化工进展 ›› 2023, Vol. 42 ›› Issue (1): 469-479.DOI: 10.16085/j.issn.1000-6613.2022-0570
收稿日期:
2022-04-06
修回日期:
2022-05-27
出版日期:
2023-01-25
发布日期:
2023-02-20
通讯作者:
王荣昌
作者简介:
应璐瑶(1998—),女,硕士研究生,研究方向为菌藻生物膜去除抗生素。E-mail:yingluyao@tongji.edu.cn。
基金资助:
YING Luyao(), WANG Rongchang()
Received:
2022-04-06
Revised:
2022-05-27
Online:
2023-01-25
Published:
2023-02-20
Contact:
WANG Rongchang
摘要:
菌藻共生系统不仅能够高效去除污水中的氮磷、重金属、抗生素等污染物,而且还能够捕集并固定二氧化碳,因而受到日益广泛的关注。本文介绍了菌藻共生系统对抗生素类污染物的去除途径,包括生物降解、生物吸附、生物累积等,其中生物降解是菌藻共生系统去除抗生素的最主要途径;同时简述了降解抗生素的生物反应器类型,主要可分为悬浮生长系统和固定化生长系统。本文还重点介绍了菌藻共生系统应对抗生素胁迫的短期和长期响应机制,短期响应主要是通过产生活性氧(ROS)并激活SOS响应,长期响应则具体表现在抗生素抗性基因的富集转移和微生物群落的演替进化等方面。本文为菌藻共生系统用于去除废水中抗生素类污染物提供了理论依据和技术参考。
中图分类号:
应璐瑶, 王荣昌. 菌藻共生系统削减抗生素类污染物的去除途径及胁迫响应[J]. 化工进展, 2023, 42(1): 469-479.
YING Luyao, WANG Rongchang. Removal pathways of antibiotic pollutants by bacterial-algal consortium and its stress response mechanisms[J]. Chemical Industry and Engineering Progress, 2023, 42(1): 469-479.
反应器类型 | 生物类型 | 反应器形式 | 地区 | 抗生素类型 | 抗生素浓度 | 去除率 | 参考文献 |
---|---|---|---|---|---|---|---|
悬浮 | 活性污泥 | 序批式反应器(SBR) | 西班牙 | 磺胺甲𫫇唑(SMX) | 50μg/L | 20%~50% | [ |
悬浮 | 活性污泥 | 序批式反应器(SBR) | 西班牙 | 磺胺甲𫫇唑(SMX) | 10μg/L、100μg/L | 86%~98% | [ |
悬浮 | 活性污泥 | 序批式反应器(SBR) | 台湾(中国) | 磺胺二甲氧嘧啶(SDM) | 100μg/L | >90% | [ |
磺胺间甲氧嘧啶(SMM) | 100μg/L | ||||||
磺胺甲𫫇唑(SMX) | 100μg/L | ||||||
悬浮 | 活性污泥 | 传统膜生物反应器 (MBR) | 嘉兴(中国) | 11种(四环素、磺胺、喹诺酮和大环内酯) | 50mg/L | 25.5%~83.8% | [ |
悬浮 | 活性污泥 | 序批式膜生物反应器(SMBR) | 北京(中国) | 磺胺类 | 50μg/L | >90% | [ |
四环素类 | 50μg/L | >90% | |||||
喹诺酮类 | 50μg/L | <70% | |||||
悬浮 | 活性污泥 | 缺氧/好氧膜生物反应器 (A/O-MBR) | 曲阳污水处理厂(中国上海) | 四环素(TC) | 500μg/L | 83.6%~93.6% | [ |
土霉素(OTC) | 79.7%~88.6% | ||||||
金霉素(CTC) | 77.6%~82.9% | ||||||
磺胺甲𫫇唑(SMX) | 88.5%~99.5% | ||||||
磺胺嘧啶(SDZ) | 93.8%~99.7% | ||||||
氨苄青霉素(AMP) | 94.4%~99.9% | ||||||
悬浮 | 小球藻 (Chlorella sp.) | 透明生物反应器 | — | 头孢氨苄(CFX) | 500mg/L | 71.2%~82.8% | [ |
悬浮 | 衣藻 (Chlamydomonas sp.) | 光生物反应器 | 台湾(中国) | 环丙沙星(CIP) | 1mg/L、5mg/L、10mg/L | >99% | [ |
磺胺嘧啶(SDZ) | 50% | ||||||
悬浮 | 雨生红球藻 (Haematococcus pluvialis)-活性污泥 | 传统膜生物反应器(MBR) | — | 抗生素磺胺甲𫫇唑(SMX) | 100mg/L | 94.42%~97.08% | [ |
四环素(TET) | 37.3mg/L | 69.75%~89.73% | |||||
红霉素(ERY) | 100mg/L | 94.41%~98.15% | |||||
悬浮 | 蛋白核小球藻 (Chlorella pyrenoidosa)- 活性污泥 | 透明生物反应器 | 南京(中国) | 头孢拉定 | 100mg/L | 94% | [ |
头孢氨苄 | 94% | ||||||
头孢他啶 | 94.80% | ||||||
头孢克肟 | 91.10% | ||||||
悬浮 | 细菌-微藻 (Chlorella sp.) | 搅拌罐光生物反应器(STPBR) | 埃及 | 扑热息痛 | 0.25mg/L、0.5mg/L | 95%~98% | [ |
酮洛芬 | |||||||
阿司匹林 | |||||||
固定化 | 活性污泥 | 生物膜膜生物反应器(BF-MBR) | 嘉兴(中国) | 11种(四环素、磺胺、喹诺酮和大环内酯) | 50mg/L | 45.3%~86.8% | [ |
固定化 | 活性污泥 | 厌氧/好氧移动床生物膜反应器(A/O-MBBR) | — | 四环素(TC) | 50μg/L、100μg/L、150μg/L、200μg/L | >42% | [ |
固定化 | 活性污泥 | 膜曝气生物膜反应器(MABR) | — | 氯四环素(CTC) | 0.4mg/L、0.1mg/L、0.05mg/L | 12.32%~68.91% | [ |
固定化 | 布朗葡萄藻 (Botryococcus braunii) | 淹没式膜生物反应器(SMPBR) | 韩国 | 磺胺甲嘧啶(SMZ) | 47.6~85.7mg/L | 53%~98% | [ |
磺胺噻唑(STZ) | |||||||
磺胺甲𫫇唑(SMX) | |||||||
固定化 | 小球藻 (Chlorellavulgaris) | 生物膜光生物反应器(BF-MPBR) | 舟山(中国) | 磺胺嘧啶(SDZ) | (0.12±0.02)mg/L | 61.0%~79.2% | [ |
磺胺甲嘧啶(SMZ) | (0.046±0.04)mg/L | 50.0%~76.7% | |||||
磺胺甲𫫇唑(SMX) | (0.14±0.01)mg/L | 60.8%~82.1% | |||||
固定化 | 细菌-铜绿藻 (Microcystisaeruginosa) | 人工控制的城市河流(ACUR) | 上海(中国) | 阿奇霉素(AZM) | 均为相对浓度 | 88%~90% | [ |
克拉霉素(CLM) | 87%~97% | ||||||
磺胺噻唑(STZ) | 76%~81% | ||||||
磺胺甲𫫇唑(SMX) | 73%~79% | ||||||
环丙沙星(CIP) | 76%~86% | ||||||
四环素(TC) | 75%~85% |
表1 降解抗生素的生物反应器类型及其去除效果
反应器类型 | 生物类型 | 反应器形式 | 地区 | 抗生素类型 | 抗生素浓度 | 去除率 | 参考文献 |
---|---|---|---|---|---|---|---|
悬浮 | 活性污泥 | 序批式反应器(SBR) | 西班牙 | 磺胺甲𫫇唑(SMX) | 50μg/L | 20%~50% | [ |
悬浮 | 活性污泥 | 序批式反应器(SBR) | 西班牙 | 磺胺甲𫫇唑(SMX) | 10μg/L、100μg/L | 86%~98% | [ |
悬浮 | 活性污泥 | 序批式反应器(SBR) | 台湾(中国) | 磺胺二甲氧嘧啶(SDM) | 100μg/L | >90% | [ |
磺胺间甲氧嘧啶(SMM) | 100μg/L | ||||||
磺胺甲𫫇唑(SMX) | 100μg/L | ||||||
悬浮 | 活性污泥 | 传统膜生物反应器 (MBR) | 嘉兴(中国) | 11种(四环素、磺胺、喹诺酮和大环内酯) | 50mg/L | 25.5%~83.8% | [ |
悬浮 | 活性污泥 | 序批式膜生物反应器(SMBR) | 北京(中国) | 磺胺类 | 50μg/L | >90% | [ |
四环素类 | 50μg/L | >90% | |||||
喹诺酮类 | 50μg/L | <70% | |||||
悬浮 | 活性污泥 | 缺氧/好氧膜生物反应器 (A/O-MBR) | 曲阳污水处理厂(中国上海) | 四环素(TC) | 500μg/L | 83.6%~93.6% | [ |
土霉素(OTC) | 79.7%~88.6% | ||||||
金霉素(CTC) | 77.6%~82.9% | ||||||
磺胺甲𫫇唑(SMX) | 88.5%~99.5% | ||||||
磺胺嘧啶(SDZ) | 93.8%~99.7% | ||||||
氨苄青霉素(AMP) | 94.4%~99.9% | ||||||
悬浮 | 小球藻 (Chlorella sp.) | 透明生物反应器 | — | 头孢氨苄(CFX) | 500mg/L | 71.2%~82.8% | [ |
悬浮 | 衣藻 (Chlamydomonas sp.) | 光生物反应器 | 台湾(中国) | 环丙沙星(CIP) | 1mg/L、5mg/L、10mg/L | >99% | [ |
磺胺嘧啶(SDZ) | 50% | ||||||
悬浮 | 雨生红球藻 (Haematococcus pluvialis)-活性污泥 | 传统膜生物反应器(MBR) | — | 抗生素磺胺甲𫫇唑(SMX) | 100mg/L | 94.42%~97.08% | [ |
四环素(TET) | 37.3mg/L | 69.75%~89.73% | |||||
红霉素(ERY) | 100mg/L | 94.41%~98.15% | |||||
悬浮 | 蛋白核小球藻 (Chlorella pyrenoidosa)- 活性污泥 | 透明生物反应器 | 南京(中国) | 头孢拉定 | 100mg/L | 94% | [ |
头孢氨苄 | 94% | ||||||
头孢他啶 | 94.80% | ||||||
头孢克肟 | 91.10% | ||||||
悬浮 | 细菌-微藻 (Chlorella sp.) | 搅拌罐光生物反应器(STPBR) | 埃及 | 扑热息痛 | 0.25mg/L、0.5mg/L | 95%~98% | [ |
酮洛芬 | |||||||
阿司匹林 | |||||||
固定化 | 活性污泥 | 生物膜膜生物反应器(BF-MBR) | 嘉兴(中国) | 11种(四环素、磺胺、喹诺酮和大环内酯) | 50mg/L | 45.3%~86.8% | [ |
固定化 | 活性污泥 | 厌氧/好氧移动床生物膜反应器(A/O-MBBR) | — | 四环素(TC) | 50μg/L、100μg/L、150μg/L、200μg/L | >42% | [ |
固定化 | 活性污泥 | 膜曝气生物膜反应器(MABR) | — | 氯四环素(CTC) | 0.4mg/L、0.1mg/L、0.05mg/L | 12.32%~68.91% | [ |
固定化 | 布朗葡萄藻 (Botryococcus braunii) | 淹没式膜生物反应器(SMPBR) | 韩国 | 磺胺甲嘧啶(SMZ) | 47.6~85.7mg/L | 53%~98% | [ |
磺胺噻唑(STZ) | |||||||
磺胺甲𫫇唑(SMX) | |||||||
固定化 | 小球藻 (Chlorellavulgaris) | 生物膜光生物反应器(BF-MPBR) | 舟山(中国) | 磺胺嘧啶(SDZ) | (0.12±0.02)mg/L | 61.0%~79.2% | [ |
磺胺甲嘧啶(SMZ) | (0.046±0.04)mg/L | 50.0%~76.7% | |||||
磺胺甲𫫇唑(SMX) | (0.14±0.01)mg/L | 60.8%~82.1% | |||||
固定化 | 细菌-铜绿藻 (Microcystisaeruginosa) | 人工控制的城市河流(ACUR) | 上海(中国) | 阿奇霉素(AZM) | 均为相对浓度 | 88%~90% | [ |
克拉霉素(CLM) | 87%~97% | ||||||
磺胺噻唑(STZ) | 76%~81% | ||||||
磺胺甲𫫇唑(SMX) | 73%~79% | ||||||
环丙沙星(CIP) | 76%~86% | ||||||
四环素(TC) | 75%~85% |
1 | KOLPIN D W, FURLONG E T, MEYER M T, et al. Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999—2000: a national reconnaissance[J]. Environmental Science & Technology, 2002, 36(6): 1202-1211. |
2 | MARTÍNEZ-CARBALLO E, GONZÁLEZ-BARREIRO C, SCHARF S, et al. Environmental monitoring study of selected veterinary antibiotics in animal manure and soils in Austria[J]. Environmental Pollution, 2007, 148(2): 570-579. |
3 | TAMTAM F, MERCIER F, LE BOT B, et al. Occurrence and fate of antibiotics in the Seine River in various hydrological conditions[J]. Science of the Total Environment, 2008, 393(1): 84-95. |
4 | MASSÉ D I, SAADY N M C, GILBERT Y. Potential of biological processes to eliminate antibiotics in livestock manure: an overview[J]. Animals, 2014, 4(2): 146-163. |
5 | HOMEM V, SANTOS L. Degradation and removal methods of antibiotics from aqueous matrices: a review[J]. Journal of Environmental Management, 2011, 92(10): 2304-2347. |
6 | SIAL A, ZHANG B, ZHANG A, et al. Microalgal-bacterial synergistic interactions and their potential influence in wastewater treatment: a review[J]. BioEnergy Research, 2021, 14(3): 723-738. |
7 | MOHD-SAHIB A A, LIM J W, LAM M K, et al. Lipid for biodiesel production from attached growth Chlorella vulgaris biomass cultivating in fluidized bed bioreactor packed with polyurethane foam material[J]. Bioresource Technology, 2017, 239: 127-136. |
8 | ISMAIL M M, ESSAM T M, RAGAB Y M, et al. Remediation of a mixture of analgesics in a stirred-tank photobioreactor using microalgal-bacterial consortium coupled with attempt to valorise the harvested biomass[J]. Bioresource Technology, 2017, 232: 364-371. |
9 | SILVA RODRIGUES D A DA, CUNHA C DA, FREITAS M G, et al. Biodegradation of sulfamethoxazole by microalgae-bacteria consortium in wastewater treatment plant effluents[J]. Science of the Total Environment, 2020, 749: 141441. |
10 | SILVA RODRIGUES D A DA, CUNHA C DA, ESPIRITO SANTO D R DO, et al. Removal of cephalexin and erythromycin antibiotics, and their resistance genes, by microalgae-bacteria consortium from wastewater treatment plant secondary effluents[J]. Environmental Science and Pollution Research International, 2021, 28(47): 67822-67832. |
11 | XIONG J Q, KURADE M B, JEON B H. Can microalgae remove pharmaceutical contaminants from water?[J]. Trends in Biotechnology, 2018, 36(1): 30-44. |
12 | HENA S, GUTIERREZ L, CROUE J P. Removal of pharmaceutical and personal care products (PPCPs) from wastewater using microalgae: a review[J]. Journal of Hazardous Materials, 2021, 403: 124041. |
13 | SUTHERLAND D L, RALPH P J. Microalgal bioremediation of emerging contaminants-opportunities and challenges[J]. Water Research, 2019, 164: 114921. |
14 | CHENG D L, NGO H H, GUO W S, et al. Bioprocessing for elimination antibiotics and hormones from swine wastewater[J]. Science of the Total Environment, 2018, 621: 1664-1682. |
15 | DAWAS-MASSALHA A, GUR-REZNIK S, LERMAN S, et al. Co-metabolic oxidation of pharmaceutical compounds by a nitrifying bacterial enrichment[J]. Bioresource Technology, 2014, 167: 336-342. |
16 | WANG B Z, NI B J, YUAN Z G, et al. Cometabolic biodegradation of cephalexin by enriched nitrifying sludge: process characteristics, gene expression and product biotoxicity[J]. The Science of the Total Environment, 2019, 672: 275-282. |
17 | XU Y F, YUAN Z G, NI B J. Biotransformation of pharmaceuticals by ammonia oxidizing bacteria in wastewater treatment processes[J]. The Science of the Total Environment, 2016, 566/567: 796-805. |
18 | YANG S F, LIN C F, WU C J, et al. Fate of sulfonamide antibiotics in contact with activated sludge-Sorption and biodegradation[J]. Water Research, 2012, 46(4): 1301-1308. |
19 | XU B, MAO D, LUO Y, et al. Sulfamethoxazole biodegradation and biotransformation in the water-sediment system of a natural river[J]. Bioresource Technology, 2011, 102(14): 7069-7076. |
20 | LIU Q, HOU J, WU J, et al. Intimately coupled photocatalysis and biodegradation for effective simultaneous removal of sulfamethoxazole and COD from synthetic domestic wastewater[J]. Journal of Hazardous Materials, 2022, 423(Pt B): 127063. |
21 | XIE P, CHEN C, ZHANG C, et al. Revealing the role of adsorption in ciprofloxacin and sulfadiazine elimination routes in microalgae[J]. Water Research, 2020, 172: 115475. |
22 | ALI J, WANG L, WASEEM H, et al. Turning harmful algal biomass to electricity by microbial fuel cell: a sustainable approach for waste management[J]. Environmental Pollution, 2020, 266: 115373. |
23 | KIKI C, RASHID A, WANG Y W, et al. Dissipation of antibiotics by microalgae: kinetics, identification of transformation products and pathways[J]. Journal of Hazardous Materials, 2020, 387: 121985. |
24 | HOM-DIAZ A, JAÉN-GIL A, RODRÍGUEZ-MOZAZ S, et al. Insights into removal of antibiotics by selected microalgae (Chlamydomonas reinhardtii, Chlorella sorokiniana, Dunaliella tertiolecta and Pseudokirchneriella subcapitata)[J]. Algal Research, 2022, 61: 102560. |
25 | LUO Y, GUO W, NGO H H, et al. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment[J]. The Science of the Total Environment, 2014, 473/474: 619-641. |
26 | LI B, ZHANG T. Biodegradation and adsorption of antibiotics in the activated sludge process[J]. Environmental Science & Technology, 2010, 44(9): 3468-3473. |
27 | GUO R, CHEN J. Application of alga-activated sludge combined system (AASCS) as a novel treatment to remove cephalosporins[J]. Chemical Engineering Journal, 2015, 260: 550-556. |
28 | ANGULO E, BULA L, MERCADO I, et al. Bioremediation of cephalexin with non-living Chlorella sp., biomass after lipid extraction[J]. Bioresource Technology, 2018, 257: 17-22. |
29 | HENA S, GUTIERREZ L, J-P CROUÉ. Removal of metronidazole from aqueous media by C. vulgaris [J]. Journal of Hazardous Materials, 2020, 384: 121400. |
30 | NORVILL Z N, TOLEDO-CERVANTES A, BLANCO S, et al. Photodegradation and sorption govern tetracycline removal during wastewater treatment in algal ponds[J]. Bioresource Technology, 2017, 232: 35-43. |
31 | DANESHVAR E, ZARRINMEHR M J, HASHTJIN A M, et al. Versatile applications of freshwater and marine water microalgae in dairy wastewater treatment, lipid extraction and tetracycline biosorption[J]. Bioresource Technology, 2018, 268: 523-530. |
32 | XIONG J Q, KURADE M B, JEON B H. Biodegradation of levofloxacin by an acclimated freshwater microalga, Chlorella vulgaris [J]. Chemical Engineering Journal, 2017, 313: 1251-1257. |
33 | BAI X L, ACHARYA K. Algae-mediated removal of selected pharmaceutical and personal care products (PPCPs) from Lake Mead water[J]. Science of the Total Environment, 2017, 581/582: 734-740. |
34 | QUIJANO G, ARCILA J S, BUITRÓN G. Microalgal-bacterial aggregates: applications and perspectives for wastewater treatment[J]. Biotechnology Advances, 2017, 35(6): 772-781. |
35 | GUTZEIT G, LORCH D, WEBER A, et al. Bioflocculent algal-bacterial biomass improves low-cost wastewater treatment[J]. Water Science and Technology, 2005, 52(12): 9-18. |
36 | MEDINA M, NEIS U. Symbiotic algal bacterial wastewater treatment: effect of food to microorganism ratio and hydraulic retention time on the process performance[J]. Water Science and Technology, 2007, 55(11): 165-171. |
37 | VALIGORE J M, GOSTOMSKI P A, WAREHAM D G, et al. Effects of hydraulic and solids retention times on productivity and settleability of microbial (microalgal-bacterial) biomass grown on primary treated wastewater as a biofuel feedstock[J]. Water Research, 2012, 46(9): 2957-2964. |
38 | VAN DEN HENDE S, BEELEN V, JULIEN L, et al. Technical potential of microalgal bacterial floc raceway ponds treating food-industry effluents while producing microalgal bacterial biomass: an outdoor pilot-scale study[J]. Bioresource Technology, 2016, 218: 969-979. |
39 | VAN DEN HENDE S, VERVAEREN H, SAVEYN H, et al. Microalgal bacterial floc properties are improved by a balanced inorganic/organic carbon ratio[J]. Biotechnology and Bioengineering, 2011, 108(3): 549-558. |
40 | KASSOTAKI E, BUTTIGLIERI G, FERRANDO-CLIMENT L, et al. Enhanced sulfamethoxazole degradation through ammonia oxidizing bacteria co-metabolism and fate of transformation products[J]. Water Research, 2016, 94: 111-119. |
41 | COLLADO N, BUTTIGLIERI G, MARTI E, et al. Effects on activated sludge bacterial community exposed to sulfamethoxazole[J]. Chemosphere, 2013, 93(1): 99-106. |
42 | SONG X Y, LIU R, CHEN L J, et al. Comparative experiment on treating digested piggery wastewater with a biofilm MBR and conventional MBR: simultaneous removal of nitrogen and antibiotics[J]. Frontiers of Environmental Science & Engineering, 2017, 11(2): 1-9. |
43 | XU Z, SONG X, LI Y, et al. Removal of antibiotics by sequencing-batch membrane bioreactor for swine wastewater treatment[J]. Science of Total Environment, 2019, 684: 23-30. |
44 | XIA S Q, JIA R Y, FENG F, et al. Effect of solids retention time on antibiotics removal performance and microbial communities in an A/O-MBR process[J]. Bioresource Technology, 2012, 106: 36-43. |
45 | MICHELON W, MATTHIENSEN A, VIANCELLI A, et al. Removal of veterinary antibiotics in swine wastewater using microalgae-based process[J]. Environmental Research, 2022, 207: 112192. |
46 | AYDIN S, ÜNLÜ İ D, ARABACI D N, et al. Evaluating the effect of microalga Haematococcus pluvialis bioaugmentation on aerobic membrane bioreactor in terms of performance, membrane fouling and microbial community structure[J]. Science of the Total Environment, 2022, 807: 149908. |
47 | 王建龙, 施汉昌, 钱易. 固定化微生物技术在难降解有机污染物治理中的研究进展[J]. 环境科学研究, 1999(1): 60-64. |
WANG Jianlong, SHI Hanchang, QIAN Yi. The Advances in biodegradation of refractory organic pollutants by immobilized microbial cells[J]. Research of Environmental Sciences, 1999(1): 60-64. | |
48 | CRAGGS R J, ADEY W H, JENSON K R, et al. Phosphorus removal from wastewater using an algal turf scrubber[J]. Water Science and Technology, 1996, 33(7): 191-198. |
49 | GONÇALVES A L, PIRES J C M, SIMÕES M. A review on the use of microalgal consortia for wastewater treatment[J]. Algal Research, 2017, 24: 403-415. |
50 | ADEY W H, LAUGHINGHOUSE H D I, MILLER J B, et al. Algal turf scrubber (ATS) floways on the Great Wicomico River, Chesapeake Bay: productivity, algal community structure, substrate and chemistry1[J]. Journal of Phycology, 2013, 49(3): 489-501. |
51 | SU Y Y, MENNERICH A, URBAN B. Municipal wastewater treatment and biomass accumulation with a wastewater-born and settleable algal-bacterial culture[J]. Water Research, 2011, 45(11): 3351-3358. |
52 | DE GODOS I, GONZÁLEZ C, BECARES E, et al. Simultaneous nutrients and carbon removal during pretreated swine slurry degradation in a tubular biofilm photobioreactor[J]. Applied Microbiology and Biotechnology, 2009, 82(1): 187-194. |
53 | CHEN H Y, LIU Y D, DONG B. Biodegradation of tetracycline antibiotics in A/O moving-bed biofilm reactor systems[J]. Bioprocess and Biosystems Engineering, 2018, 41(1): 47-56. |
54 | PENG Y Y, GAO F, YANG H L, et al. Simultaneous removal of nutrient and sulfonamides from marine aquaculture wastewater by concentrated and attached cultivation of Chlorella vulgaris in an algal biofilm membrane photobioreactor (BF-MPBR)[J]. Science of the Total Environment, 2020, 725: 138524. |
55 | AYDIN E, ERDEM M, CASEY E, et al. Oxidation mechanism of chlortetracycline in a membrane aerated biofilm reactor[J]. Environmental Technology & Innovation, 2021, 24(21791): 101910. |
56 | LEE J C, JANG J K, KIM H W. Sulfonamide degradation and metabolite characterization in submerged membrane photobioreactors for livestock excreta treatment[J]. Chemosphere, 2020, 261: 127604. |
57 | 王荣昌, 程霞, 曾旭. 污水处理中菌藻共生系统去除污染物机理及其应用进展[J]. 环境科学学报, 2018, 38(1): 13-22. |
WANG Rongchang, CHENG Xia, ZENG Xu. Mechanisms and applications of bacterial-algal symbiotic systems for pollutant removal from wastewater[J]. Acta Scientiae Circumstantiae, 2018, 38(1): 13-22. | |
58 | ZHOU H, CUI J, LI X, et al. Antibiotic fate in an artificial-constructed urban river planted with the algae Microcystis aeruginosa and emergent hydrophyte[J]. Water Environment Research, 2022, 94(1): e1670. |
59 | 李昕, 曾洁, 王岱, 等. 细菌耐药耐受性机制的最新研究进展[J]. 中国抗生素杂志, 2020, 45(2): 113-121. |
LI Xin, ZENG Jie, WANG Dai, et al. Recent advances in the mechanism of bacterial resistance and tolerance[J]. China Academic Journal, 2020, 45(2): 113-121. | |
60 | VAN ACKER H, COENYE T. The role of reactive oxygen species in antibiotic-mediated killing of bacteria[J]. Trends Microbiol, 2017, 25(6): 456-466. |
61 | LU J, WANG Y, LI J, et al. Triclosan at environmentally relevant concentrations promotes horizontal transfer of multidrug resistance genes within and across bacterial genera[J]. Environment International, 2018, 121(Pt 2): 1217-1226. |
62 | BELENKY P, YE J D, PORTER C B, et al. Bactericidal antibiotics induce toxic metabolic perturbations that lead to cellular damage[J]. Cell Reports, 2015, 13(5): 968-980. |
63 | KOHANSKI M A, DWYER D J, HAYETE B, et al. A common mechanism of cellular death induced by bactericidal antibiotics[J]. Cell, 2007, 130(5): 797-810. |
64 | MAO Y, YU Y, MA Z, et al. Azithromycin induces dual effects on microalgae: roles of photosynthetic damage and oxidative stress[J]. Ecotoxicology and Environmental Safety, 2021, 222: 112496. |
65 | WANG Y, LU J, ENGELSTADTER J, et al. Non-antibiotic pharmaceuticals enhance the transmission of exogenous antibiotic resistance genes through bacterial transformation[J]. The ISME Journal, 2020, 14(8): 2179-2196. |
66 | LI D, ZENG S, HE M, et al. Water disinfection byproducts induce antibiotic resistance-role of environmental pollutants in resistance phenomena[J]. Environmental Science & Technology, 2016, 50(6): 3193-3201. |
67 | MICHEL B. After 30 years of study, the bacterial SOS response still surprises us[J]. PLoS Biology, 2005, 3(7): e255. |
68 | SCHLACHER K, GOODMAN M F. Lessons from 50 years of SOS DNA-damage-induced mutagenesis[J]. Nature Reviews, 2007, 8: 587-594. |
69 | ANDERSSON D I, HUGHES D. Microbiological effects of sublethal levels of antibiotics[J]. Nature Reviews Microbiology, 2014, 12(7): 465-478. |
70 | MAIQUES E, UBEDA C, CAMPOY S, et al. Beta-lactam antibiotics induce the SOS response and horizontal transfer of virulence factors in Staphylococcus aureus[J]. Journal of Bacteriology, 2006, 188(7): 2726-2729. |
71 | SOARES A, ALEXANDRE K, ETIENNE M. Tolerance and persistence of Pseudomonas aeruginosa in biofilms exposed to antibiotics: molecular mechanisms, antibiotic strategies and therapeutic perspectives[J]. Frontiers In Microbiology, 2020, 11: 2057. |
72 | CLARKE R S, HA K P, EDWARDS A M. RexAB promotes the survival of Staphylococcus aureus exposed to multiple classes of antibiotics[J]. Antimicrob Agents Chemother, 2021, 65(10): e0059421. |
73 | FENG G, HUANG H, CHEN Y. Effects of emerging pollutants on the occurrence and transfer of antibiotic resistance genes: a review[J]. Journal of Hazardous Materials, 2021, 420: 126602. |
74 | YANG Y, LI B, JU F, et al. Exploring variation of antibiotic resistance genes in activated sludge over a four-year period through a metagenomic approach[J]. Environmental Science & Technology, 2013,47(18):10197-10205. |
75 | BISWDL B K, MAZZA A, MASSON L, et al. Impact of wastewater treatment processes on antimicrobial resistance genes and their co-occurrence with virulence genes in Escherichia coli[J]. Water Research, 2014, 50(mar.1): 245-253. |
76 | YUAN K, YU K, YANG R Q, et al. Metagenomic characterization of antibiotic resistance genes in Antarctic soils[J]. Ecotoxicology and Environmental Safety, 2019, 176: 300-308. |
77 | MAO D, YU S, RYSZ M, et al. Prevalence and proliferation of antibiotic resistance genes in two municipal wastewater treatment plants[J]. Water Research, 2015, 85: 458-466. |
78 | YOO K, YOO H, LEE J, et al. Exploring the antibiotic resistome in activated sludge and anaerobic digestion sludge in an urban wastewater treatment plant via metagenomic analysis[J]. The Journal of Microbiology, 2019, 58(2):123-130. |
79 | YAN W, BAI R, WANG S, et al. Antibiotic resistance genes are increased by combined exposure to sulfamethoxazole and naproxen but relieved by low-salinity[J]. Environment International, 2020, 139: 105742. |
80 | CAREY D E, ZITOMER D H, KAPPELL A D, et al. Chronic exposure to triclosan sustains microbial community shifts and alters antibiotic resistance gene levels in anaerobic digesters[J]. Environmental Science-Processes & Impacts, 2016, 18(8): 1060-1067. |
81 | CAREY D E, ZITOMER D H, HRISTOVA K R, et al. Triclocarban influences antibiotic resistance and alters anaerobic digester microbial community structure[J]. Environmental Science & Technology, 2016, 50(1): 126-134. |
82 | THOMSEN T R, KONG Y H, NIELSEN P H. Ecophysiology of abundant denitrifying bacteria in activated sludge[J]. FEMS Microbiology Ecology, 2007, 60(3): 370-382. |
83 | IM W T, HU Z Y, KIM K H, et al. Description of Fimbriimonas ginsengisoli gen. nov., sp. nov. within the Fimbriimonadia class nov., of the phylum Armatimonadetes [J]. Antonie Van Leeuwenhoek, 2012, 102(2): 307-317. |
84 | JI B, ZHANG M, GU J, et al. A self-sustaining synergetic microalgal-bacterial granular sludge process towards energy-efficient and environmentally sustainable municipal wastewater treatment[J]. Water Research, 2020, 179: 115884. |
85 | ARCILA J S, BUITRÓN G. Influence of solar irradiance levels on the formation of microalgae-bacteria aggregates for municipal wastewater treatment[J]. Algal Research, 2017, 27: 190-197. |
86 | TIRON O, BUMBAC C, MANEA E, et al. Overcoming microalgae harvesting barrier by activated algae granules[J]. Scientific Reports, 2017, 7(1): 4646. |
87 | ZHANG F, BLASIAK L C, KAROLIN J O, et al. Phosphorus sequestration in the form of polyphosphate by microbial symbionts in marine sponges[J]. Proceedings of the National Academy of Sciences, 2015, 112(14): 4381-4386. |
88 | TARLERA S, DENNER E B. Sterolibacterium denitrificans gen. nov., sp. nov., a novel cholesterol-oxidizing, denitrifying member of the β-Proteobacteria [J]. International Journal of Systematic and Evolutionary Microbiology, 2003, 53(4): 1085-1091. |
89 | KANAGAWA T, KAMAGATA Y, ARUGA S, et al. Phylogenetic analysis of and oligonucleotide probe development for eikelboom type 021N Filamentous Bacteria isolated from bulking activated sludge[J]. Applied and Environmental Microbiology, 2000, 66(11): 5043-5052. |
90 | GOÑI-URRIZA M, CAPDEPUY M, ARPIN C, et al. Impact of an urban effluent on antibiotic resistance of riverine Enterobacteriaceae and Aeromonas spp.[J]. Applied and Environmental Microbiology, 2000, 66(1): 125-132. |
91 | WANG S, JI B, ZHANG M, et al. Defensive responses of microalgal-bacterial granules to tetracycline in municipal wastewater treatment[J]. Bioresource Technology, 2020, 312: 123605. |
92 | AMIN S A, HMELO L R, VAN TOL H M, et al. Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria[J]. Nature, 2015, 522(7554): 98-101. |
93 | CHI W, ZHENG L, HE C, et al. Quorum sensing of microalgae associated marine Ponticoccus sp. PD-2 and its algicidal function regulation[J]. AMB Express, 2017, 7(1): 59. |
94 | HAN S I, JEON M S, HEO Y M, et al. Effect of Pseudoalteromonas sp. MEBiC 03485 on biomass production and sulfated polysaccharide biosynthesis in Porphyridium cruentum UTEX 161[J]. Bioresource Technology, 2020, 302: 122791. |
95 | PADDOCK M B, FERNÁNDEZ-BAYO J D, VANDERGHEYNST J S. The effect of the microalgae-bacteria microbiome on wastewater treatment and biomass production[J]. Applied Microbiology and Biotechnology, 2020, 104(2): 893-905. |
96 | NATRAH F M I, KENMEGNE M M, WIYOTO W, et al. Effects of micro-algae commonly used in aquaculture on acyl-homoserine lactone quorum sensing[J]. Aquaculture, 2011, 317(1/2/3/4): 53-57. |
[1] | 李华华, 李逸航, 金北辰, 李隆昕, 成少安. 厌氧氨氧化-生物电化学耦合废水处理系统的研究进展[J]. 化工进展, 2023, 42(5): 2678-2690. |
[2] | 祝佳欣, 朱雯喆, 徐俊, 谢靖, 王文标, 谢丽. 基于导电材料强化抗生素胁迫厌氧消化的研究进展[J]. 化工进展, 2023, 42(2): 1008-1019. |
[3] | 朱婷婷, 苏仲弦, 赵天杭, 刘轶文. 零价铁及其耦合技术强化抗生素废水的处理[J]. 化工进展, 2022, 41(8): 4513-4529. |
[4] | 张丽珠, 王欢, 李琼, 杨东杰. 木质素衍生吸附材料及其在废水处理中的应用研究进展[J]. 化工进展, 2022, 41(7): 3731-3744. |
[5] | 李海涛, 汪东. 精对苯二甲酸生产废水处理与CO2协同利用技术的实践与展望[J]. 化工进展, 2022, 41(3): 1132-1135. |
[6] | 陈诗雨, 许志成, 杨婧, 徐浩, 延卫. 微生物燃料电池在废水处理中的研究进展[J]. 化工进展, 2022, 41(2): 951-963. |
[7] | 王勇, 姜明昊, 王怡霖, 徐婧婷, 支硕. 层状双金属氢氧化物的构筑及其处理水体中抗生素的研究进展[J]. 化工进展, 2022, 41(2): 803-815. |
[8] | 齐亚兵. 活化过硫酸盐高级氧化法降解抗生素的研究进展[J]. 化工进展, 2022, 41(12): 6627-6643. |
[9] | 翟重渊, 赵丹荻, 何亚鹏, 黄惠, 陈步明, 郭忠诚. 掺硼金刚石阳极电催化降解新兴抗生素类污染物研究进展[J]. 化工进展, 2022, 41(12): 6615-6626. |
[10] | 姜记威, 张诗轩, 曾文炉, 李凤祥. 生物炭基材料在抗生素废水处理中的研究进展[J]. 化工进展, 2021, 40(S2): 389-401. |
[11] | 吴文瞳, 张玲玲, 李子富, 王晨希, 余春松, 王庆国. 高级氧化技术降解抗生素及去除耐药性的研究进展[J]. 化工进展, 2021, 40(8): 4551-4561. |
[12] | 张申平, 王艺蒙, 葛宇, 胡军, 刘洪来. 基于孔材料的多元复合光催化剂降解抗生素[J]. 化工进展, 2021, 40(6): 3287-3299. |
[13] | 钟雪晴, 朱雅莉, 王玉娇, 赵权宇. 含抗生素废水的微藻处理技术及其进展[J]. 化工进展, 2021, 40(4): 2308-2317. |
[14] | 孔瑜, 顾卫华, 段锋, 张西华, 赵赫. 头孢类制药废水中有机污染物的去除特性[J]. 化工进展, 2021, 40(4): 2357-2364. |
[15] | 杜明辉, 王勇, 高群丽, 张耀宗, 孙晓明. 臭氧微气泡处理有机废水的效果与机制[J]. 化工进展, 2021, 40(12): 6907-6915. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |