Anne-Félicie LAMIC-HUMBLOT, FONDA Emiliano, et al. Surface-dependent sulfidation and orientation of MoS2 slabs on alumina-supported model hydrodesulfurization catalysts[J]. Journal of Catalysis, 2016, 344: 591-605. |
20 | CAO Jing, XIA Jing, ZHANG Yicen, et al. Influence of the alumina crystal phase on the performance of CoMo/Al2O3 catalysts for the selective hydrodesulfurization of fluid catalytic cracking naphtha[J]. Fuel, 2021, 289: 119843. |
21 | WANG Xilong, ZHAO Zhen, ZHENG Peng, et al. Synthesis of NiMo catalysts supported on mesoporous Al2O3 with different crystal forms and superior catalytic performance for the hydrodesulfurization of dibenzothiophene and 4,6-dimethyldibenzothiophene[J]. Journal of Catalysis, 2016, 344: 680-691. |
22 | WANG Xilong, FAN Jiyuan, ZHAO Zhen, et al. Hydro-upgrading performance of fluid catalytic cracking diesel over different crystal forms of alumina-supported CoMo catalysts[J]. Energy & Fuels, 2017, 31(7): 7456-7463. |
23 | ZHANG Minghui, FAN Jiyuan, CHI Kebin, et al. Synthesis, characterization, and catalytic performance of NiMo catalysts supported on different crystal alumina materials in the hydrodesulfurization of diesel[J]. Fuel Processing Technology, 2017, 156: 446-453. |
24 | ZHANG Cen, LI Ping, LIU Xinyi, et al. Morphology-performance relation of (Co)MoS2 catalysts in the hydrodesulfurization of FCC gasoline[J]. Applied Catalysis A: General, 2018, 556: 20-28. |
25 | ZHANG Cen, BRORSON Michael, LI Ping, et al. CoMo/Al2O3 catalysts prepared by tailoring the surface properties of alumina for highly selective hydrodesulfurization of FCC gasoline[J]. Applied Catalysis A: General, 2019, 570: 84-95. |
26 | Pablo TORRES-MANCERA, RAYO Patricia, ANCHEYTA Jorge, et al. Catalyst deactivation pattern along a residue hydrotreating bench-scale reactor[J]. Catalysis Today, 2014, 220/221/222: 153-158. |
27 | GUICHARD Bertrand, GAULIER Florine, BARBIER Jérémie, et al. Asphaltenes diffusion/adsorption through catalyst alumina supports-Influence on catalytic activity[J]. Catalysis Today, 2018, 305: 49-57. |
28 | 隋宝宽, 施尧, 林见阳, 等.焙烧气氛和孔结构对加氢脱金属催化剂性能的影响[J]. 化工学报, 2021, 72(2): 993-1000. |
SUI Baokuan, SHI Yao, LIN Jianyang, et al. Impacts of calcination atmosphere and pore structure on performance of hydrodemetallization catalysts[J]. CIESC Journal, 2021, 72(2): 993-1000. | |
29 | ANCHEYTA Jorge, RANA Mohan S, FURIMSKY Edward. Hydroprocessing of heavy petroleum feeds: Tutorial[J]. Catalysis Today, 2005, 109(1/2/3/4): 3-15. |
30 | BADOGA Sandeep, SHARMA Rajesh V, DALAI Ajay K, et al. Synthesis and characterization of mesoporous aluminas with different pore sizes: Application in NiMo supported catalyst for hydrotreating of heavy gas oil[J]. Applied Catalysis A: General, 2015, 489: 86-97. |
31 | LIU Xinmei, LI Xiang, YAN Zifeng. Facile route to prepare bimodal mesoporous γ-Al2O3 as support for highly active CoMo-based hydrodesulfurization catalyst[J]. Applied Catalysis B: Environmental, 2012, 121/122: 50-56. |
32 | CHEN W, NIE H, LONG X, et al. Role of pore structure on the activity and stability of sulfide catalyst[J]. Catalysis Today, 2021, 377: 69-81. |
33 | SAPTIAMA Indra, KANETI Yusuf Valentino, SUZUKI Yoshitaka, et al. Template-free fabrication of mesoporous alumina nanospheres using post-synthesis water-ethanol treatment of monodispersed aluminium glycerate nanospheres for molybdenum adsorption[J]. Small, 2018, 14(21): 1800474. |
34 | GROEN Johan C, ZHU Weidong, BROUWER Sander, et al. Direct demonstration of enhanced diffusion in mesoporous ZSM-5 zeolite obtained via controlled desilication[J]. Journal of the American Chemical Society, 2007, 129(2): 355-360. |
35 | ZHANG Di, LIU Weiqiang, LIU Yanan, et al. Pore confinement effect of MoO3/Al2O3 catalyst for deep hydrodesulfurization[J]. Chemical Engineering Journal, 2017, 330: 706-717. |
36 | 曹东炜. 渣油加氢脱金属催化剂的对比研究与改进[D]. 东营: 中国石油大学(华东), 2017. |
CAO Dongwei. Comparison and improvement of catalysts for residue hydrogenation[D]. Dongying: China University of Petroleum (East China), 2017. | |
37 | STANISLAUS Antony, Khalida AL-DOLAMA, Mamun ABSI-HALABI. Preparation of a large pore alumina-based HDM catalyst by hydrothermal treatment and studies on pore enlargement mechanism[J]. Journal of Molecular Catalysis A: Chemical, 2002, 181(1/2): 33-39. |
38 | LI Huifeng, LI Mingfeng, NIE Hong. Tailoring the surface characteristic of alumina for preparation of highly active NiMo/Al2O3 hydrodesulfurization catalyst[J]. Microporous and Mesoporous Materials, 2014, 188: 30-36. |
39 | 曾双亲, 杨清河, 聂红, 等. 水热处理时间对氧化铝载体及加氢脱硫催化剂性能的影响[J]. 石油学报(石油加工), 2020, 36(5): 937-943. |
ZENG Shuangqin, YANG Qinghe, NIE Hong, et al. Effect of hydrothermal treatment duration on the performance of alumina support and catalytic activity in hydrodesulfurization[J]. Acta Petrolei Sinica(Petroleum Processing Section), 2020, 36(5): 937-943. | |
40 | YUE Yuanyuan, LI Jiawei, DONG Peng, et al. From cheap natural bauxite to high-efficient slurry-phase hydrocracking catalyst for high temperature coal tar: A simple hydrothermal modification[J]. Fuel Processing Technology, 2018, 175: 123-130. |
41 | RÉOCREUX R, GIREL É, CLABAUT P, et al. Reactivity of shape-controlled crystals and metadynamics simulations locate the weak spots of alumina in water[J]. Nature Communications, 2019, 10(1): 3139. |
42 | GIREL Etienne, CABIAC Amandine, CHAUMONNOT Alexandra, et al. Selective carbon deposition on γ-alumina acid sites: Toward the design of catalyst supports with improved hydrothermal stability in aqueous media[J]. ACS Applied Materials & Interfaces, 2020, 12(11): 13558-13567. |
43 | LIU Fang, OKOLIE Chukwuemeka, RAVENELLE Ryan M, et al. Silica deposition as an approach for improving the hydrothermal stability of an alumina support during glycerol aqueous phase reforming[J]. Applied Catalysis A: General, 2018, 551: 13-22. |
44 | MUKHAMBETOV Ildar N, EGOROVA Svetlana R, MUKHAMED’YAROVA Aliya N, et al. Hydrothermal modification of the alumina catalyst for the skeletal isomerization of n-butenes[J]. Applied Catalysis A: General, 2018, 554: 64-70. |
45 | 季洪海, 凌凤香, 王少军, 等. NH4HCO3水热改性对氧化铝载体结构与性质的影响[J]. 石油化工, 2019, 48(12): 1206-1211. |
JI Honghai, LING Fengxiang, WANG Shaojun, et al. The effect of NH4HCO3 hydrothermal modification on structure and properties of alumina support[J]. Petrochemical Technology, 2019, 48(12): 1206-1211. | |
46 | 汪佩华, 秦志峰, 吴琼笑, 等. 磷添加方式对NiMo/Al2O3催化剂加氢脱硫性能的影响[J]. 化工进展, 2021, 40(2): 890-900. |
WANG Peihua, QIN Zhifeng, WU Qiongxiao, et al. Effect of phosphorus adding manners on the performance of NiMo/Al2O3 catalyst in hydrodesulfurization[J]. Chemical Industry and Engineering Progress, 2021, 40(2): 890-900. | |
47 | NADEINA K A, KAZAKOV M O, DANILOVA I G, et al. The influence of B and P in the impregnating solution on the properties of NiMo/γ-δ-Al2O3 catalysts for VGO hydrotreating[J]. Catalysis Today, 2019, 329: 2-12. |
48 | CHEN Wenbin, Francoise MAUGÉ, VAN GESTEL Jacob, et al. Effect of modification of the alumina acidity on the properties of supported Mo and CoMo sulfide catalysts[J]. Journal of Catalysis, 2013, 304: 47-62. |
49 | VATUTINA Yu V, KLIMOV O V, NADEINA K A, et al. Influence of boron addition to alumina support by kneading on morphology and activity of HDS catalysts[J]. Applied Catalysis B: Environmental, 2016, 199: 23-32. |
50 | ZHAO Ruiyu, LU Pingjuan, ZHAO Yuansheng, et al. Effect of phosphorus modification on the acidity, nanostructure of the active phase, and catalytic performance of residue hydrodenitrogenation catalysts[J]. ACS Omega, 2020, 5(30): 19111-19119. |
51 | RASHIDI Fereshteh, SASAKI Takehiko, RASHIDI Ali Morad, et al. Ultradeep hydrodesulfurization of diesel fuels using highly efficient nanoalumina-supported catalysts: Impact of support, phosphorus, and/or boron on the structure and catalytic activity[J]. Journal of Catalysis, 2013, 299: 321-335. |
52 | MAITY S K, ANCHEYTA J, RANA M S, et al. Effect of phosphorus on activity of hydrotreating catalyst of Maya heavy crude[J]. Catalysis Today, 2005, 109(1/2/3/4): 42-48. |
53 | 李会峰, 李明丰, 张乐, 等. 氟改性对不同钨物种在催化剂载体上分散及其加氢脱硫性能的影响[J]. 石油炼制与化工, 2019, 50(10): 1-7. |
LI Huifeng, LI Mingfeng, ZHANG Le, et al. Effect of fluorine modification on dispersion of different tungsten species on support and hydrodesulfurization performance[J]. Petroleum Processing and Petrochemicals, 2019, 50(10): 1-7. | |
54 | MARQUES Joao, GUILLAUME Denis, MERDRIGNAC Isabelle, et al. Effect of catalysts acidity on residues hydrotreatment[J]. Applied Catalysis B: Environmental, 2011, 101(3/4): 727-737. |
55 | HAN Wei, NIE Hong, LONG Xiangyun, et al. Preparation of F-doped MoS2/Al2O3 catalysts as a way to understand the electronic effects of the support Brønsted acidity on HDN activity[J]. Journal of Catalysis, 2016, 339: 135-142. |
56 | GUO Xingmei, SONG Maoning, ZHAO Xu, et al. Effect of fluoride promoter on the catalytic activity of NiWF/γ-Al2O3 for hydrodenitrogenation and hydrodesulfurization of coal tar[J]. Journal of Fuel Chemistry and Technology, 2016, 44(11): 1326-1333. |
57 | ZHANG Yanru, HAN Wei, LONG Xiangyun, et al. Redispersion effects of citric acid on CoMo/γ-Al2O3 hydrodesulfurization catalysts[J]. Catalysis Communications, 2016, 82: 20-23. |
58 | Perla CASTILLO-VILLALÓN, RAMIREZ Jorge, Antonio VARGAS-LUCIANO J. Analysis of the role of citric acid in the preparation of highly active HDS catalysts[J]. Journal of Catalysis, 2014, 320: 127-136. |
59 | PIMERZIN Aleksey, MOZHAEV Alexander, VARAKIN Andrey, et al. Comparison of citric acid and glycol effects on the state of active phase species and catalytic properties of CoPMo/Al2O3 hydrotreating catalysts[J]. Applied Catalysis B: Environmental, 2017, 205: 93-103. |
60 | CHEN Jianjun, DOMINGUEZ GARCIA Elizabeth, OLIVIERO Erwan, et al. Effect of high pressure sulfidation on the morphology and reactivity of MoS2 slabs on MoS2/Al2O3 catalyst prepared with citric acid[J]. Journal of Catalysis, 2016, 339: 153-162. |
61 | IWAMOTO Ryuichiro, KAGAMI Narinobu, SAKODA Yukihiro, et al. Effect of polyethylene glycol addition on NiO-MoO3/Al2O3 and NiO-MoO3-P2O5/Al2O3 hydrodesulfurization catalyst[J]. Journal of the Japan Petroleum Institute, 2005, 48(6): 351-357. |
62 | HAANDEL Lvan, BREMMER G M, HENSEN E J M, et al. Influence of sulfiding agent and pressure on structure and performance of CoMo/Al2O3 hydrodesulfurization catalysts[J]. Journal of Catalysis, 2016, 342: 27-39. |
63 | EIJSBOUTS S, VAN DEN OETELAAR L C A, VAN PUIJENBROEK R R. MoS2 morphology and promoter segregation in commercial Type 2 Ni-Mo/Al2O3 and Co-Mo/Al2O3 hydroprocessing catalysts[J]. Journal of Catalysis, 2005, 229(2): 352-364. |
64 | KOCHUBEY D I, BABENKO V P. Structure of MoS2-based catalysts for hydrodesulfurization prepared via exfoliation[J]. Reaction Kinetics and Catalysis Letters, 2002, 77: 237-243. |
65 | LIU Bin, CHAI Yongming, LI Yanpeng, et al. Effect of sulfidation atmosphere on the performance of the CoMo/γ-Al2O3 catalysts in hydrodesulfurization of FCC gasoline[J]. Applied Catalysis A: General, 2014, 471: 70-79. |
66 | OKAMOTO Yasuaki, HIOKA Kazuya, ARAKAWA Kenichi, et al. Effect of sulfidation atmosphere on the hydrodesulfurization activity of SiO2-supported Co-Mo sulfide catalysts: Local structure and intrinsic activity of the active sites[J]. Journal of Catalysis, 2009, 268(1): 49-59. |
67 | DUGULAN A I, HENSEN E J M, VAN VEEN J A R. High-pressure sulfidation of a calcined CoMo/Al2O3 hydrodesulfurization catalyst[J]. Catalysis Today, 2008, 130(1): 126-134. |
68 | CHEN W, LONG X, LI M, et al. Influence of active phase structure of CoMo/Al2O3 catalyst on the selectivity of hydrodesulfurization and hydrodearomatization[J]. Catalysis Today, 2017, 292: 97-109. |
69 | HE Shuisen, HUANG Tingting, FAN Yu. Tetradecylamine-induced assembly of Mo and Al precursors to prepare efficient NiMoS/Al2O3 catalysts for ultradeep hydrodesulfurization[J]. Applied Catalysis B: Environmental, 2022, 317: 121801. |
70 | QI Lu, ZHENG Peng, ZHAO Zhen, et al. Insights into the intrinsic kinetics for efficient hydrodesulfurization of 4,6-dimethyldibenzothiophene over mesoporous CoMoS2/ZSM-5[J]. Journal of Catalysis, 2022, 408: 279-293. |
71 | Jorge RAMÍREZ, Perla CASTILLO-VILLALÓN, Aída GUTIÉRREZ-ALEJANDRE, et al. Interaction of different molecules with the hydrogenation and desulfurization sites of NiMoS supported particles with different morphology[J]. Catalysis Today, 2020, 353: 99-111. |
72 | LIU Zhiwei, HAN Wei, HU Dawei, et al. Effects of Ni-Al2O3 interaction on NiMo/Al2O3 hydrodesulfurization catalysts[J]. Journal of Catalysis, 2020, 387: 62-72. |
73 | YUAN Hui, QIHERIMA, XU Guang-Tong, et al. Study of oxidic and sulfided selective hydrodesulfurization catalysts for gasoline using Raman spectroscopy[J]. Chinese Chemical Letters, 2013, 24(12): 1041-1044. |
74 | Leticia ESPINOSA-ALONSO, BEALE Andrew M, WECKHUYSEN Bert M. Profiling physicochemical changes within catalyst bodies during preparation: New insights from invasive and noninvasive microspectroscopic studies[J]. Accounts of Chemical Research, 2010, 43(9): 1279-1288. |
75 | YANG Xuesong, WANG Shuai, ZHANG Kai, et al. Investigation of coke deposition inside catalyst with heterogeneous active component distribution[J]. Fuel, 2021, 287: 119547. |
76 | YU Ke, KONG Weimin, ZHAO Zhen, et al. Hydrodesulfurization of dibenzothiophene and 4,6-dimethyldibenzothiophene over NiMo supported on yolk-shell silica catalysts with adjustable shell thickness and yolk size[J]. Journal of Catalysis, 2022, 410: 128-143. |
77 | JANG Min-Su, CHO Eui Hyun, Kee Young KOO, et al. Facile preparation of egg-shell-type pellet catalysts using immiscibility between hydrophobic solvent and hydrophilic solution: Enhancement of catalytic activity due to position control of metallic nickel inside alumina pellet[J]. Applied Catalysis A: General, 2017, 530: 211-216. |
78 | FRATALOCCHI Laura, VISCONTI Carlo Giorgio, LIETTI Luca, et al. Exploiting the effects of mass transfer to boost the performances of Co/γ-Al2O3 eggshell catalysts for the Fischer-Tropsch synthesis[J]. Applied Catalysis A: General, 2016, 512: 36-42. |
79 | CHO Eunkyung, YU Yeon Jeong, KIM Youngji, et al. Egg-shell-type Ni supported on MgAl2O4 pellets as catalyst for steam methane reforming: Enhanced coke-resistance and pellet stability[J]. Catalysis Today, 2020, 352: 157-165. |
80 | KOHLI K, PRAJAPATI R, MAITY S K, et al. Deactivation of hydrotreating catalyst by metals in resin and asphaltene parts of heavy oil and residues[J]. Fuel, 2016, 175: 264-273. |
81 | DUARTE Liseth, Laura GARZÓN, BALDOVINO-MEDRANO Víctor Gabriel. An analysis of the physicochemical properties of spent catalysts from an industrial hydrotreating unit[J]. Catalysis Today, 2019, 338: 100-107. |
82 | OVALLES Cesar, ROGEL Estrella, MOIR Michael E, et al. Hydroprocessing of vacuum residues: Asphaltene characterization and solvent extraction of spent slurry catalysts and the relationships with catalyst deactivation[J]. Applied Catalysis A: General, 2017, 532: 57-64. |
83 | JIA Yanzi, YANG Qinghe, SUN Shuling, et al. The influence of metal deposits on residue hydrodemetallization catalysts in the absence and presence of coke[J]. Energy & Fuels, 2016, 30(4): 2544-2554. |
[1] | 龚鹏程, 严群, 陈锦富, 温俊宇, 苏晓洁. 铁酸钴复合碳纳米管活化过硫酸盐降解铬黑T的性能及机理[J]. 化工进展, 2023, 42(7): 3572-3581. |
[2] | 于志庆, 黄文斌, 王晓晗, 邓开鑫, 魏强, 周亚松, 姜鹏. B掺杂Al2O3@C负载CoMo型加氢脱硫催化剂性能[J]. 化工进展, 2023, 42(7): 3550-3560. |
[3] | 张巍, 秦川, 谢康, 周运河, 董梦瑶, 李婕, 汤云灏, 马英, 宋健. H2-SCR改性铂系催化剂低温脱硝的应用及性能强化挑战[J]. 化工进展, 2023, 42(6): 2954-2962. |
[4] | 马源, 肖晴月, 岳君容, 崔彦斌, 刘姣, 许光文. CeO2-Al2O3复合载体负载Ni基催化剂催化CO x 共甲烷化性能[J]. 化工进展, 2023, 42(5): 2421-2428. |
[5] | 张宁, 吴海滨, 李钰, 李剑锋, 程芳琴. 漂浮型光催化材料的制备及其在水处理领域的应用研究进展[J]. 化工进展, 2023, 42(5): 2475-2485. |
[6] | 章建忠, 许升, 樊家澍, 费振宇, 王堃, 黄建, 崔峰波, 冉文华. 玻璃纤维浸润剂的分析与表征技术进展[J]. 化工进展, 2023, 42(2): 821-838. |
[7] | 李乃珍, 孙瑞洁, 秦志峰, 苗茂谦, 吴琼笑, 常丽萍, 孙鹏程, 曾剑, 刘毅. 焦炉煤气常量含碳气氛对加氢脱硫催化剂活性、选择性和积炭的影响[J]. 化工进展, 2023, 42(2): 783-793. |
[8] | 刘亮, 王朝曦, 李鑫龙, 张高山, 王守阳, 张林林, 陆畅, 卿梦霞. 钒钛系脱硝催化剂抗硫酸氢铵中毒改进措施研究进展[J]. 化工进展, 2023, 42(1): 215-225. |
[9] | 郭振雪, 于海斌, 张国辉, 张景成, 卢雁飞, 何艳贞, 孙彦民, 韩恩山. Si改性对NiMo/Al2O3催化剂加氢脱硫性能的影响[J]. 化工进展, 2022, 41(S1): 210-220. |
[10] | 刘培慧, 刘宇喆, 李琳, 王少辉, 王同华. 具有多级孔道结构的高比表面多孔炭活化策略及VOCs吸附性能[J]. 化工进展, 2022, 41(S1): 613-621. |
[11] | 汪兴, 赵子龙, 张小山, 王宏杰, 董文艺, 陈慧慧. 制备条件对生物炭载铁催化剂催化破络Ni-EDTA性能及活性组分浸出的影响[J]. 化工进展, 2022, 41(9): 4831-4839. |
[12] | 曾军建, 赵基钢. 乙炔氢氯化金基无汞催化剂的研究进展[J]. 化工进展, 2022, 41(7): 3589-3596. |
[13] | 宋绍彤, 李天舒, 鞠雅娜, 吕忠武, 吴培, 孙长宇, 段爱军. 不同类型氧化铝对FCC轻汽油芳构化性能影响[J]. 化工进展, 2022, 41(5): 2460-2467. |
[14] | 唐金琼, 孔勇, 沈晓冬. 碳化物衍生碳的制备及其应用研究进展[J]. 化工进展, 2022, 41(2): 791-802. |
[15] | 任可欣, 鲁军辉, 王随林, 唐进京. 低湿CO2/H2O混合气体吸附特性实验[J]. 化工进展, 2022, 41(12): 6698-6710. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |