化工进展 ›› 2021, Vol. 40 ›› Issue (S2): 380-388.DOI: 10.16085/j.issn.1000-6613.2021-0988
张轩1,2(), 宋小三1, 赵珀1, 董元华2,3, 刘云2,3()
收稿日期:
2021-05-10
修回日期:
2021-05-13
出版日期:
2021-11-12
发布日期:
2021-11-12
通讯作者:
刘云
作者简介:
张轩(1997—),男,硕士研究生,研究方向为水处理技术。E-mail:基金资助:
ZHANG Xuan1,2(), SONG Xiaosan1, ZHAO Po1, DONG Yuanhua2,3, LIU Yun2,3()
Received:
2021-05-10
Revised:
2021-05-13
Online:
2021-11-12
Published:
2021-11-12
Contact:
LIU Yun
摘要:
随着工业的发展,各种新兴有机污染物不断出现,1,4-二烷作为其中之一,广泛存在于地表水和氯代烃污染的地下水中。由于其稳定的杂环结构及高水溶性,常规的水处理技术很难完全去除1,4-二烷,高级氧化技术利用?OH、
中图分类号:
张轩, 宋小三, 赵珀, 董元华, 刘云. 高级氧化技术处理1,4-二烷污染研究进展[J]. 化工进展, 2021, 40(S2): 380-388.
ZHANG Xuan, SONG Xiaosan, ZHAO Po, DONG Yuanhua, LIU Yun. A critical review of advanced oxidation technology to treat 1,4-dioxane pollution[J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 380-388.
项目 | 数值 |
---|---|
分子式 | C4H8O2 |
水溶性/mg·L-1 | 4.31×105 |
分子量 | 88.11 |
亨利系数/atm·m3·mol-1 | 4.88×10-6 |
辛醇-水分配系数 | 0.27 |
沸点/℃ | 101.3 |
表1 1,4-DX理化性质
项目 | 数值 |
---|---|
分子式 | C4H8O2 |
水溶性/mg·L-1 | 4.31×105 |
分子量 | 88.11 |
亨利系数/atm·m3·mol-1 | 4.88×10-6 |
辛醇-水分配系数 | 0.27 |
沸点/℃ | 101.3 |
氧化剂种类 | 氧化电位/eV | 相对强度(氯=1) |
---|---|---|
·OH | 2.7 | 2 |
2.6 | 1.8 | |
O3 | 2.2 | 1.5 |
2.1 | 1.5 | |
H2O2 | 1.8 | 1.3 |
1.7 | 1.2 | |
Cl- | 1.4 | 1 |
O2 | 1.2 | 0.9 |
表2 常见氧化剂氧化电位[1]
氧化剂种类 | 氧化电位/eV | 相对强度(氯=1) |
---|---|---|
·OH | 2.7 | 2 |
2.6 | 1.8 | |
O3 | 2.2 | 1.5 |
2.1 | 1.5 | |
H2O2 | 1.8 | 1.3 |
1.7 | 1.2 | |
Cl- | 1.4 | 1 |
O2 | 1.2 | 0.9 |
氧化技术 | 处理条件 | 影响因素 | 降解效率 | 参考文献 |
---|---|---|---|---|
UV/H2O2 | [DX]0=100μg·L-1 H2O2=10mg·L-1 UV=550MJ·cm-2 | 天然有机物(NOM)pH、硝酸盐、铁 | pH为5~7之间,1,4-DX在3.5min内降解率达到90%。高浓度硝酸盐使去除率降低约25% | [ |
真空紫外(VUV) | [DX]0=100μg·L-1 H2O2=1~5mg·L-1 光催化剂由非晶态Si02纤维制成的无纺布片,表面层为TiO2 | 紫外线、催化剂、pH | 1,4-DX的分解速率: | [ |
氯氨/UV/H2O2 | [DX]0=250μmol·L-1 pH=5.8NH2Cl=50mmol·L-1 NHCl2=25mmol·L-1 UV=3500MJ·cm-2 | NH2Cl、NHCl2、 | 当氯氨处于低剂量时,NH2Cl比NHCl2对DX去除率高约60%~80%,NH2Cl为2mmol·L-1时降解速率最大 | [ |
UV/H2O2、UV/氯氨UV/游离氯 | [DX]0=15μg·L-1 低/高剂量:Cl2=2.7mg·L-1/6.8mg·L-1 NH2Cl=1.3mg·L-1/4.6mg·L-1 H2O2=3.1mg·L-1/6.2mg·L-1 | 催化剂种类 | DX去除效率:UV> UV/H2O2> UV/氯氨;达到90%以上,是传统UV/H2O2理想的代替技术 | [ |
UV/O3 | [DX]0=150mg·L-1 [O3]0=36.7mg·L-1 pH=6~8 | pH、O3、催化剂 | 1,4-DX被完全降解 | [ |
UV/TiO | UV=0.58W·L-1 [DX]0=850μg·L-1 催化剂:5g·L-1 | 膜制备过程、污染程度、催化剂浓度、紫外线强度 | 1,4-DX被完全降解,通过定期反冲洗保持膜的渗透性良好 | [ |
表3 紫外光氧化技术降解1,4-DX
氧化技术 | 处理条件 | 影响因素 | 降解效率 | 参考文献 |
---|---|---|---|---|
UV/H2O2 | [DX]0=100μg·L-1 H2O2=10mg·L-1 UV=550MJ·cm-2 | 天然有机物(NOM)pH、硝酸盐、铁 | pH为5~7之间,1,4-DX在3.5min内降解率达到90%。高浓度硝酸盐使去除率降低约25% | [ |
真空紫外(VUV) | [DX]0=100μg·L-1 H2O2=1~5mg·L-1 光催化剂由非晶态Si02纤维制成的无纺布片,表面层为TiO2 | 紫外线、催化剂、pH | 1,4-DX的分解速率: | [ |
氯氨/UV/H2O2 | [DX]0=250μmol·L-1 pH=5.8NH2Cl=50mmol·L-1 NHCl2=25mmol·L-1 UV=3500MJ·cm-2 | NH2Cl、NHCl2、 | 当氯氨处于低剂量时,NH2Cl比NHCl2对DX去除率高约60%~80%,NH2Cl为2mmol·L-1时降解速率最大 | [ |
UV/H2O2、UV/氯氨UV/游离氯 | [DX]0=15μg·L-1 低/高剂量:Cl2=2.7mg·L-1/6.8mg·L-1 NH2Cl=1.3mg·L-1/4.6mg·L-1 H2O2=3.1mg·L-1/6.2mg·L-1 | 催化剂种类 | DX去除效率:UV> UV/H2O2> UV/氯氨;达到90%以上,是传统UV/H2O2理想的代替技术 | [ |
UV/O3 | [DX]0=150mg·L-1 [O3]0=36.7mg·L-1 pH=6~8 | pH、O3、催化剂 | 1,4-DX被完全降解 | [ |
UV/TiO | UV=0.58W·L-1 [DX]0=850μg·L-1 催化剂:5g·L-1 | 膜制备过程、污染程度、催化剂浓度、紫外线强度 | 1,4-DX被完全降解,通过定期反冲洗保持膜的渗透性良好 | [ |
1 | ADAMSON D T, ANDERSON R H, MAHENDRA S, et al.Evidence of 1,4-dioxane attenuation at groundwater sites contaminated with chlorinated solvents and 1,4-dioxane[J]. Environmental Science & Technology, 2015, 49(11): 6510-6518. |
2 | International Agency for Research on Cancer (IARC).Re-evaluation of some organic chemicals, hydrazine and hydrogen peroxide[M]. Lyon, France: 1999: 589-602. |
3 | TANABE A, TSUCHIDA Y, IBARAKI T, et al. Impact of 1,4-dioxane from domestic effluent on the agano and Shinano Rivers, Japan[J]. Bulletin of Environmental Contamination & Toxicology, 2006, 76(1):44. |
4 | FENG Y, LI H L, LIN L, et al. Degradation of 1, 4-dioxane via controlled generation of radicals by pyrite-activated oxidants: synergistic effects, role of disulfides, and activation sites[J]. Chemical Engineering Journal, 2018, 336: 416-426. |
5 | ADAMSON D T, MAHENDRA S, WALKER K L, et al. A multisite survey to identify the scale of the 1, 4-dioxane problem at contaminated groundwater sites[J]. Environmental Science & Technology Letters, 2014, 1(5): 254-258. |
6 | ANDERSON R H, ANDERSON J K, BOWER P A. Co-occurrence of 1, 4-dioxane with trichloroethylene in chlorinated solvent groundwater plumes at US Air Force installations: fact or fiction[J]. Integrated Environmental Assessment and Management, 2012, 8(4): 731-737. |
7 | KARGES U, BECKER J, PÜTTMANN W. 1, 4-Dioxane pollution at contaminated groundwater sites in western Germany and its distribution within a TCE plume[J]. Science of the Total Environment, 2018, 619/620: 712-720. |
8 | GODRI POLLITT K J, KIM J H, PECCIA J, et al. 1, 4-Dioxane as an emerging water contaminant: state of the science and evaluation of research needs[J]. Science of the Total Environment, 2019, 690: 853-866. |
9 | CARRERA G, VEGUÉ L, VENTURA F, et al. Dioxanes and dioxolanes in source waters: occurrence, odor thresholds and behavior through upgraded conventional and advanced processes in a drinking water treatment plant[J]. Water Research, 2019, 156: 404-413. |
10 | TAHARA M, OBAMA T, IKARASHI Y. Development of analytical method for determination of 1, 4-dioxane in cleansing products[J]. International Journal of Cosmetic Science, 2013, 35(6): 575-580. |
11 | TANABE A, KAWATA K. Determination of 1,4-dioxane in household detergents and cleaners[J]. Journal of AOAC International, 2008, 91(2): 439-444. |
12 | BLACK R E, HURLEY F J, HAVERY D C. Occurrence of 1, 4-dioxane in cosmetic raw materials and finished cosmetic products[J]. Journal of AOAC International, 2001, 84(3): 666-670. |
13 | GUO W Q, BRODOWSKY H. Determination of the trace 1,4-dioxane[J]. Microchemical Journal, 2000, 64(2): 173-179. |
14 | GROSTERN A, SALES C M, ZHUANG W Q, et al. Glyoxylate metabolism is a key feature of the metabolic degradation of 1,4-dioxane by Pseudonocardia dioxanivorans strain CB1190[J]. Applied and Environmental Microbiology, 2012, 78(9): 3298-3308. |
15 | DOURSON M L, HIGGINBOTHAM J, CRUM J, et al. Update: mode of action (MOA) for liver tumors induced by oral exposure to 1,4-dioxane[J]. Regulatory Toxicology and Pharmacology, 2017, 88: 45-55. |
16 | GI M, FUJIOKA M, KAKEHASHI A, et al.In vivo positive mutagenicity of 1,4-dioxane and quantitative analysis of its mutagenicity and carcinogenicity in rats[J]. Archives of Toxicology, 2018, 92(10): 3207-3221. |
17 | GÖEN T, HELDEN F, ECKERT E, et al. Metabolism and toxicokinetics of 1,4-dioxane in humans after inhalational exposure at rest and under physical stress[J]. Archives of Toxicology, 2016, 90(6): 1315-1324. |
18 | NOMURA Y, FUKAHORI S, FUJIWARA T. Removal of 1, 4-dioxane from landfill leachate by a rotating advanced oxidation contactor equipped with activated carbon/TiO2 composite sheets[J]. Journal of Hazardous Materials, 2020, 383: 121005. |
19 | LAFRANCONI M, BUDINSKY R, COREY L, et al. A 90-day drinking water study in mice to characterize early events in the cancer mode of action of 1, 4-dioxane[J]. Regulatory Toxicology and Pharmacology, 2021, 119: 104819. |
20 | DIGUISEPPI W, WALECKA-HUTCHISON C, HATTON J. 1,4-dioxane treatment technologies[J]. Remediation Journal, 2016, 27(1): 71-92. |
21 | PATTON S, LI W, COUCH K D, et al. Impact of the ultraviolet photolysis of monochloramine on 1,4-dioxane removal: new insights into potable water reuse[J]. Environmental Science & Technology Letters, 2017, 4(1): 26-30. |
22 | LI W, PATTON S, GLEASON J M, et al. UV photolysis of chloramine and persulfate for 1,4-dioxane removal in reverse-osmosis permeate for potable water reuse[J]. Environmental Science & Technology, 2018, 52(11): 6417-6425. |
23 | OUYANG D, YAN J C, QIAN L B, et al. Degradation of 1,4-dioxane by biochar supported nano magnetite particles activating persulfate[J]. Chemosphere, 2017, 184: 609-617. |
24 | BLOTEVOGEL J, PIJLS C, SCHEFFER B, et al. Pilot-scale electrochemical treatment of a 1,4-dioxane source zone[J]. Groundwater Monitoring & Remediation, 2019, 39(1): 36-42. |
25 | DIGUISEPPI W, WALECKA-HUTCHISON C, HATTON J. 1,4‐Dioxane treatment technologies[J]. Remediation Journal, 2016, 27(1):71-92. |
26 | PATTON S, ROMANO M, NADDEO V, et al. Photolysis of mono- and dichloramines in UV/hydrogen peroxide: effects on 1,4-dioxane removal and relevance in water reuse[J]. Environmental Science & Technology, 2018, 52(20): 11720-11727. |
27 | BARNDÕK H, BLANCO L, HERMOSILLA D, et al. Heterogeneous photo-Fenton processes using zero valent iron microspheres for the treatment of wastewaters contaminated with 1,4-dioxane[J]. Chemical Engineering Journal, 2016, 284: 112-121. |
28 | MERAYO N, HERMOSILLA D, CORTIJO L, et al. Optimization of the Fenton treatment of 1,4-dioxane and on-line FTIR monitoring of the reaction[J]. Journal of Hazardous Materials, 2014, 268: 102-109. |
29 | XU X Y, LIU S M, SMITH K, et al. Light-driven breakdown of 1,4-dioxane for potable reuse: a review[J]. Chemical Engineering Journal, 2019, 373: 508-518. |
30 | MAZIERSKI P, MIKOLAJCZYK A, BAJOROWICZ B, et al. The role of lanthanides in TiO2-based photocatalysis: a review[J]. Applied Catalysis B: Environmental, 2018, 233: 301-317. |
31 | MEHRVAR M, ANDERSON W A, MOO-YOUNG M. Photocatalytic degradation of aqueous tetrahydrofuran, 1,4-dioxane, and their mixture with TiO2[J]. International Journal of Photoenergy, 2000, 2: 67-80. |
32 | 赵振悦. 可见光催化-臭氧催化氧化联用降解酚类污染物[D]. 武汉: 武汉科技大学, 2020. |
ZHAO Zhenyue. Visible-light-driven photocatalytic ozonation for degradation of phenolic pollutants[D]. Wuhan: Wuhan University of Science and Technology, 2020. | |
33 | PINO E, ENCINAS M V. Photocatalytic degradation of chlorophenols on TiO2-325mesh and TiO2-P25. an extended kinetic study of photodegradation under competitive conditions[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 242: 20-27. |
34 | FRIEDMANN D, MENDIVE C, BAHNEMANN D. TiO2 for water treatment: parameters affecting the kinetics and mechanisms of photocatalysis[J]. Applied Catalysis B: Environmental, 2010, 99(3/4): 398-406. |
35 | LEE C S, VENKATESAN A K, WALKER H W, et al. Impact of groundwater quality and associated byproduct formation during UV/hydrogen peroxide treatment of 1,4-dioxane[J]. Water Research, 2020, 173: 115534. |
36 | MATSUSHITA T, HIRAI S, ISHIKAWA T, et al. Decomposition of 1,4-dioxane by vacuum ultraviolet irradiation: study of economic feasibility and by-product formation[J]. Process Safety and Environmental Protection, 2015, 94: 528-541. |
37 | ZHANG Z, CHUANG Y H, SZCZUKA A, et al. Pilot-scale evaluation of oxidant speciation, 1,4-dioxane degradation and disinfection byproduct formation during UV/hydrogen peroxide, UV/free chlorine and UV/chloramines advanced oxidation process treatment for potable reuse[J]. Water Research, 2019, 164: 114939. |
38 | TAKAHASHI N, HIBINO T, TORII H, et al. Evaluation of O3/UV and O3/H2O2 as practical advanced oxidation processes for degradation of 1,4-dioxane[J]. Ozone: Science & Engineering, 2013, 35(5): 331-337. |
39 | LEE K C, BEAK H J, CHOO K H. Membrane photoreactor treatment of 1,4-dioxane-containing textile wastewater effluent: performance, modeling, and fouling control[J]. Water Research, 2015, 86: 58-65. |
40 | ZHAO L, HOU H, FUJII A, et al. Degradation of 1,4-dioxane in water with heat- and Fe2+-activated persulfate oxidation[J]. Environmental Science and Pollution Research, 2014, 21(12): 7457-7465. |
41 | ANTONIOU M G, ANDERSEN H R. Comparison of UVC/S2O82- with UVC/H2O2 in terms of efficiency and cost for the removal of micropollutants from groundwater[J]. Chemosphere, 2015, 119: S81-S88. |
42 | MISTURA C M, SCHNEIDER I, VIEIRA Y. Heterogeneous photocatalytic degradation of dyes in water/alcohol solution used by the brazilian agate industry[J]. Geomaterials, 2019, 9(1):29-39. |
43 | PARK I S, CHUNG K H, KIM S C, et al. Photocatalytic degradation of 1,4-dioxane and hydrogen production using liquid phase plasma on N- and Ni- codoped TiO2 photocatalyst[J]. Materials Letters, 2021, 283: 128751. |
44 | PARK Y K, CHUNG K H, PARK I S, et al. Photocatalytic degradation of 1,4-dioxane using liquid phase plasma on visible light photocatalysts[J]. Journal of Hazardous Materials, 2020, 399: 123087. |
45 | MUESES M A, MACHUCA-MARTINEZ F, LI PUMA G. Effective quantum yield and reaction rate model for evaluation of photocatalytic degradation of water contaminants in heterogeneous pilot-scale solar photoreactors[J]. Chemical Engineering Journal, 2013, 215/216: 937-947. |
46 | MIN B K, HEO J E, YOUN N K, et al. Tuning of the photocatalytic 1,4-dioxane degradation with surface plasmon resonance of gold nanoparticles on titania[J]. Catalysis Communications, 2009, 10(5): 712-715. |
47 | YOUN N K, HEO J E, JOO O S, et al. The effect of dissolved oxygen on the 1,4-dioxane degradation with TiO2 and Au-TiO2 photocatalysts[J]. Journal of Hazardous Materials, 2010, 177(1/2/3): 216-221. |
48 | BANIĆ N, ABRAMOVIĆ B, KRSTIĆ J, et al. Photodegradation of thiacloprid using Fe/TiO2 as a heterogeneous photo-Fenton catalyst[J]. Applied Catalysis B: Environmental, 2011, 107(3/4): 363-371. |
49 | BARNDÕK H, HERMOSILLA D, HAN C, et al. Degradation of 1,4-dioxane from industrial wastewater by solar photocatalysis using immobilized NF-TiO2 composite with monodisperse TiO2 nanoparticles[J]. Applied Catalysis B: Environmental, 2016, 180: 44-52. |
50 | MAMEDA N, PARK H J, CHOO K H. Membrane electro-oxidizer: a new hybrid membrane system with electrochemical oxidation for enhanced organics and fouling control[J]. Water Research, 2017, 126: 40-49. |
51 | TIWARI D, JAMSHEERA A, ZIRLIANNGURA, et al. Use of hybrid materials in the trace determination of As(V) from aqueous solutions: an electrochemical study[J]. Environmental Engineering Research, 2017, 22(2): 186-192. |
52 | SCIALDONE O, PROIETTO F, GALIA A. Electrochemical production and use of chlorinated oxidants for the treatment of wastewater contaminated by organic pollutants and disinfection[J]. Current Opinion in Electrochemistry, 2021, 27: 100682. |
53 | BRILLAS E. Recent development of electrochemical advanced oxidation of herbicides.A review on its application to wastewater treatment and soil remediation[J]. Journal of Cleaner Production, 2021, 290: 125841. |
54 | LI X Y, CUI Y H, FENG Y J, et al. Reaction pathways and mechanisms of the electrochemical degradation of phenol on different electrodes[J]. Water Research, 2005, 39(10): 1972-1981. |
55 | ZHAO H Z, SUN Y, XU L N, et al. Removal of acid orange 7 in simulated wastewater using a three-dimensional electrode reactor: removal mechanisms and dye degradation pathway[J]. Chemosphere, 2010, 78(1): 46-51. |
56 | ZHANG C, JIANG Y H, LI Y L, et al. Three-dimensional electrochemical process for wastewater treatment: a general review[J]. Chemical Engineering Journal, 2013, 228: 455-467. |
57 | 曲久辉, 刘会娟. 水处理电化学原理与技术[M].北京: 科学出版社, 2007: 205-212. |
QU Jiuhui, LIU Huijuan. Principles and technology of water treatment electrochemistry [M]. Beijing: Science Press, 2007: 205-212. | |
58 | CHOI J Y, LEE Y J, SHIN J, et al. Anodic oxidation of 1, 4-dioxane on boron-doped diamond electrodes for wastewater treatment[J]. Journal of Hazardous Materials, 2010, 179(1/2/3): 762-768. |
59 | DE CLERCQ J, DE STEENE E VAN, VERBEKEN K, et al. Electrochemical oxidation of 1,4-dioxane at boron-doped diamond electrode[J]. Journal of Chemical Technology & Biotechnology, 2010, 85(8): 1162-1167. |
60 | JASMANN J R, BORCH T, SALE T C, et al. Advanced electrochemical oxidation of 1, 4-dioxane via dark catalysis by novel titanium dioxide (TiO2) pellets[J]. Environmental Science & Technology, 2016, 50(16): 8817-8826. |
61 | PARK H, MAMEDA N, CHOO K H. Catalytic metal oxide nanopowder composite Ti mesh for electrochemical oxidation of 1, 4-dioxane and dyes[J]. Chemical Engineering Journal, 2018, 345: 233-241. |
62 | MAMEDA N, PARK H, SHAH S S A, et al. Highly robust and efficient Ti-based Sb-SnO2 anode with a mixed carbon and nitrogen interlayer for electrochemical 1,4-dioxane removal from water[J]. Chemical Engineering Journal, 2020, 393: 124794. |
63 | NAKAGAWA H, TAKAGI S, MAEKAWA J. Fered-Fenton process for the degradation of 1, 4-dioxane with an activated carbon electrode: a kinetic model including active radicals[J]. Chemical Engineering Journal, 2016, 296: 398-405. |
64 | ADELAJA O, KESHAVARZ T, KYAZZE G. Treatment of phenanthrene and benzene using microbial fuel cells operated continuously for possible in situ and ex situ applications[J]. International Biodeterioration & Biodegradation, 2017, 116: 91-103. |
65 | ZHOU L, DENG D D, ZHANG D, et al. Microbial electricity generation and isolation of exoelectrogenic bacteria based on petroleum hydrocarbon-contaminated soil[J]. Electroanalysis, 2016, 28(7): 1510-1516. |
66 | ARYAL R, XIA C J, LIU J. 1, 4-Dioxane-contaminated groundwater remediation in the anode chamber of a microbial fuel cell[J]. Water Environment Research, 2019, 91(11): 1537-1545. |
67 | JASMANN J R, GEDALANGA P B, BORCH T, et al. Synergistic treatment of mixed 1, 4-dioxane and chlorinated solvent contaminations by coupling electrochemical oxidation with aerobic biodegradation[J]. Environmental Science & Technology, 2017, 51(21): 12619-12629. |
68 | KISHIMOTO N, NAKAGAWA T, ASANO M, et al. Ozonation combined with electrolysis of 1, 4-dioxane using a two-compartment electrolytic flow cell with solid electrolyte[J]. Water Research, 2008, 42(1/2): 379-385. |
69 | YANG C. Enhanced PMS activation property of Cu decorated MnO catalyst for antibiotic degradation[J]. Functional Materials Letters, 2021, 14(1): 2150003. |
70 | KISHIMOTO N, YASUDA Y, MIZUTANI H, et al. Applicability of ozonation combined with electrolysis to 1, 4-dioxane removal from wastewater containing radical scavengers[J]. Ozone: Science & Engineering, 2007, 29(1): 13-22. |
71 | LUTZE H V, BIRCHER S, RAPP I, et al. Degradation of chlorotriazine pesticides by sulfate radicals and the influence of organic matter[J]. Environmental Science & Technology, 2015, 49(3): 1673-1680. |
72 | 田婷婷, 李朝阳, 王召东, 等. 过渡金属活化过硫酸盐降解有机废水技术研究进展[J]. 化工进展, 2021, 40(6): 3480-3488. |
TIAN Tingting, LI Chaoyang, WANG Zhaodong, et al. Research progress in the degradation of organic wastewater by persulfate activated by transition metals[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3480-3488. | |
73 | WANG J L, WANG S Z. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants[J]. Chemical Engineering Journal, 2018, 334: 1502-1517. |
74 | GHAUCH A, TUQAN A M, KIBBI N. Ibuprofen removal by heated persulfate in aqueous solution: a kinetics study[J]. Chemical Engineering Journal, 2012, 197: 483-492. |
75 | FURMAN O S, TEEL A L, WATTS R J. Mechanism of base activation of persulfate[J]. Environmental Science & Technology, 2010, 44(16): 6423-6428. |
76 | YAN N, LIU F, LIU B Y, et al. Treatment of 1, 4-dioxane and trichloroethene co-contamination by an activated binary persulfate-peroxide oxidation process[J]. Environmental Science and Pollution Research, 2018, 25(32): 32088-32095. |
77 | ZHONG H, BRUSSEAU M L, WANG Y K, et al. In-situ activation of persulfate by iron filings and degradation of 1, 4-dioxane[J]. Water Research, 2015, 83: 104-111. |
78 | BRIDGES L, MOHAMED R A M, KHAN N A, et al. Comparison of manganese dioxide and permanganate as amendments with persulfate for aqueous 1, 4-dioxane oxidation[J]. Water, 2020, 12(11): 3061. |
79 | LI B Z, ZHU J. Simultaneous degradation of 1, 1, 1-trichloroethane and solvent stabilizer 1,4-dioxane by a sono-activated persulfate process[J]. Chemical Engineering Journal, 2016, 284: 750-763. |
80 | ZHU J, LI B Z. Degradation kinetic and remediation effectiveness of 1,4-dioxane-contaminated groundwater by a sono-activated persulfate process[J]. Journal of Environmental Engineering, 2018, 144(10): 04018098. |
81 | EBERLE D, BALL R, BOVING T B. Peroxone activated persulfate treatment of 1, 4-dioxane in the presence of chlorinated solvent co-contaminants[J]. Chemosphere, 2016, 144: 728-735. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 胡喜, 王明珊, 李恩智, 黄思鸣, 陈俊臣, 郭秉淑, 于博, 马志远, 李星. 二硫化钨复合材料制备与储钠性能研究进展[J]. 化工进展, 2023, 42(S1): 344-355. |
[3] | 张杰, 白忠波, 冯宝鑫, 彭肖林, 任伟伟, 张菁丽, 刘二勇. PEG及其复合添加剂对电解铜箔后处理的影响[J]. 化工进展, 2023, 42(S1): 374-381. |
[4] | 雷伟, 姜维佳, 王玉高, 和明豪, 申峻. N、S共掺杂煤基碳量子点的电化学氧化法制备及用于Fe3+检测[J]. 化工进展, 2023, 42(9): 4799-4807. |
[5] | 王耀刚, 韩子姗, 高嘉辰, 王新宇, 李思琪, 杨全红, 翁哲. 铜基催化剂电还原二氧化碳选择性的调控策略[J]. 化工进展, 2023, 42(8): 4043-4057. |
[6] | 刘毅, 房强, 钟达忠, 赵强, 李晋平. Ag/Cu耦合催化剂的Cu晶面调控用于电催化二氧化碳还原[J]. 化工进展, 2023, 42(8): 4136-4142. |
[7] | 张亚娟, 徐惠, 胡贝, 史星伟. 化学镀法制备NiCoP/rGO/NF高效电解水析氢催化剂[J]. 化工进展, 2023, 42(8): 4275-4282. |
[8] | 王帅晴, 杨思文, 李娜, 孙占英, 安浩然. 元素掺杂生物质炭材料在电化学储能中的研究进展[J]. 化工进展, 2023, 42(8): 4296-4306. |
[9] | 李海东, 杨远坤, 郭姝姝, 汪本金, 岳婷婷, 傅开彬, 王哲, 何守琴, 姚俊, 谌书. 炭化与焙烧温度对植物基铁碳微电解材料去除As(Ⅲ)性能的影响[J]. 化工进展, 2023, 42(7): 3652-3663. |
[10] | 徐伟, 李凯军, 宋林烨, 张兴惠, 姚舜华. 光催化及其协同电化学降解VOCs的研究进展[J]. 化工进展, 2023, 42(7): 3520-3531. |
[11] | 张鹏, 潘原. 单原子催化剂在电催化氧还原直接合成过氧化氢中的研究进展[J]. 化工进展, 2023, 42(6): 2944-2953. |
[12] | 陈少华, 王义华, 胡强飞, 胡坤, 陈立爱, 李洁. 电化学修饰电极在检测Cr(Ⅵ)中的研究进展[J]. 化工进展, 2023, 42(5): 2429-2438. |
[13] | 李华华, 李逸航, 金北辰, 李隆昕, 成少安. 厌氧氨氧化-生物电化学耦合废水处理系统的研究进展[J]. 化工进展, 2023, 42(5): 2678-2690. |
[14] | 郭朋举, 何小波, 银凤翔. 电催化氮还原合成氨MOF基催化剂研究进展[J]. 化工进展, 2023, 42(4): 1797-1810. |
[15] | 刘静, 林琳, 张健, 赵峰. 生物质基炭材料孔径调控及电化学性能研究进展[J]. 化工进展, 2023, 42(4): 1907-1916. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |