化工进展 ›› 2021, Vol. 40 ›› Issue (S2): 389-401.DOI: 10.16085/j.issn.1000-6613.2021-0990
收稿日期:
2021-05-11
修回日期:
2021-08-05
出版日期:
2021-11-12
发布日期:
2021-11-12
通讯作者:
李凤祥
作者简介:
姜记威(1996—),男,硕士研究生,研究方向为生物电化学、能源回收以及水污染控制。E-mail:基金资助:
JIANG Jiwei(), ZHANG Shixuan, ZENG Wenlu, LI Fengxiang()
Received:
2021-05-11
Revised:
2021-08-05
Online:
2021-11-12
Published:
2021-11-12
Contact:
LI Fengxiang
摘要:
生物炭是一种由生物质原料热解而成的稳定多孔碳材料。目前,生物炭及其碳基材料作为功能材料因其在一定程度上不仅实现了废弃物的合理资源化利用,而且兼具经济与环境效益而倍受研究者关注。本文综述了生物炭的生物质原料种类、生物炭在不同成分下(纤维素、半纤维素、木质素)的形成机制及表面特性;重点介绍了生物炭的改性技术,主要包括物理化学处理、杂原子掺杂、金属元素掺杂、多种元素共掺杂以及制备工艺的改良等,生物炭改性的目的是为了增加其比表面积、反应活性位点和官能团,改良孔隙结构和无机成分,从而提高它在修复环境污染的性能;然后综述了生物炭作为优良吸附剂或催化剂在用于抗生素废水的具体应用及其去除机理。最后指出生物炭虽被证明了具备去除水中各类抗生素的潜力,但在材料本身的优化以及工程抗生素废水应用中仍有一些需要填补的知识空白。
中图分类号:
姜记威, 张诗轩, 曾文炉, 李凤祥. 生物炭基材料在抗生素废水处理中的研究进展[J]. 化工进展, 2021, 40(S2): 389-401.
JIANG Jiwei, ZHANG Shixuan, ZENG Wenlu, LI Fengxiang. Research progress on biochar-based materials for the treatment of antibiotic wastewater[J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 389-401.
1 | HENA S, GUTIERREZ L, CROUÉ J P. Removal of pharmaceutical and personal care products (PPCPs) from wastewater using microalgae: a review[J]. Journal of Hazardous Materials, 2021, 403: 124041. |
2 | POURHASHEM G, HUNG S Y, MEDLOCK K B, et al. Policy support for biochar: review and recommendations[J]. GCB Bioenergy, 2019, 11(2): 364-380. |
3 | LU Xi, CAO Liang, WANG Haikun, et al. Gasification of coal and biomass as a net carbon-negative power source for environment-friendly electricity generation in China[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(17): 8206-8213. |
4 | CHENG Ning, WANG Bing, WU Pan, et al. Adsorption of emerging contaminants from water and wastewater by modified biochar: a review[J]. Environmental Pollution, 2021, 273: 116448. |
5 | MINH T DO, SONG Jianzhi, DEB A, et al. Biochar based catalysts for the abatement of emerging pollutants: a review[J]. Chemical Engineering Journal, 2020, 394: 124856. |
6 | SINGH R, PRAKASH A, BALAGURUMURTHY B, et al. Hydrothermal liquefaction of agricultural and forest biomass residue: comparative study[J]. Journal of Material Cycles and Waste Management, 2015, 17(3): 442-452. |
7 | INYANG M I, GAO Bin, YAO Ying, et al. A review of biochar as a low-cost adsorbent for aqueous heavy metal removal[J]. Critical Reviews in Environmental Science and Technology, 2016, 46(4): 406-433. |
8 | FANG Guodong, LIU Cun, WANG Yujun, et al. Photogeneration of reactive oxygen species from biochar suspension for diethyl phthalate degradation[J]. Applied Catalysis B: Environmental, 2017, 214: 34-45. |
9 | TAKAYA C A, FLETCHER L A, SINGH S, et al. Phosphate and ammonium sorption capacity of biochar and hydrochar from different wastes[J]. Chemosphere, 2016, 145: 518-527. |
10 | HO S H, CHEN Yidi, YANG Zhongkai, et al. High-efficiency removal of lead from wastewater by biochar derived from anaerobic digestion sludge[J]. Bioresource Technology, 2017, 246: 142-149. |
11 | ONAY O, KOCKAR O M. Slow, fast and flash pyrolysis of rapeseed[J]. Renewable Energy, 2003, 28(15): 2417-2433. |
12 | HODGSON E, LEWYS-JAMES A, RAO RAVELLA S, et al. Optimisation of slow-pyrolysis process conditions to maximise char yield and heavy metal adsorption of biochar produced from different feedstocks[J]. Bioresource Technology, 2016, 214: 574-581. |
13 | GARCIA-NUNEZ J A, PELAEZ-SAMANIEGO M R, GARCIA-PEREZ M E, et al. Historical developments of pyrolysis reactors: a review[J]. Energy & Fuels, 2017, 31(6): 5751-5775. |
14 | YANG Haiping, YAN Rong, CHEN Hanping, et al. In-depth investigation of biomass pyrolysis based on three major components: hemicellulose, cellulose and lignin[J]. Energy & Fuels, 2006, 20(1): 388-393. |
15 | CHEN Limei, LIAO Yanfen, GUO Zhenge, et al. Products distribution and generation pathway of cellulose pyrolysis[J]. Journal of Cleaner Production, 2019, 232: 1309-1320. |
16 | LIU Wujun, JIANG Hong, YU Hanqing. Development of biochar-based functional materials: toward a sustainable platform carbon material[J]. Chemical Reviews, 2015, 115(22): 12251-12285. |
17 | WANG Duo, JIANG Peikun, ZHANG Haibo, et al. Biochar production and applications in agro and forestry systems: a review[J]. Science of the Total Environment, 2020, 723: 137775. |
18 | YANG Haiping, LI Shujuan, LIU Biao, et al. Hemicellulose pyrolysis mechanism based on functional group evolutions by two-dimensional perturbation correlation infrared spectroscopy[J]. Fuel, 2020, 267: 117302. |
19 | CHU Sheng, SUBRAHMANYAM A V, HUBER G W. The pyrolysis chemistry of a β-O-4 type oligomeric lignin model compound[J]. Green Chem, 2013, 15(1): 125-136. |
20 | KIM K H, BAI Xianglan, CADY S, et al. Quantitative investigation of free radicals in bio-oil and their potential role in condensed-phase polymerization[J]. ChemSusChem, 2015, 8(5): 894-900. |
21 | BRIDGWATER A V. Review of fast pyrolysis of biomass and product upgrading[J]. Biomass and Bioenergy, 2012, 38: 68-94. |
22 | BOURKE J, MANLEY-HARRIS M, FUSHIMI C, et al. Do all carbonized charcoals have the same chemical structure? 2. a model of the chemical structure of carbonized charcoal[J]. Industrial & Engineering Chemistry Research, 2007, 46(18): 5954-5967. |
23 | TOMCZYK A, SOKOŁOWSKA Z, BOGUTA P. Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects[J]. Reviews in Environmental Science and Bio/Technology, 2020, 19(1): 191-215. |
24 | BREWER C E, SCHMIDT-ROHR K, SATRIO J A, et al. Characterization of biochar from fast pyrolysis and gasification systems[J]. Environmental Progress & Sustainable Energy, 2009, 28(3): 386-396. |
25 | CHATTERJEE R, SAJJADI B, CHEN Weiyin, et al. Effect of pyrolysis temperature on physicochemical properties and acoustic-based amination of biochar for efficient CO2 adsorption[J]. Frontiers in Energy Research, 2020, 8: 85. |
26 | MAO J D, JOHNSON R L, LEHMANN J, et al. Abundant and stable char residues in soils: implications for soil fertility and carbon sequestration[J]. Environmental Science & Technology, 2012, 46(17): 9571-9576. |
27 | SAFARI S, GUNTEN K, ALAM M S, et al. Biochar colloids and their use in contaminants removal[J]. Biochar, 2019, 1(2): 151-162. |
28 | WANG Bing, GAO Bin, FANG June. Recent advances in engineered biochar productions and applications[J]. Critical Reviews in Environmental Science and Technology, 2017, 47(22): 2158-2207. |
29 | HUANG Jinsheng, ZIMMERMAN A R, CHEN Hao, et al. Ball milled biochar effectively removes sulfamethoxazole and sulfapyridine antibiotics from water and wastewater[J]. Environmental Pollution, 2020, 258: 113809. |
30 | HADJITTOFI L, PRODROMOU M, PASHALIDIS I. Activated biochar derived from Cactus fibres-preparation, characterization and application on Cu(Ⅱ) removal from aqueous solutions[J]. Bioresource Technology, 2014, 159: 460-464. |
31 | LI Yunchao, SHAO Jingai, WANG Xianhua, et al. Characterization of modified biochars derived from bamboo pyrolysis and their utilization for target component (furfural) adsorption[J]. Energy & Fuels, 2014, 28(8): 5119-5127. |
32 | FAN Ye, WANG Bin, YUAN Songhu, et al. Adsorptive removal of chloramphenicol from wastewater by NaOH modified bamboo charcoal[J]. Bioresource Technology, 2010, 101(19): 7661-7664. |
33 | HU Xiaolan, XUE Yingwen, LONG Li, et al. Characteristics and batch experiments of acid- and alkali-modified corncob biomass for nitrate removal from aqueous solution[J]. Environmental Science and Pollution Research, 2018, 25(20): 19932-19940. |
34 | XUE Yingwen, GAO Bin, YAO Ying, et al. Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: batch and column tests[J]. Chemical Engineering Journal, 2012, 200/201/202: 673-680. |
35 | CHEN Wei, YANG Haiping, CHEN Yingquan, et al. Influence of biochar addition on nitrogen transformation during copyrolysis of algae and lignocellulosic biomass[J]. Environmental Science & Technology, 2018, 52(16): 9514-9521. |
36 | WANG Li, YAN Wei, HE Chi, et al. Microwave-assisted preparation of nitrogen-doped biochars by ammonium acetate activation for adsorption of acid red 18[J]. Applied Surface Science, 2018, 433: 222-231. |
37 | XU Lu, WU Chenxi, LIU Peihua, et al. Peroxymonosulfate activation by nitrogen-doped biochar from sawdust for the efficient degradation of organic pollutants[J]. Chemical Engineering Journal, 2020, 387: 124065. |
38 | SUI Long, TANG Chunyu, DU Qing, et al. Preparation and characterization of boron-doped corn straw biochar: Fe (Ⅱ) removal equilibrium and kinetics[J]. Journal of Environmental Sciences, 2021, 106: 116-123. |
39 | WANG Shizong, WANG Jianlong. Peroxymonosulfate activation by Co9S8@S and N co-doped biochar for sulfamethoxazole degradation[J]. Chemical Engineering Journal, 2020, 385: 123933. |
40 | WANG Jia, SHEN Min, GONG Qing, et al. One-step preparation of ZVI-sludge derived biochar without external source of iron and its application on persulfate activation[J]. Science of the Total Environment, 2020, 714: 136728. |
41 | SAMSURI A W, SADEGH-ZADEH F, SEH-BARDAN B J. Adsorption of As(Ⅲ) and As(V) by Fe coated biochars and biochars produced from empty fruit bunch and rice husk[J]. Journal of Environmental Chemical Engineering, 2013, 1(4): 981-988. |
42 | ZANG Tianchan, WANG Hao, LIU Yinghao, et al. Fe-doped biochar derived from waste sludge for degradation of rhodamine B via enhancing activation of peroxymonosulfate[J]. Chemosphere, 2020, 261: 127616. |
43 | LIU Su, XU Weihua, LIU Yunguo, et al. Facile synthesis of Cu(Ⅱ) impregnated biochar with enhanced adsorption activity for the removal of doxycycline hydrochloride from water[J]. Science of the Total Environment, 2017, 592: 546-553. |
44 | WANG Hongyu, GAO Bin, WANG Shenseng, et al. Removal of Pb(Ⅱ), Cu(Ⅱ), and Cd(Ⅱ) from aqueous solutions by biochar derived from KMnO4 treated hickory wood[J]. Bioresource Technology, 2015, 197: 356-362. |
45 | NGUYEN V T, NGUYEN T B, CHEN C W, et al. Cobalt-impregnated biochar (Co-SCG) for heterogeneous activation of peroxymonosulfate for removal of tetracycline in water[J]. Bioresource Technology, 2019, 292: 121954. |
46 | LIU Wujun, JIANG Hong, TIAN Ke, et al. Mesoporous carbon stabilized MgO nanoparticles synthesized by pyrolysis of MgCl2 preloaded waste biomass for highly efficient CO2 capture[J]. Environmental Science & Technology, 2013, 47(16): 9397-9403. |
47 | MEI Yanglu, XU Jin, ZHANG Yin, et al. Effect of Fe—N modification on the properties of biochars and their adsorption behavior on tetracycline removal from aqueous solution[J]. Bioresource Technology, 2021, 325: 124732. |
48 | ZHANG Min, WANG Yuncai. Effects of Fe-Mn-modified biochar addition on anaerobic digestion of sewage sludge: biomethane production, heavy metal speciation and performance stability[J]. Bioresource Technology, 2020, 313: 123695. |
49 | HUANG C H, DOONG R A. Sugarcane bagasse as the scaffold for mass production of hierarchically porous carbon monoliths by surface self-assembly[J]. Microporous and Mesoporous Materials, 2012, 147(1): 47-52. |
50 | YANG Kun, ZHU Lianghong, YANG Jingjing, et al. Adsorption and correlations of selected aromatic compounds on a KOH-activated carbon with large surface area [J]. Science of the Total Environment, 2018, 618:1677-1684. |
51 | TITIRICI M M, ANTONIETTI M. Chemistry and materials options of sustainable carbon materials made by hydrothermal carbonization[J]. Chemical Society Reviews, 2010, 39(1): 103-116. |
52 | LI Ruining, WANG Zhaowei, GUO Jialei, et al. Enhanced adsorption of ciprofloxacin by KOH modified biochar derived from potato stems and leaves[J]. Water Science and Technology, 2018, 77(3/4): 1127-1136. |
53 | WANG Qiuju, ZHANG Zhao, XU Guoren, et al. Magnetic porous biochar with nanostructure surface derived from penicillin fermentation dregs pyrolysis with K2FeO4 activation: characterization and application in penicillin adsorption[J]. Bioresource Technology, 2021, 327: 124818. |
54 | AHMAD M, USMAN A R A, RAFIQUE M I, et al. Engineered biochar composites with zeolite, silica, and nano-zerovalent iron for the efficient scavenging of chlortetracycline from aqueous solutions[J]. Environmental Science and Pollution Research, 2019, 26(15): 15136-15152. |
55 | HEO J, YOON Y, LEE G, et al. Enhanced adsorption of bisphenol A and sulfamethoxazole by a novel magnetic CuZnFe2O4-biochar composite[J]. Bioresource Technology, 2019, 281: 179-187. |
56 | GUO Xuetao, DONG Hao, YANG Chen, et al. Application of goethite modified biochar for tylosin removal from aqueous solution[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 502: 81-88. |
57 | REGUYAL F, SARMAH A K. Adsorption of sulfamethoxazole by magnetic biochar: effects of pH, ionic strength, natural organic matter and 17α-ethinylestradiol[J]. Science of the Total Environment, 2018, 628/629: 722-730. |
58 | CHEN Tingwei, LUO Ling, DENG Shihuai, et al. Sorption of tetracycline on H3PO4 modified biochar derived from rice straw and swine manure[J]. Bioresource Technology, 2018, 267: 431-437. |
59 | JANG H M, KAN E. Engineered biochar from agricultural waste for removal of tetracycline in water[J]. Bioresource Technology, 2019, 284: 437-447. |
60 | HU Jie, ZHANG Liang, LU Benqian, et al. LaMnO3 nanoparticles supported on N doped porous carbon as efficient photocatalyst[J]. Vacuum, 2019, 159: 59-68. |
61 | XIE Xiaoyun, LI Shan, ZHANG Hanyu, et al. Promoting charge separation of biochar-based Zn-TiO2/pBC in the presence of ZnO for efficient sulfamethoxazole photodegradation under visible light irradiation[J]. Science of the Total Environment, 2019, 659: 529-539. |
62 | WANG Tao, LIU Xiqing, MA Changchang, et al. A two step hydrothermal process to prepare carbon spheres from bamboo for construction of core-shell non-metallic photocatalysts[J]. New Journal of Chemistry, 2018, 42(8): 6515-6524. |
63 | WANG Zirun, CAI Xuewei, XIE Xiaoyun, et al. Visible-LED-light-driven photocatalytic degradation of ofloxacin and ciprofloxacin by magnetic biochar modified flower-like Bi2WO6: the synergistic effects, mechanism insights and degradation pathways[J]. Science of the Total Environment, 2021, 764: 142879. |
64 | MA Dongmei, YANG Yang, LIU Bingfeng, et al. Zero-valent iron and biochar composite with high specific surface area via K2FeO4 fabrication enhances sulfadiazine removal by persulfate activation[J]. Chemical Engineering Journal, 2021, 408: 127992. |
65 | DENG Fengxia, LI Sixing, ZHOU Minghua, et al. A biochar modified nickel-foam cathode with iron-foam catalyst in electro-Fenton for sulfamerazine degradation[J]. Applied Catalysis B: Environmental, 2019, 256: 117796. |
66 | PEIRIS C, GUNATILAKE S R, MLSNA T E, et al. Biochar based removal of antibiotic sulfonamides and tetracyclines in aquatic environments: a critical review[J]. Bioresource Technology, 2017, 246: 150-159. |
67 | LI Zhen, LI Miao, CHE Qi, et al. Synergistic removal of tylosin/sulfamethoxazole and copper by nano-hydroxyapatite modified biochar[J]. Bioresource Technology, 2019, 294: 122163. |
68 | LIU Juanli, ZHOU Baiqin, ZHANG Hong, et al. A novel biochar modified by chitosan-Fe/S for tetracycline adsorption and studies on site energy distribution[J]. Bioresource Technology, 2019, 294: 122152. |
69 | LIU Qin, ZHOU Yan, CHEN Shuiliang, et al. Cellulose-derived nitrogen and phosphorus dual-doped carbon as high performance oxygen reduction catalyst in microbial fuel cell[J]. Journal of Power Sources, 2015, 273: 1189-1193. |
70 | CAO Chun, WEI Liling, SU Min, et al. Low-cost adsorbent derived and in situ nitrogen/iron co-doped carbon as efficient oxygen reduction catalyst in microbial fuel cells[J]. Bioresource Technology, 2016, 214: 348-354. |
71 | LU Yu, ZHU Nengwu, YIN Fuhua, et al. Biomass-derived heteroatoms-doped mesoporous carbon for efficient oxygen reduction in microbial fuel cells[J]. Biosensors and Bioelectronics, 2017, 98: 350-356. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 戴欢涛, 曹苓玉, 游新秀, 徐浩亮, 汪涛, 项玮, 张学杨. 木质素浸渍柚子皮生物炭吸附CO2特性[J]. 化工进展, 2023, 42(S1): 356-363. |
[6] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[7] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[8] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[9] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[10] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[11] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[12] | 王伟涛, 鲍婷玉, 姜旭禄, 何珍红, 王宽, 杨阳, 刘昭铁. 醛酮树脂基非金属催化剂催化氧气氧化苯制备苯酚[J]. 化工进展, 2023, 42(9): 4706-4715. |
[13] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[14] | 王浩然, 殷全玉, 方明, 侯建林, 李军, 何斌, 张明月. 近临界水处理废弃烟梗工艺优化[J]. 化工进展, 2023, 42(9): 5019-5027. |
[15] | 吴海波, 王希仑, 方岩雄, 纪红兵. 3D打印催化材料开发与应用进展[J]. 化工进展, 2023, 42(8): 3956-3964. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |