化工进展 ›› 2022, Vol. 41 ›› Issue (12): 6285-6294.DOI: 10.16085/j.issn.1000-6613.2022-0321
李昊阳1,2(), 张炜1,3, 李小森1(), 徐纯刚1()
收稿日期:
2022-03-03
修回日期:
2022-04-14
出版日期:
2022-12-20
发布日期:
2022-12-29
通讯作者:
李小森,徐纯刚
作者简介:
李昊阳(1997—),男,硕士研究生,研究方向为天然气水合物开采及综合技术研发。E-mail:lihy1@ms.giec.ac.cn。
基金资助:
LI Haoyang1,2(), ZHANG Wei1,3, LI Xiaosen1(), XU Chungang1()
Received:
2022-03-03
Revised:
2022-04-14
Online:
2022-12-20
Published:
2022-12-29
Contact:
LI Xiaosen, XU Chungang
摘要:
氢作为一种清洁能源,越来越受到人们的重视,氢能利用技术的需求日益迫切。氢能的利用关键挑战在于氢气的储运,促进剂作用下氢气水合物可使氢气在相对温和的温压条件下安全、长期地储存,为储氢提供了一种选择。水合物储氢因其安全环保的特性具有巨大的工业化应用潜力,其目前工业化应用的两个关键问题即为储氢密度与储氢速率。本文首先回顾了氢气水合物的研究历程,阐述了几种常见氢气水合物的相平衡数据,然后归纳了不同晶型氢气水合物的储氢密度,最后总结了物理方法强化与化学方法强化对水合物储氢速率的影响,通过对近年来水合物储氢评估与总结,提出了当前水合物储氢存在的问题与未来研究方向,以期为水合物储气的工业化应用和氢气水合物的研究提供参考。
中图分类号:
李昊阳, 张炜, 李小森, 徐纯刚. 水合物储氢的研究进展[J]. 化工进展, 2022, 41(12): 6285-6294.
LI Haoyang, ZHANG Wei, LI Xiaosen, XU Chungang. Research process of hydrate-based hydrogen storage[J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6285-6294.
晶型 | 孔穴 | 表述 | 孔穴数 | 孔穴直径/Å | 配位数 | 理想表达式 |
---|---|---|---|---|---|---|
sI | 小 | 512 | 2 | 3.95 | 20 | 6X·2Y·46H2O |
大 | 51262 | 6 | 4.33 | 24 | ||
sII | 小 | 512 | 16 | 3.91 | 20 | 8X·16Y·136·H2O |
大 | 51264 | 8 | 4.73 | 28 | ||
sH | 小 | 512 | 3 | 3.91 | 20 | 1X·3Y·2Z·34H2O |
中 | 435663 | 2 | 4.06 | 20 | ||
大 | 51268 | 1 | 5.71 | 36 |
表1 三种水合物结构的有关参数[2]
晶型 | 孔穴 | 表述 | 孔穴数 | 孔穴直径/Å | 配位数 | 理想表达式 |
---|---|---|---|---|---|---|
sI | 小 | 512 | 2 | 3.95 | 20 | 6X·2Y·46H2O |
大 | 51262 | 6 | 4.33 | 24 | ||
sII | 小 | 512 | 16 | 3.91 | 20 | 8X·16Y·136·H2O |
大 | 51264 | 8 | 4.73 | 28 | ||
sH | 小 | 512 | 3 | 3.91 | 20 | 1X·3Y·2Z·34H2O |
中 | 435663 | 2 | 4.06 | 20 | ||
大 | 51268 | 1 | 5.71 | 36 |
方法 | 存储条件 | 理论储氢密度 (质量分数) | 安全性 | 文献 |
---|---|---|---|---|
高压气态储氢 | 298K,35~70MPa | 5.7%(70MPa) | 危险 | [ |
低温液化储氢 | 23K,0.3~0.5MPa | 7.6% | 危险 | [ |
固体材料储氢 | 413K,0.001MPa | 4.0%(MgH2) | 安全 | [ |
氢气水合物 | 280K,300MPa | 3.77%~4.97%(H2/H2O) | 安全 | [ |
表2 几种储氢方法比较
方法 | 存储条件 | 理论储氢密度 (质量分数) | 安全性 | 文献 |
---|---|---|---|---|
高压气态储氢 | 298K,35~70MPa | 5.7%(70MPa) | 危险 | [ |
低温液化储氢 | 23K,0.3~0.5MPa | 7.6% | 危险 | [ |
固体材料储氢 | 413K,0.001MPa | 4.0%(MgH2) | 安全 | [ |
氢气水合物 | 280K,300MPa | 3.77%~4.97%(H2/H2O) | 安全 | [ |
文献 | 体系 | 促进剂浓度 (摩尔分数) | 温度 /K | 压力 /MPa |
---|---|---|---|---|
Smirnov等[ | H2/H2O | 260 | 200 | |
258 | 100 | |||
178 | 50 | |||
Hashimoto等[ | H2/THF | 5.56% | 277.5 | 0.33 |
277.6 | 0.55 | |||
277.8 | 1.03 | |||
278.0 | 1.55 | |||
278.2 | 2.13 | |||
279.2 | 4.87 | |||
280.1 | 8.30 | |||
280.8 | 11.3 | |||
281.4 | 13.3 | |||
H2/TBAB | 3.6% | 285.4 | 0.18 | |
285.5 | 0.70 | |||
285.8 | 1.19 | |||
286.1 | 3.27 | |||
286.3 | 6.05 | |||
286.6 | 7.93 | |||
287.2 | 13.4 | |||
Du等[ | H2/叔丁胺 | 5.56% | 268.4 | 9.54 |
269.2 | 12.53 | |||
269.9 | 15.09 | |||
271.5 | 20.85 | |||
273.2 | 26.12 | |||
274.0 | 29.95 | |||
8.86% | 270.4 | 11.75 | ||
271.3 | 15.01 | |||
271.8 | 17.14 | |||
272.6 | 19.83 | |||
273.1 | 21.63 | |||
274.0 | 27.72 | |||
Wang等[ | H2/C3H8 | 33%(体积分数) | 279.05 | 1.60 |
278.25 | 1.40 | |||
277.84 | 1.20 | |||
276.83 | 1.00 | |||
275.90 | 0.80 | |||
274.71 | 0.60 | |||
273.72 | 0.40 |
表3 不同体系下氢气水合物相平衡数据
文献 | 体系 | 促进剂浓度 (摩尔分数) | 温度 /K | 压力 /MPa |
---|---|---|---|---|
Smirnov等[ | H2/H2O | 260 | 200 | |
258 | 100 | |||
178 | 50 | |||
Hashimoto等[ | H2/THF | 5.56% | 277.5 | 0.33 |
277.6 | 0.55 | |||
277.8 | 1.03 | |||
278.0 | 1.55 | |||
278.2 | 2.13 | |||
279.2 | 4.87 | |||
280.1 | 8.30 | |||
280.8 | 11.3 | |||
281.4 | 13.3 | |||
H2/TBAB | 3.6% | 285.4 | 0.18 | |
285.5 | 0.70 | |||
285.8 | 1.19 | |||
286.1 | 3.27 | |||
286.3 | 6.05 | |||
286.6 | 7.93 | |||
287.2 | 13.4 | |||
Du等[ | H2/叔丁胺 | 5.56% | 268.4 | 9.54 |
269.2 | 12.53 | |||
269.9 | 15.09 | |||
271.5 | 20.85 | |||
273.2 | 26.12 | |||
274.0 | 29.95 | |||
8.86% | 270.4 | 11.75 | ||
271.3 | 15.01 | |||
271.8 | 17.14 | |||
272.6 | 19.83 | |||
273.1 | 21.63 | |||
274.0 | 27.72 | |||
Wang等[ | H2/C3H8 | 33%(体积分数) | 279.05 | 1.60 |
278.25 | 1.40 | |||
277.84 | 1.20 | |||
276.83 | 1.00 | |||
275.90 | 0.80 | |||
274.71 | 0.60 | |||
273.72 | 0.40 |
晶型 结构 | 体系 | 生成温压条件 | 储氢密度(质量分数) |
---|---|---|---|
sI | H2/CO2 | 200MPa,270K | 0.37% |
sII | 纯水 | 200~300MPa,240~249K | 5.3% |
sII | H2/THF | 6.5MPa,270K | 1% |
sH | H2/MTBE | 100MPa,270K | 1.4% |
sc | H2/TBAB | 16MPa,281.15K | 0.046% |
表4 几种结构的水合物的生成温压条件与储氢密度对比[5,19,28,51,53]
晶型 结构 | 体系 | 生成温压条件 | 储氢密度(质量分数) |
---|---|---|---|
sI | H2/CO2 | 200MPa,270K | 0.37% |
sII | 纯水 | 200~300MPa,240~249K | 5.3% |
sII | H2/THF | 6.5MPa,270K | 1% |
sH | H2/MTBE | 100MPa,270K | 1.4% |
sc | H2/TBAB | 16MPa,281.15K | 0.046% |
文献 | 强化方法 | 研究课题 |
---|---|---|
谢应明等[ | 机械搅拌 | 搅拌式强化以TBAB为促进剂储氢 |
吕秋楠等[ | 鼓泡 | 研究鼓泡器中水合物的生成动力学 |
郝文峰[ | 喷雾 | 利用半连续喷淋式反应釜生成水合物 |
Zhong等[ | 表面活性剂 | 利用十二烷基硫酸钠(SDS)促进生成水合物 |
吴宛青等[ | 表面活性剂 | 研究不同表面活性剂促进水合物生成的动力学 |
Samad等[ | 纳米粒子 | 研究银纳米颗粒对水合物生成的促进效果 |
胡腾等[ | 多孔介质 | 研究石英砂对水合物生成的影响 |
表5 几种动力学强化方法
文献 | 强化方法 | 研究课题 |
---|---|---|
谢应明等[ | 机械搅拌 | 搅拌式强化以TBAB为促进剂储氢 |
吕秋楠等[ | 鼓泡 | 研究鼓泡器中水合物的生成动力学 |
郝文峰[ | 喷雾 | 利用半连续喷淋式反应釜生成水合物 |
Zhong等[ | 表面活性剂 | 利用十二烷基硫酸钠(SDS)促进生成水合物 |
吴宛青等[ | 表面活性剂 | 研究不同表面活性剂促进水合物生成的动力学 |
Samad等[ | 纳米粒子 | 研究银纳米颗粒对水合物生成的促进效果 |
胡腾等[ | 多孔介质 | 研究石英砂对水合物生成的影响 |
1 | Carolyn A KOH, SLOAN E Dendy, Amadeu K SUM, et al. Fundamentals and applications of gas hydrates[J]. Annual Review of Chemical and Biomolecular Engineering, 2011, 2: 237-257. |
2 | RIPMEESTER John A, John S TSE, RATCLIFFE Christopher I, et al. A new clathrate hydrate structure[J]. Nature, 1987, 325(6100): 135-136. |
3 | PARK Youngjune, KIM Do-Youn, LEE Jong-Won, et al. Sequestering carbon dioxide into complex structures of naturally occurring gas hydrates[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(34): 12690-12694. |
4 | VELUSWAMY Hari Prakash, KUMAR Asheesh, SEO Yutaek, et al. A review of solidified natural gas (SNG) technology for gas storage via clathrate hydrates[J]. Applied Energy, 2018, 216: 262-285. |
5 | STROBEL Timothy A, HESTER Keith C, Carolyn A KOH, et al. Properties of the clathrates of hydrogen and developments in their applicability for hydrogen storage[J]. Chemical Physics Letters, 2009, 478(4/5/6): 97-109. |
6 | YU Yisong, ZHANG Xianwei, LIU Jianwu, et al. Natural gas hydrate resources and hydrate technologies: a review and analysis of the associated energy and global warming challenges[J]. Energy & Environmental Science, 2021, 14(11): 5611-5668. |
7 | BABU Ponnivalavan, LINGA Praveen, KUMAR Rajnish, et al. A review of the hydrate based gas separation (HBGS) process for carbon dioxide pre-combustion capture[J]. Energy, 2015, 85: 261-279. |
8 | XU Chungang, LI Xiaosen, CAI Jing, et al. Hydrate-based carbon dioxide capture from simulated integrated gasification combined cycle gas[J]. Journal of Natural Gas Chemistry, 2012, 21(5): 501-507. |
9 | ZHONG Dongliang, ENGLEZOS Peter. Methane separation from coal mine methane gas by tetra-n-butyl ammonium bromide semiclathrate hydrate formation[J]. Energy & Fuels, 2012, 26(4): 2098-2106. |
10 | BABU Ponnivalavan, NAMBIAR Abhishek, CHONG Zheng rong, et al. Hydrate-based desalination (HyDesal) process employing a novel prototype design[J]. Chemical Engineering Science, 2020, 218: 115563. |
11 | BABU Ponnivalavan, NAMBIAR Abhishek, HE Tianbiao, et al. A review of clathrate hydrate based desalination to strengthen energy-water nexus[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(7): 8093-8107. |
12 | HO-VAN S, BOUILLOT B, DOUZET J, et al. Cyclopentane hydrates—A candidate for desalination? [J]. Journal of Environmental Chemical Engineering, 2019, 7(5): 103359. |
13 | ENGLEZOS Peter. Extraction of methane hydrate energy by carbon dioxide injection-key challenges and a paradigm shift[J]. Chinese Journal of Chemical Engineering, 2019, 27(9): 2044-2048. |
14 | XU Chungang, YU Yisong, XIE Wenjun, et al. Study on developing a novel continuous separation device and carbon dioxide separation by process of hydrate combined with chemical absorption[J]. Applied Energy, 2019, 255: 113791. |
15 | LEE Yohan, KIM Yunju, LEE Jaehyoung, et al. CH4 recovery and CO2 sequestration using flue gas in natural gas hydrates as revealed by a micro-differential scanning calorimeter[J]. Applied Energy, 2015, 150: 120-127. |
16 | 曹军文, 覃祥富, 耿嘎, 等. 氢气储运技术的发展现状与展望[J]. 石油学报(石油加工), 2021, 37(6): 1461-1478. |
CAO Junwen, QIN Xiangfu, GENG Ga, et al. Current status and prospects of hydrogen storage and transportation technology[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2021, 37(6): 1461-1478. | |
17 | WOLF Joachim. Liquid-hydrogen technology for vehicles[J]. MRS Bulletin, 2002, 27(9): 684-687. |
18 | ZHU Wen, REN Li, LU Chong, et al. Nanoconfined and in situ catalyzed MgH2 self-assembled on 3D Ti3C2 MXene folded nanosheets with enhanced hydrogen sorption performances[J]. ACS Nano, 2021, 15(11): 18494-18504. |
19 | MAO Wendy L, MAO Ho Kwang. Hydrogen storage in molecular compounds[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(3): 708-710. |
20 | 岳来群. 中国确定“十四五”规划及2035年远景目标 油气企业加快改革创新适应转型发展[J]. 国际石油经济, 2021, 29(1): 51-52. |
YUE Laiqun. China’s 14th Five-Year Plan and long-term goal for 2035 promote oil and gas enterprises to adapt innovation and transformation[J]. International Petroleum Economics, 2021, 29(1): 51-52. | |
21 | ZHANG Ye, BHATTACHARJEE Gaurav, KUMAR Rajnish, et al. Solidified hydrogen storage (solid-HyStore) via clathrate hydrates[J]. Chemical Engineering Journal, 2022, 431: 133702. |
22 | VOS W L, FINGER L W, HEMLEY R J, et al. Novel H2-H2O clathrates at high pressures[J]. Physical Review Letters, 1993, 71(19): 3150-3153. |
23 | DYADIN Yuri A, LARIONOV Eduard G, MANAKOV Andrei Yu, et al. Clathrate hydrates of hydrogen and neon[J]. Mendeleev Communications, 1999, 9(5): 209-210. |
24 | MAO Wendy L, MAO Ho-Kwang, GONCHAROV Alexander F, et al. Hydrogen clusters in clathrate hydrate[J]. Science, 2002, 297(5590): 2247-2249. |
25 | HASHIMOTO S, MURAYAMA S, SUGAHARA T, et al. Thermodynamic and Raman spectroscopic studies on H2+tetrahydrofuran+water and H2+tetra-n-butyl ammonium bromide+water mixtures containing gas hydrates[J]. Chemical Engineering Science,2006, 61 (24): 7884-7888. |
26 | PARK Jeasung, LEE Huen. Spectroscopic evidences of the double hydrogen hydrates stabilized with ethane and propane[J]. Korean Journal of Chemical Engineering, 2007, 24(4): 624-627. |
27 | TSUDA Takaaki, OGATA Kyohei, HASHIMOTO Shunsuke, et al. Storage capacity of hydrogen in tetrahydrothiophene and furan clathrate hydrates[J]. Chemical Engineering Science, 2009, 64(19): 4150-4154. |
28 | SAHA Dipendu, DENG Shuguang. Accelerated formation of THF-H2 clathrate hydrate in porous media[J]. Langmuir, 2010, 26(11): 8414-8418. |
29 | FLORUSSE Louw J, PETERS Cor J, SCHOONMAN Joop, et al. Stable low-pressure hydrogen clusters stored in a binary clathrate hydrate[J]. Science, 2004, 306(5695): 469-471. |
30 | KUMAR Rajnish, ENGLEZOS Peter, MOUDRAKOVSKI Igor. Structure and composition of CO2/H2 and CO2/H2/C3H8 hydrate in relation to simultaneous CO2 capture and H2 production[J]. AIChE Journal, 2009, 55(6): 1584-1594. |
31 | KUMAR Rajnish, KLUG Dennis D, RATCLIFFE Christopher I, et al. Low-pressure synthesis and characterization of hydrogen-filled ice Ic[J]. Angewandte Chemie International Edition, 2013, 52(5): 1531-1534. |
32 | Gary GRIM R, KERKAR Prasad B, SLOAN E Dendy, et al. Rapid hydrogen hydrate growth from non-stoichiometric tuning mixtures during liquid nitrogen quenching[J]. The Journal of Chemical Physics, 2012, 136(23): 234504. |
33 | MATSUMOTO Yuuki, Gary GRIM R, KHAN Naveed M, et al. Investigating the thermodynamic stabilities of hydrogen and methane binary gas hydrates[J]. The Journal of Physical Chemistry C, 2014, 118(7): 3783-3788. |
34 | RAHIM Ismail, NOMURA Shinfuku, MUKASA Shinobu, et al. Decomposition of methane hydrate for hydrogen production using microwave and radio frequency in-liquid plasma methods[J]. Applied Thermal Engineering, 2015, 90: 120-126. |
35 | ZHDANOV Ravil K, GETS Kirill V, BELOSLUDOV Rodion V, et al. Theoretical modeling of the thermodynamic properties and the phase diagram of binary gas hydrates of argon and hydrogen[J]. Fluid Phase Equilibria, 2017, 434: 87-92. |
36 | DI PROFIO Pietro, CANALE Valentino, GERMANI Raimondo, et al. Reverse micelles enhance the formation of clathrate hydrates of hydrogen[J]. Journal of Colloid and Interface Science, 2018, 516: 224-231. |
37 | 于驰. 新型水合物复合储氢技术研究[D]. 广州: 华南理工大学, 2018. |
YU Chi. Study of A novel hydrate-based hybrid hydrogen storage technology[D]. Guangzhou: South China University of Technology, 2018. | |
38 | 陈玉凤, 周雪冰, 梁德青, 等. TBAB-CO2水合物形成过程的微观实验[J]. 光谱学与光谱分析, 2019, 39(9): 2889-2893. |
CHEN Yufeng, ZHOU Xuebing, LIANG Deqing, et al. Microscopic experimental study on the crystallization of TBAB-CO2 hydrate[J]. Spectroscopy and Spectral Analysis, 2019, 39(9): 2889-2893. | |
39 | YU Chi, FAN Shuanshi, LANG Xuemei, et al. Hydrogen and chemical energy storage in gas hydrate at mild conditions[J]. International Journal of Hydrogen Energy, 2020, 45(29): 14915-14921. |
40 | ZHANG Ye, BHATTACHARJEE Gaurav, ZHENG Junjie, et al. Hydrogen storage as clathrate hydrates in the presence of 1, 3-dioxolane as a dual-function promoter[J]. Chemical Engineering Journal, 2022, 427: 131771. |
41 | DAVOODABADI Ali, MAHMOUDI Ashkan, GHASEMI Hadi. The potential of hydrogen hydrate as a future hydrogen storage medium[J]. iScience, 2021, 24(1): 101907. |
42 | SMIRNOV Grigory S, STEGAILOV Vladimir V. Toward determination of the new hydrogen hydrate clathrate structures[J]. The Journal of Physical Chemistry Letters, 2013, 4(21): 3560-3564. |
43 | DU Jianwei, LIANG Deqing, DAI Xingxue, et al. Hydrate phase equilibrium for the (hydrogen + tert-butylamine + water) system[J]. The Journal of Chemical Thermodynamics, 2011, 43(4): 617-621. |
44 | WANG Pengfei, LI Kehan, YANG Jianyu, et al. Experimental and theoretical study on dissociation thermodynamics and kinetics of hydrogen-propane hydrate[J]. Chemical Engineering Journal, 2021, 426: 131279. |
45 | Naveed KHAN M, WARRIER Pramod, PETERS Cor J, et al. Advancements in hydrate phase equilibria and modeling of gas hydrates systems[J]. Fluid Phase Equilibria, 2018, 463: 48-61. |
46 | KIM Do-Youn, LEE Huen. Spectroscopic identification of the mixed hydrogen and carbon dioxide clathrate hydrate[J]. Journal of the American Chemical Society, 2005, 127(28): 9996-9997. |
47 | Gary GRIM R, KERKAR Prasad B, SHEBOWICH Michele, et al. Synthesis and characterization of sI clathrate hydrates containing hydrogen[J]. The Journal of Physical Chemistry C, 2012, 116(34): 18557-18563. |
48 | BELOSLUDOV R V, ZHDANOV R K, SUBBOTIN O S, et al. Theoretical modelling of the phase diagrams of clathrate hydrates for hydrogen storage applications[J]. Molecular Simulation, 2012, 38(10): 773-780. |
49 | PAPADIMITRIOU N I, TSIMPANOGIANNIS I N, STUBOS A K. Monte Carlo study of sI hydrogen hydrates[J]. Molecular Simulation, 2010, 36(10): 736-744. |
50 | DUARTE A R C, SHARIATI A, ROVETTO L J, et al. Water cavities of sH clathrate hydrate stabilized by molecular hydrogen: phase equilibrium measurements[J]. The Journal of Physical Chemistry B, 2008, 112 (7): 1888-1889.. |
51 | STROBEL Timothy A, Carolyn A KOH, SLOAN E Dendy. Water cavities of sH clathrate hydrate stabilized by molecular hydrogen[J]. The Journal of Physical Chemistry B, 2008, 112(7): 1885-1887. |
52 | RODIONOVA Tatyana V, KOMAROV Vladislav Yu, VILLEVALD Galina V, et al. Calorimetric and structural studies of tetrabutylammonium bromide ionic clathrate hydrates[J]. The Journal of Physical Chemistry B, 2013, 117(36): 10677-10685. |
53 | TRUEBA Alondra Torres, RADOVIĆ Ivona R, ZEVENBERGEN John F, et al. Kinetics measurements and in situ Raman spectroscopy of formation of hydrogen-tetrabutylammonium bromide semi-hydrates[J]. International Journal of Hydrogen Energy, 2012, 37(7): 5790-5797. |
54 | ANIL Jugal N, BHAWANGIRKAR Dnyaneshwar R, SANGWAI Jitendra S. Effect of guest-dependent reference hydrate vapor pressure in thermodynamic modeling of gas hydrate phase equilibria, with various combinations of equations of state and activity coefficient models[J]. Fluid Phase Equilibria, 2022, 556: 113356. |
55 | PATCHKOVSKII Serguei, John S TSE. Thermodynamic stability of hydrogen clathrates[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(25): 14645-14650. |
56 | INERBAEV Talgat M, BELOSLUDOV Vladimir R, BELOSLUDOV Rodion V, et al. Dynamics and equation of state of hydrogen clathrate hydrate as a function of cage occupation[J]. Computational Materials Science, 2006, 36(1/2): 229-233. |
57 | PARK Seongmin, Dong Yeun KOH, KANG Hyery, et al. Effect of molecular nitrogen on multiple hydrogen occupancy in clathrate hydrates[J]. The Journal of Physical Chemistry C, 2014, 118(35): 20203-20208. |
58 | CAI Jing, XU Chungang, CHEN Zhaoyang, et al. Recovery of methane from coal-bed methane gas mixture via hydrate-based methane separation method by adding anionic surfactants[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2018, 40(9): 1019-1026. |
59 | VELUSWAMY Hari Prakash, LINGA Praveen. Macroscopic kinetics of hydrate formation of mixed hydrates of hydrogen/tetrahydrofuran for hydrogen storage[J]. International Journal of Hydrogen Energy, 2013, 38(11): 4587-4596. |
60 | YU Yisong, XU Chungang, LI Xiaosen. Crystal morphology-based kinetic study of carbon dioxide-hydrogen-tetra-n-butyl ammonium bromide hydrates formation in a static system[J]. Energy, 2018, 143: 546-553. |
61 | 代梦玲, 孙志高, 李娟, 等. 水合物储气促进技术研究进展[J]. 化工进展, 2020, 39(10): 3975-3986. |
DAI Mengling, SUN Zhigao, LI Juan, et al. Progress on promotion technology for gas storage in hydrates[J]. Chemical Industry and Engineering Progress, 2020, 39(10): 3975-3986. | |
62 | 谢应明, 龚金明, 汤涛, 等. 四丁基溴化铵水合物储存氢气的研究[J]. 石油化工,2012, 41(1): 22-26. |
XIE Y M, GONG J M, TANG T, et al. Hydrogen storage with tetra-butyl ammonium bromide hydrate[J]. Petrochemical Technology, 2012, 41(1): 22-26. | |
63 | 吕秋楠, 宋永臣, 李小森. 鼓泡器中环戊烷-甲烷-盐水体系水合物的生成动力学[J]. 化工进展, 2016, 35(12): 3777-3782. |
Qiunan LYU, SONG Yongchen, LI Xiaosen. Formation kinetics of cyclopentane-methane hydrate in NaCl solution with a bubbling equipment[J]. Chemical Industry and Engineering Progress, 2016, 35(12): 3777-3782. | |
64 | 郝文峰. 天然气水合物生成过程及其反应器特性研究[D]. 大连: 大连理工大学, 2006. |
HAO Wenfeng. Study on natural gas hydrate formation with different reactors[D]. Dalian: Dalian University of Technology, 2006. | |
65 | ZHONG Y, ROGERS R E. Surfactant effects on gas hydrate formation[J]. Chemical Engineering Science, 2000, 55(19): 4175-4187. |
66 | 吴宛青, 宋学明, 魏方, 等. 不同表面活性剂对天然气水合物的生成影响实验[J]. 油气储运, 2021, 40(4): 411-416. |
WU Wanqing, SONG Xueming, WEI Fang, et al. Experiment on effect of different surfactants on formation of gas hydrate[J]. Oil & Gas Storage and Transportation, 2021, 40(4): 411-416. | |
67 | ARJANG Samad, MANTEGHIAN Mehrdad, MOHAMMADI Abolfazl. Effect of synthesized silver nanoparticles in promoting methane hydrate formation at 4.7 MPa and 5.7 MPa[J]. Chemical Engineering Research and Design, 2013, 91(6): 1050-1054. |
68 | 胡腾. 石英砂、铜丝网存在下四氢呋喃水合物生长过程研究[D]. 广州: 华南理工大学, 2015. |
HU Teng. Studies of tetrahydrofuran hydrate growth in the presence of quartz sand and cooper wire[D]. Guangzhou: South China University of Technology, 2015. | |
69 | 王林军, 邵磊, 张学民, 等. 促进二氧化碳水合物快速生成的方法与机理的研究进展[J]. 中国沼气, 2012, 30(3): 25-29, 33. |
WNAG Linjun, SHAO Lei, ZHANG Xuemin, et al. Advances on methods promoting the rapid formation of carbon dioxide hydrate and mechanisms[J]. China Biogas, 2012, 30(3): 25-29, 33. | |
70 | HE Yan, SUN Mengting, CHEN Chen, et al. Surfactant-based promotion to gas hydrate formation for energy storage[J]. Journal of Materials Chemistry A, 2019, 7(38): 21634-21661. |
71 | FEDELE Laura, COLLA Laura, BOBBO Sergio. Viscosity and thermal conductivity measurements of water-based nanofluids containing titanium oxide nanoparticles[J]. International Journal of Refrigeration, 2012, 35(5): 1359-1366. |
72 | LIRIO Cláudia Ferreira da Silva, PESSOA Fernando Luiz Pellegrini, ULLER Angela Maria Cohen. Storage capacity of carbon dioxide hydrates in the presence of sodium dodecyl sulfate (SDS) and tetrahydrofuran (THF)[J]. Chemical Engineering Science, 2013, 96: 118-123. |
73 | 孙志高, 郭开华. H型天然气水合物形成实验[J]. 天然气工业, 2007, 27(9): 15-16, 126. |
SUN Zhigao, GUO Kaihua. Experimental study on the formation of structure h hydrate[J]. Natural Gas Industry, 2007, 27(9): 15-16, 126. |
[1] | 孙旭东, 赵玉莹, 李诗睿, 王琦, 李晓健, 张博. 我国地方性氢能发展政策的文本量化分析[J]. 化工进展, 2023, 42(7): 3478-3488. |
[2] | 张巍, 王锐, 缪平, 田戈. 全球可再生能源电转甲烷的应用[J]. 化工进展, 2023, 42(3): 1257-1269. |
[3] | 孙晖, 孟祥海, 魏景海, 周红军, 徐春明. 绿电制氢生产氨的新场景与实践[J]. 化工进展, 2023, 42(2): 1098-1102. |
[4] | 王红霞, 徐婉怡, 张早校. 可再生电力电解制绿色氢能的发展现状与建议[J]. 化工进展, 2022, 41(S1): 118-131. |
[5] | 周红军, 周颖, 徐春明. 中国碳中和目标下CO2转化的思考与实践[J]. 化工进展, 2022, 41(6): 3381-3385. |
[6] | 周红军, 周颖, 徐春明. 中国碳达峰碳中和目标下炼化一体化新路径与实践[J]. 化工进展, 2022, 41(4): 2226-2230. |
[7] | 王集杰, 韩哲, 陈思宇, 汤驰洲, 沙峰, 唐珊, 姚婷婷, 李灿. 太阳燃料甲醇合成[J]. 化工进展, 2022, 41(3): 1309-1317. |
[8] | 陈伟锋, 尚娟, 邢百汇, 魏皓天, 顾超华, 花争立. 关于天然气管网安全掺氢比10%的商榷[J]. 化工进展, 2022, 41(3): 1487-1493. |
[9] | 施文博, 蔡淳名, 李德威, 小野圭, 张剑波. ISO/IEC、美日中氢能技术标准化体系比较与建议[J]. 化工进展, 2022, 41(12): 6275-6284. |
[10] | 张振扬, 妙丛, 王峰, 兰玉岐, 安刚, 杨申音. 规模化氢液化装置现状及未来技术路线分析[J]. 化工进展, 2022, 41(12): 6261-6274. |
[11] | 张学民, 张梦军, 杨惠结, 李银辉, 李金平, 王英梅. 冰点以下多孔介质中气体水合物的生成动力学研究进展[J]. 化工进展, 2021, 40(S2): 101-108. |
[12] | 岳国君, 林海龙, 彭元亭, 闵剑, 王梦, 熊强. 以生物质为原料的未来绿色氢能[J]. 化工进展, 2021, 40(8): 4678-4684. |
[13] | 高佳佳, 米媛媛, 周洋, 周红军, 徐泉. 新型储氢材料研究进展[J]. 化工进展, 2021, 40(6): 2962-2971. |
[14] | 郭博文, 罗聃, 周红军. 可再生能源电解制氢技术及催化剂的研究进展[J]. 化工进展, 2021, 40(6): 2933-2951. |
[15] | 陈宏, 吴军, 陈晨, 涂智, 禹丽娥, 杨恩喆, 杨敏, 肖本益. 有机废弃物厌氧共发酵制氢研究进展[J]. 化工进展, 2021, 40(1): 440-450. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |