化工进展 ›› 2023, Vol. 42 ›› Issue (2): 1008-1019.DOI: 10.16085/j.issn.1000-6613.2022-0707

• 资源与环境化工 • 上一篇    下一篇

基于导电材料强化抗生素胁迫厌氧消化的研究进展

祝佳欣1(), 朱雯喆1, 徐俊1, 谢靖1, 王文标2, 谢丽1()   

  1. 1.长江水环境教育部重点实验室,同济大学环境科学与工程学院,上海 200092
    2.上海泓济环保科技股份有限公司,上海 200082
  • 收稿日期:2022-04-20 修回日期:2022-05-30 出版日期:2023-02-25 发布日期:2023-03-13
  • 通讯作者: 谢丽
  • 作者简介:祝佳欣(1998—),女,硕士研究生,研究方向为厌氧生物处理技术。E-mail:2030580@tongji.edu.cn
  • 基金资助:
    国家自然科学基金(51978487)

Enhancement of anaerobic digestion under antibiotics stress via conductive materials application: A review

ZHU Jiaxin1(), ZHU Wenzhe1, XU Jun1, XIE Jing1, WANG Wenbiao2, XIE Li1()   

  1. 1.The Yangtze River Water Environment Key Laboratory of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
    2.Shanghai Honess Environmental Technology Co. , Ltd. , Shanghai 200082, China
  • Received:2022-04-20 Revised:2022-05-30 Online:2023-02-25 Published:2023-03-13
  • Contact: XIE Li

摘要:

厌氧消化是处理含抗生素有机废物的常用技术手段,但高浓度抗生素会抑制厌氧微生物菌群活性,从而干扰厌氧消化效能和抗生素自身降解效率。近年来,导电材料强化含抗生素有机废物厌氧消化取得了良好效果,有机废物资源回收效率得到进一步提升。本文从抗生素使用现状和对厌氧消化代谢过程的影响出发,讨论了抗生素在厌氧消化中的迁移转化机制,重点阐述了铁基和碳基导电材料在抗生素胁迫厌氧消化系统中的应用及生化作用机理。研究表明:通过富集功能性微生物、强化微生物种间电子传递以及削减厌氧消化系统中的抗生素和抗生素抗性基因,导电材料可以提升厌氧消化产甲烷效能、降低抗生素污染的环境风险。最后,从构建生物信息网络、开发优化新型材料和处理多元污染物方面对导电材料强化技术的发展方向进行了展望。

关键词: 厌氧消化, 抗生素, 导电材料, 种间电子传递, 产甲烷菌

Abstract:

Anaerobic digestion (AD) is a conventional technique in antibiotic organic waste treatment. However, high concentration of antibiotics might threaten the activity of microbial community, thus weakening the anaerobic digestion performance and antibiotics degradation. In recent years, anaerobic digestion of organic waste containing antibiotics via conductive materials (CM) addition has been enhanced, and the efficiency of organic resources recovery has been further improved. Based on the current consumption of antibiotic and their effects on AD progress, the review analyzed the antibiotics removal mechanism in AD, and especially emphasized the application and mechanism of iron-based and carbon-based materials on improving antibiotic-stressed AD performance. The results indicated that CM could improve the performance of AD and reduce environmental risks by enhancing interspecies electron transfer, enriching functional microorganisms, and decreasing antibiotics and antibiotic resistance genes in the AD system. Finally, the future directions of conductive materials strengthening technology were discussed from the construction of biological information network, the development and optimization of new material, and the application in multi-pollutant treatment.

Key words: anaerobic digestion, antibiotic, conductive materials, direct interspecies electron transfer, methanogens

中图分类号: 

京ICP备12046843号-2;京公网安备 11010102001994号
版权所有 © 《化工进展》编辑部
地址:北京市东城区青年湖南街13号 邮编:100011
电子信箱:hgjz@cip.com.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn