化工进展 ›› 2023, Vol. 42 ›› Issue (2): 884-896.DOI: 10.16085/j.issn.1000-6613.2022-0773
收稿日期:
2022-04-27
修回日期:
2022-06-27
出版日期:
2023-02-25
发布日期:
2023-03-13
通讯作者:
雷西萍
作者简介:
田甜(1998—),女,硕士研究生,研究方向为超级电容器。E-mail: tian3976@163.com。
基金资助:
TIAN Tian(), LEI Xiping(), YU Ting, FAN Kai, SONG Xiaoqi, ZHU Hang
Received:
2022-04-27
Revised:
2022-06-27
Online:
2023-02-25
Published:
2023-03-13
Contact:
LEI Xiping
摘要:
轻便灵活的柔性超级电容器在可穿戴和便携式电子储能装置中有着潜在的应用前景。碳材料因具有优异的柔韧性、良好的导电性和较大的比表面积,通常在柔性超级电容器中发挥着柔性基底和导电活性填料的作用。本文首先综述了双电层、赝电容以及混合型超级电容器的储能机理。其次分别介绍了以碳材料作为柔性基底和导电活性填料的最新研究进展。碳材料作为柔性基底复合赝电容材料时,既可以提供大的比表面积,也可为氧化还原反应提供大量活性位点;而作为其他柔性基底的导电活性填料时,既能够改善赝电容材料稳定性的问题,也为电解质离子提供传输通道。文章最后提出了当下柔性超级电容器电极在力学性能、制备方法和评价标准中面临的相关问题。
中图分类号:
田甜, 雷西萍, 于婷, 樊凯, 宋晓琪, 朱航. 碳材料在柔性超级电容器中的研究进展[J]. 化工进展, 2023, 42(2): 884-896.
TIAN Tian, LEI Xiping, YU Ting, FAN Kai, SONG Xiaoqi, ZHU Hang. Research progress in carbon materials for flexible supercapacitors[J]. Chemical Industry and Engineering Progress, 2023, 42(2): 884-896.
1 | DU Yongquan, XIAO Peng, YUAN Jian, et al. Research progress of graphene-based materials on flexible supercapacitors[J]. Coatings, 2020, 10(9): 892. |
2 | DELBARI S A, GHADIMI L S, HADI R, et al. Transition metal oxide-based electrode materials for flexible supercapacitors: A review[J]. Journal of Alloys and Compounds, 2021, 857: 158281. |
3 | WANG Zifeng, ZHU Minshen, PEI Zengxia, et al. Polymers for supercapacitors: Boosting the development of the flexible and wearable energy storage[J]. Materials Science and Engineering R: Reports, 2020, 139: 100520. |
4 | ZHONG Cheng, DENG Yida, HU Wenbin, et al. A review of electrolyte materials and compositions for electrochemical supercapacitors[J]. Chemical Society Reviews, 2015, 44(21): 7484-7539. |
5 | PATEL K K, SINGHAL T, PANDEY V, et al. Evolution and recent developments of high performance electrode material for supercapacitors: A review[J]. Journal of Energy Storage, 2021, 44: 103366. |
6 | KIM Chan, CHOI Yeong Og, LEE Wanjin, et al. Supercapacitor performances of activated carbon fiber webs prepared by electrospinning of PMDA-ODA poly(amic acid) solutions[J]. Electrochimica Acta, 2004, 50(2/3): 883-887. |
7 | PUSHPARAJ V L, SHAIJUMON M M, KUMAR A, et al. Flexible energy storage devices based on nanocomposite paper[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(34): 13574-13577. |
8 | HU L B, PASTA M, MANTIA F L, et al. Stretchable, porous, and conductive energy textiles[J]. Nano Letters, 2010, 10(2): 708-714. |
9 | CONWAY B E. Electrochemical supercapacitors: Scientific fundamentals and technological applications[M]. New York: Springer Science & Business Media, 2013: 14-482. |
10 | Eunho LIM, Changshin JO, LEE Jinwoo. A mini review of designed mesoporous materials for energy-storage applications: From electric double-layer capacitors to hybrid supercapacitors[J]. Nanoscale, 2016, 8(15): 7827-7833. |
11 | SIMON P, GOGOTSI Y. Materials for electrochemical capacitors[J]. Nature Materials, 2008, 7(11): 845-854. |
12 | WANG Yonggang, SONG Yanfang, XIA Yongyao. Electrochemical capacitors: Mechanism, materials, systems, characterization and applications[J]. Chemical Society Reviews, 2016, 45(21): 5925-5950. |
13 | LANG X Y, HIRATA A, FUJITA T, et al. Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors[J]. Nature Nanotechnology, 2011, 6(4): 232-236. |
14 | YANG Wen, NI Mei, REN Xin, et al. Graphene in supercapacitor applications[J]. Current Opinion in Colloid & Interface Science, 2015, 20(5/6): 416-428. |
15 | LIN Shiying, MO Lanlan, WANG Feijun. One-step synthesis of O-self-doped honeycomb-like hierarchically porous carbons for supercapacitors[J]. Journal of Electrochemical Energy Conversion and Storage, 2022, 19(1): 011003. |
16 | BABIĆ B, KALUĐEROVIĆ B, VRAČAR L, et al. Characterization of carbon cryogel synthesized by sol-gel polycondensation and freeze-drying[J]. Carbon, 2004, 42(12/13): 2617-2624. |
17 | BO Zheng, LI Changwen, YANG Huachao, et al. Design of supercapacitor electrodes using molecular dynamics simulations[J]. Nano-Micro Letters, 2018, 10(2): 1-23. |
18 | PÉAN C, MERLET C, ROTENBERG B, et al. On the dynamics of charging in nanoporous carbon-based supercapacitors[J]. ACS Nano, 2014, 8(2): 1576-1583. |
19 | CHOI Hojin, YOON Hyeonseok. Nanostructured electrode materials for electrochemical capacitor applications[J]. Nanomaterials, 2015, 5(2): 906-936. |
20 | XU Kui, SHAO Hui, LIN Zifeng, et al. Computational insights into charge storage mechanisms of supercapacitors[J]. Energy & Environmental Materials, 2020, 3(3): 235-246. |
21 | BI Ruyi, MAO Dan, WANG Jiangyan, et al. Hollow nanostructures for surface/interface chemical energy storage application[J]. Acta Chimica Sinica, 2020, 78(11): 1200. |
22 | NOORI A, EL-KADY M F, RAHMANIFAR M S, et al. Towards establishing standard performance metrics for batteries, supercapacitors and beyond[J]. Chemical Society Reviews, 2019, 48(5): 1272-1341. |
23 | TRASATTI S, BUZZANCA G. Ruthenium dioxide: A new interesting electrode material. Solid state structure and electrochemical behaviour[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1971, 29(2): A1-A5. |
24 | CHOI C, ASHBY D S, BUTTS D M, et al. Achieving high energy density and high power density with pseudocapacitive materials[J]. Nature Reviews Materials, 2020, 5(1): 5-19. |
25 | KEILBART N, OKADA Y, DABO I. Probing the pseudocapacitance and energy-storage performance of RuO2 facets from first principles[J]. Physical Review Materials, 2019, 3(8): 085405. |
26 | LIU Y, JIANG S P, SHAO Z. Intercalation pseudocapacitance in electrochemical energy storage: Recent advances in fundamental understanding and materials development[J]. Materials Today Advances, 2020, 7: 100072. |
27 | LOU Shuaifeng, CHENG Xinqun, WANG Long, et al. High-rate capability of three-dimensionally ordered macroporous T-Nb2O5 through Li+ intercalation pseudocapacitance[J]. Journal of Power Sources, 2017, 361: 80-86. |
28 | KONG Lingping, CAO Xiaodong, WANG Jitong, et al. Revisiting Li+ intercalation into various crystalline phases of Nb2O5 anchored on graphene sheets as pseudocapacitive electrodes[J]. Journal of Power Sources, 2016, 309: 42-49. |
29 | YANG Ben, SHE Yin, ZHANG Changgeng, et al. Nitrogen doped intercalation TiO2/TiN/Ti3C2T x nanocomposite electrodes with enhanced pseudocapacitance[J]. Nanomaterials, 2020, 10(2): 345. |
30 | SRIMUK P, KAASIK F, KRÜNER B, et al. MXene as a novel intercalation-type pseudocapacitive cathode and anode for capacitive deionization[J]. Journal of Materials Chemistry A, 2016, 4(47): 18265-18271. |
31 | HAN Xue, MENG Qi, WAN Xin, et al. Intercalation pseudocapacitive electrochemistry of Nb-based oxides for fast charging of lithium-ion batteries[J]. Nano Energy, 2021, 81: 105635. |
32 | MUZAFFAR A, AHAMED M B, DESHMUKH K, et al. A review on recent advances in hybrid supercapacitors: Design, fabrication and applications[J]. Renewable and Sustainable Energy Reviews, 2019, 101: 123-145. |
33 | 黄士飞, 帖炟, 佟琦, 等. 基于超级电容的混合储能器件研究现状及展望[J]. 自然杂志, 2017, 39(4): 265-282. |
HUANG Shifei, Da TIE, TONG Qi, et al. Advances and prospects for supercapacitor-based hybrid energy storage devices[J]. Chinese Journal of Nature, 2017, 39(4): 265-282. | |
34 | SHINDE S K, KIM D Y, KUMAR M, et al. MOFs-graphene composites synthesis and application for electrochemical supercapacitor: A review[J]. Polymers, 2022, 14(3): 511. |
35 | FANG Haiqiu, LI Dezhi, ZHAO Mingyao, et al. Research progress and prospect of hybrid supercapacitors as boosting the performance[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2022: 1-18. |
36 | LIU Qiang, YANG Junjie, LUO Xiaogang, et al. Fabrication of a fibrous MnO2@MXene/CNT electrode for high-performance flexible supercapacitor[J]. Ceramics International, 2020, 46(8): 11874-11881. |
37 | ZHANG Li, TIAN Yao, SONG Chunxiao, et al. Study on preparation and performance of flexible all-solid-state supercapacitor based on nitrogen-doped RGO/CNT/MnO2 composite fibers[J]. Journal of Alloys and Compounds, 2021, 859: 157816. |
38 | XU Yanfang, YAN Yushan, LU Weibang, et al. High-performance flexible asymmetric fiber-shaped supercapacitor based on CF/PPy and CNT/MnO2 composite electrodes[J]. ACS Applied Energy Materials, 2021, 4(10): 10639-10645. |
39 | ISLAM M S, FAISAL S N, TONG L Y, et al. N-doped reduced graphene oxide (rGO) wrapped carbon microfibers as binder-free electrodes for flexible fibre supercapacitors and sodium-ion batteries[J]. Journal of Energy Storage, 2021, 37: 102453. |
40 | CHEN Shuai, JIANG Hao, CHENG Qilin, et al. Amorphous vanadium oxides with metallic character for asymmetric supercapacitors[J]. Chemical Engineering Journal, 2021, 403: 126380. |
41 | YIN Xuemin, LI Hejun, YUAN Ruimei, et al. Hierarchical self-supporting sugar gourd-shape MOF-derived NiCo2O4 hollow nanocages@SiC nanowires for high-performance flexible hybrid supercapacitors[J]. Journal of Colloid and Interface Science, 2021, 586: 219-232. |
42 | YIN Xuemin, LI Hejun, YUAN Ruimei, et al. Metal-organic framework derived hierarchical NiCo2O4 triangle nanosheet arrays@SiC nanowires network/carbon cloth for flexible hybrid supercapacitors[J]. Journal of Materials Science & Technology, 2021, 81: 162-174. |
43 | WU Yatao, CHEN Hao, LU Yingzhuo, et al. Rational design of cobalt-nickel double hydroxides for flexible asymmetric supercapacitor with improved electrochemical performance[J]. Journal of Colloid and Interface Science, 2021, 581: 455-464. |
44 | ZHAO Wei, ZHENG Yiwei, CUI Liang, et al. MOF derived Ni-Co-S nanosheets on electrochemically activated carbon cloth via an etching/ion exchange method for wearable hybrid supercapacitors[J]. Chemical Engineering Journal, 2019, 371: 461-469. |
45 | YAN Shengxue, LUO Shaohua, FENG Jian, et al. Rational design of flower-like FeCo2S4/reduced graphene oxide films: Novel binder-free electrodes with ultra-high conductivity flexible substrate for high-performance all-solid-state pseudocapacitor[J]. Chemical Engineering Journal, 2020, 381: 122695. |
46 | YOU Mingyu, ZHANG Wenjing, YAN Xuehua, et al. V2O5 nanosheets assembled on 3D carbon fiber felt as a free-standing electrode for flexible asymmetric supercapacitor with remarkable energy density[J]. Ceramics International, 2021, 47(3): 3337-3345. |
47 | WANG Qiufan, RAN Xuan, SHAO Wenke, et al. High performance flexible supercapacitor based on metal-organic-framework derived CoSe2 nanosheets on carbon nanotube film[J]. Journal of Power Sources, 2021, 490: 229517. |
48 | XIE Yibing, CHEN Yucheng. Experimental and computational investigation of Cu-N coordination bond strengthened polyaniline for stable energy storage[J]. Journal of Materials Science, 2021, 56(16): 10135-10153. |
49 | 周亚丽. 壳聚糖生物质碳基电极材料的制备及其电化学性能研究[D]. 西安: 西安建筑科技大学, 2021. |
ZHOU Yali. Study on preparation and electrochemical properties of chitosan biomass carbon based electrode materials[D]. Xi’an: Xi’an University of Architecture and Technology, 2021. | |
50 | MA Yu, LIU Qiao, LI Weijun, et al. Ultralight and robust carbon nanofiber aerogels for advanced energy storage[J]. Journal of Materials Chemistry A, 2021, 9(2): 900-907. |
51 | LIU Huayu, XU Ting, LIANG Qidi, et al. Compressible cellulose nanofibrils/reduced graphene oxide composite carbon aerogel for solid-state supercapacitor[J]. Advanced Composites and Hybrid Materials, 2022, 5(2): 1168-1179. |
52 | CHEBIL A, KUZGUN O, DRIDI C, et al. High power density supercapacitor devices based on nickel foam-coated rGO/MnCo2O4 nanocomposites[J]. Ionics, 2020, 26(11): 5725-5735. |
53 | DENG Bowen, YANG Yi, LIU Yuxin, et al. Dipping fabrication of rHGO@NiO@NF flexible supercapacitor electrode and its potential in bendable electronic devices[J]. Electrochimica Acta, 2021, 399: 139359. |
54 | ZHANG Zhijia, REN Zenying, ZHANG Shaofei, et al. High-yielding carbon nanofibers grown on NIPS-derived porous nickel as a flexible electrode for supercapacitors[J]. Materials Chemistry Frontiers, 2020, 4(10): 2976-2981. |
55 | VARAKIN I N, STEPANOV A B, MENUKHOV V V. Douvble-layer capacitor: US5986876A[P]. 1999-11-16 |
56 | ZHOU Ting, ZHANG Wenjun, FU Hao, et al. Flexible synthesis of high-performance electrode materials of N-doped carbon coating MnO nanowires for supercapacitors[J]. Nanotechnology, 2021, 33(8): ac394b. |
57 | LIANG Jing, TIAN Bin, LI Shuaiqi, et al. All-printed MnHCF-MnO x -based high-performance flexible supercapacitors[J]. Advanced Energy Materials, 2020, 10(12): 2000022. |
58 | ZHOU Yihao, MALESKI K, ANASORI B, et al. Ti3C2T x MXene-reduced graphene oxide composite electrodes for stretchable supercapacitors[J]. ACS Nano, 2020, 14(3): 3576-3586. |
59 | ZHOU Tianzhu, WU Chao, WANG Yanlei, et al. Super-tough MXene-functionalized graphene sheets[J]. Nature Communications, 2020, 11(1): 2077. |
60 | ZHANG P, ZHU Q Z, SOOMRO R A, et al. In situ ice template approach to fabricate 3D flexible MXene film-based electrode for high performance supercapacitors[J]. Advanced Functional Materials, 2020, 30(47): 2000922. |
61 | ZHANG Chenjun, LI Hui, HUANG Aoming, et al. Rational design of a flexible CNTs@PDMS film patterned by bio-inspired templates as a strain sensor and supercapacitor[J]. Small, 2019, 15(18): e1805493. |
62 | Jianwei BEN, SONG Zhiyuan, LIU Xinke, et al. Fabrication and electrochemical performance of PVA/CNT/PANI flexible films as electrodes for supercapacitors[J]. Nanoscale Research Letters, 2020, 15(1): 151. |
63 | JYOTHIBASU J P, LEE R H. Green synthesis of polypyrrole tubes using curcumin template for excellent electrochemical performance in supercapacitors[J]. Journal of Materials Chemistry A, 2020, 8(6): 3186-3202. |
64 | BAI Yang, LIU Rong, LI Enyuan, et al. Graphene/carbon nanotube/bacterial cellulose assisted supporting for polypyrrole towards flexible supercapacitor applications[J]. Journal of Alloys and Compounds, 2019, 777: 524-530. |
65 | YU Ting, LEI Xiping, ZHOU Yali, et al. Ti3C2T x MXenes reinforced PAA/CS hydrogels with self-healing function as flexible supercapacitor electrodes[J]. Polymers for Advanced Technologies, 2021, 32(8): 3167-3179. |
66 | HAN Jingquan, WANG Huixiang, YUE Yiying, et al. A self-healable and highly flexible supercapacitor integrated by dynamically cross-linked electro-conductive hydrogels based on nanocellulose-templated carbon nanotubes embedded in a viscoelastic polymer network[J]. Carbon, 2019, 149: 1-18. |
67 | HAO Baowei, DENG Zhongmin, BI Shuguang, et al. In situ polymerization of pyrrole on CNT/cotton multifunctional composite yarn for supercapacitors[J]. Ionics, 2021, 27(1): 279-288. |
68 | RAJ C J, MANIKANDAN R, CHO W J, et al. High-performance flexible and wearable planar supercapacitor of manganese dioxide nanoflowers on carbon fiber cloth[J]. Ceramics International, 2020, 46(13): 21736-21743. |
69 | YANG Yuan, CHEN Zeqi, YE Dezhan, et al. Polypyrrole/CNT/cotton composite yarn supercapacitor for wearable electronics[J]. Fibers and Polymers, 2022, 23(2): 327-334. |
70 | ZHAO Xu, LI Wanwan, LI Fang, et al. Wearable yarn supercapacitors coated with twisted PPy@GO nanosheets and PPy@PAN-GO nanofibres[J]. Journal of Materials Science, 2021, 56(32): 18147-18161. |
71 | LIANG Chunliu, ZANG Limin, SHI Fangfang, et al. High-performance cotton fabric-based supercapacitors consisting of polypyrrole/Ag/graphene oxide nanocomposite prepared via UV-induced polymerization[J]. Cellulose, 2022, 29(4): 2525-2537. |
72 | CAI Guangming, HAO Baowei, LUO Lei, et al. Highly stretchable sheath-core yarns for multifunctional wearable electronics[J]. ACS Applied Materials & Interfaces, 2020, 12(26): 29717-29727. |
73 | COSTA R S, GUEDES A, PEREIRA A M, et al. Fabrication of all-solid-state textile supercapacitors based on industrial-grade multi-walled carbon nanotubes for enhanced energy storage[J]. Journal of Materials Science, 2020, 55(23): 10121-10141. |
74 | ZHANG Chuanjie, TIAN Jiaxin, RAO Weida, et al. Polypyrrole@metal-organic framework (UIO-66)@cotton fabric electrodes for flexible supercapacitors[J]. Cellulose, 2019, 26(5): 3387-3399. |
75 | LI Zengqing, TIAN Mingwei, SUN Xuantong, et al. Flexible all-solid planar fibrous cellulose nonwoven fabric-based supercapacitor via capillarity-assisted graphene/MnO2 assembly[J]. Journal of Alloys and Compounds, 2019, 782: 986-994. |
76 | Jingchun LYU, ZHANG Linping, ZHONG Yi, et al. High-performance polypyrrole coated knitted cotton fabric electrodes for wearable energy storage[J]. Organic Electronics, 2019, 74: 59-68. |
77 | WANG Bo, LI Zezhao, YIN Yunjie, et al. Center and multi-points current collecting for improving capacitances of rectangular polypyrrole/knitted cotton fabric-based supercapacitor[J]. Journal of Power Sources, 2021, 481: 228824. |
78 | LI Kang, LIU Xuanli, CHEN Song, et al. A flexible solid-state supercapacitor based on graphene/polyaniline paper electrodes[J]. Journal of Energy Chemistry, 2019, 32: 166-173. |
79 | Peng LYU, SONG Lingxia, LI Yue, et al. Hybrid ternary rice paper/polypyrrole ink/pen ink nanocomposites as components of flexible supercapacitors[J]. International Journal of Hydrogen Energy, 2021, 46(24): 13219-13229. |
80 | KUMAR S, PANDEY C M, HATAMIE A, et al. Nanomaterial-modified conducting paper: Fabrication, properties, and emerging biomedical applications[J]. Global Challenges, 2019, 3(12): 1900041. |
81 | PASCHOALINO W J, KOGIKOSKI S JR, BARRAGAN J T C, et al. Emerging considerations for the future development of electrochemical paper-based analytical devices[J]. ChemElectroChem, 2019, 6(1): 10-30. |
82 | SOAM A, KUMAR R, C M, et al. Development of paper-based flexible supercapacitor: Bismuth ferrite/graphene nanocomposite as an active electrode material[J]. Journal of Alloys and Compounds, 2020, 813: 152145. |
83 | KLEM M D S, MORAIS R M, RUBIRA R J G, et al. Paper-based supercapacitor with screen-printed poly(3,4-ethylene dioxythiophene)-poly(styrene sulfonate)/multiwall carbon nanotube films actuating both as electrodes and current collectors[J]. Thin Solid Films, 2019, 669: 96-102. |
84 | ZHANG Leicong, YU Xuecheng, ZHU Pengli, et al. Laboratory filter paper as a substrate material for flexible supercapacitors[J]. Sustainable Energy & Fuels, 2018, 2(1): 147-154. |
85 | JIAO Shasha, LI Tiehu, XIONG Chuanyin, et al. A facile method to prepare silver doped graphene combined with polyaniline for high performances of filter paper based flexible electrode[J]. Nanomaterials, 2019, 9(10): 1434. |
[1] | 王帅晴, 杨思文, 李娜, 孙占英, 安浩然. 元素掺杂生物质炭材料在电化学储能中的研究进展[J]. 化工进展, 2023, 42(8): 4296-4306. |
[2] | 陈飞, 刘成宝, 陈丰, 钱君超, 邱永斌, 孟宪荣, 陈志刚. g-C3N4基超级电容器用电极材料的研究进展[J]. 化工进展, 2023, 42(5): 2566-2576. |
[3] | 刘静, 林琳, 张健, 赵峰. 生物质基炭材料孔径调控及电化学性能研究进展[J]. 化工进展, 2023, 42(4): 1907-1916. |
[4] | 蔡江涛, 候刘华, 兰雨金, 张晨陈, 刘国阳, 朱由余, 张建兰, 赵世永, 张亚婷. 沥青基多孔炭材料的制备及在超级电容器中的应用进展[J]. 化工进展, 2023, 42(4): 1895-1906. |
[5] | 陈崇明, 曾四鸣, 罗小娜, 宋国升, 韩忠阁, 郁金星, 孙楠楠. 基于超交联聚合物前体的碳载钾基CO2吸附剂制备和性能[J]. 化工进展, 2023, 42(3): 1540-1550. |
[6] | 刘丹, 范云洁, 王慧敏, 严政, 李鹏飞, 李家成, 曹雪波. 基于废弃PET的高值化功能性多孔碳材料及其应用进展[J]. 化工进展, 2023, 42(2): 969-984. |
[7] | 卓祖优, 宋生南, 黄明堦, 杨旋, 卢贝丽, 陈燕丹. 草酸钾-尿素协同活化法制备超大比表面积面粉基多级孔炭及其电化学储能应用[J]. 化工进展, 2023, 42(2): 925-933. |
[8] | 李兴, 黄宏宇, 大坂侑吾, 呼和涛力, 肖林发, 李军. 碳材料吸附脱除二氧化硫性能的影响因素[J]. 化工进展, 2022, 41(9): 4963-4972. |
[9] | 龙垠荧, 杨健, 管敏, 杨怡洛, 程正柏, 曹海兵, 刘洪斌, 安兴业. 木质素基材料在混合型超级电容器电极材料中的研究进展[J]. 化工进展, 2022, 41(9): 4855-4865. |
[10] | 金玮. 微孔碳材料修饰的隔膜用于高性能锂硫电池[J]. 化工进展, 2022, 41(8): 4386-4396. |
[11] | 徐虎, 郭泓凯, 柴昌盛, 郝相忠, 杨子元, 徐卫军. 碳纤维类材料用于电芬顿体系电极的研究现状[J]. 化工进展, 2022, 41(7): 3707-3718. |
[12] | 武传朋, 李传坤, 杨哲, 苟成冬, 高新江. 固体吸附材料脱除SO2研究进展[J]. 化工进展, 2022, 41(7): 3840-3854. |
[13] | 薛李静, 费星, 刘江淋, 吴林军, 仇中杰, 许权洲, 钟晓文, 林绪亮, 秦延林. 木质素基碳材料催化剂的制备及应用研究进展[J]. 化工进展, 2022, 41(5): 2441-2450. |
[14] | 胡庭瑗, 李平凡, 汪伟, 刘壮, 巨晓洁, 谢锐, 褚良银. 面向柔性超级电容器的功能水凝胶材料的研究进展[J]. 化工进展, 2022, 41(3): 1578-1593. |
[15] | 郭冠伦, 刘锐, 余洋洋, 汪云. 塑料衍生碳材料用于超级电容器的研究现状[J]. 化工进展, 2022, 41(2): 781-790. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |