化工进展 ›› 2021, Vol. 40 ›› Issue (6): 2962-2971.DOI: 10.16085/j.issn.1000-6613.2020-1771
收稿日期:
2020-09-02
修回日期:
2021-01-27
出版日期:
2021-06-06
发布日期:
2021-06-22
通讯作者:
徐泉
作者简介:
高佳佳(1996—),女,硕士研究生,研究方向为量子点纳米材料。E-mail:基金资助:
GAO Jiajia(), MI Yuanyuan, ZHOU Yang, ZHOU Hongjun, XU Quan()
Received:
2020-09-02
Revised:
2021-01-27
Online:
2021-06-06
Published:
2021-06-22
Contact:
XU Quan
摘要:
氢能作为一种环保可再生的新型能源,生产技术逐渐走向成熟,成本大幅度下降,将迎来快速发展的机遇期。氢能被广泛利用的关键在于是否能够实现高效储存。本文重点讨论了四类新型储氢材料,即金属络合氢化物储氢材料、碳纳米管储氢材料、沸石以及新型沸石类材料、有机液态储氢材料。文章指出:金属络合氢化物储氢材料储存压力低但循环稳定性差;碳纳米管储氢材料已经有很长的发展历史,安全性高且易脱氢,然而目前对其储氢机理认识不够成熟;沸石以及新型沸石类材料价格低廉,但是对反应条件的要求高;有机液态储氢材料被认为是大规模储存和运输的可行选择,然而昂贵的成本和苛刻的反应条件限制了其发展。文章指出后续需要改进并开发具有较高存储容量和具有经济价值的储氢材料。
中图分类号:
高佳佳, 米媛媛, 周洋, 周红军, 徐泉. 新型储氢材料研究进展[J]. 化工进展, 2021, 40(6): 2962-2971.
GAO Jiajia, MI Yuanyuan, ZHOU Yang, ZHOU Hongjun, XU Quan. Recent developments in new hydrogen storage materials[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 2962-2971.
1 | 罗佐县, 曹勇. 氢能产业发展前景及其在中国的发展路径研究[J]. 中外能源, 2020, 25(2): 9-15. |
LUO Zuoxian, CAO Yong. Development prospect of hydrogen energy industry and its development path in China[J]. Sino-Global Energy, 2020, 25(2): 9-15. | |
2 | 符冠云. 氢能在我国能源转型中的地位和作用[J]. 中国煤炭, 2019, 45(10): 15-21. |
FU Guanyun. The status and role of hydrogen energy in China’s energy transformation[J]. China Coal, 2019, 45(10): 15-21. | |
3 | REN J W, MUSYOKA N M, LANGMI H W, et al. Current research trends and perspectives on materials-based hydrogen storage solutions: a critical review[J]. International Journal of Hydrogen Energy, 2017, 42(1): 289-311. |
4 | HIRSCHER M, YARTYS V A, BARICCO M, et al. Materials for hydrogen-based energy storage—past, recent progress and future outlook[J]. Journal of Alloys and Compounds, 2020, 827: 153548. |
5 | 李璐伶, 樊栓狮, 陈秋雄, 等. 储氢技术研究现状及展望[J]. 储能科学与技术, 2018, 7(4): 586-594. |
LI Luling, FAN Shuanshi, CHEN Qiuxiong, et al. Hydrogen storage technology: current status and prospects[J]. Energy Storage Science and Technology, 2018, 7(4): 586-594. | |
6 | 黄明宇, 冯小保, 厉丹彤, 等. 车载储氢技术的发展现状及展望[J]. 现代化工, 2013, 33(7): 1-5. |
HUANG Mingyu, FENG Xiaobao, LI Dantong, et al. Development status and prospect of onboard hydrogen storage technology[J]. Modern Chemical Industry, 2013, 33(7): 1-5. | |
7 | 周超, 王辉, 欧阳柳章, 等. 高压复合储氢罐用储氢材料的研究进展[J]. 材料导报, 2019, 33(1): 117-126. |
ZHOU Chao, WANG Hui, OUYANG Liuzhang, et al. The state of the art of hydrogen storage materials for high-pressure hybrid hydrogen vessel[J]. Materials Reports, 2019, 33(1): 117-126. | |
8 | 张娜, 陈红, 马骁, 等. 高密度固态储氢材料技术研究进展[J]. 载人航天, 2019, 25(1): 116-121. |
ZHANG Na, CHEN Hong, MA Xiao, et al. Research progress of high density solid-state hydrogen storage materials[J]. Manned Spaceflight, 2019, 25(1): 116-121. | |
9 | 刘美琴, 李奠础, 乔建芬, 等. 氢能利用与碳质材料吸附储氢技术[J]. 化工时刊, 2013, 27(11): 35-38. |
LIU Meiqin, LI Dianchu, QIAO Jianfen, et al. The use of hydrogen energy and hydrogen adsorption storage technology of carbonaceous materials[J]. Chemical Industry Times, 2013, 27(11): 35-38. | |
10 | 陈宏善, 刘鑫. 物理吸附储氢的最佳条件分析[J]. 西北师范大学学报(自然科学版), 2015, 51(2): 32-36, 41. |
CHEN Hongshan, LIU Xin. Optimum conditions for physisorption storage of hydrogen[J]. Journal of Northwest Normal University (Natural Science), 2015, 51(2): 32-36, 41. | |
11 | 贾志华, 魏立军, 殷平, 等. 硫化物电化学储氢材料的性能研究[J]. 化工时刊, 2019, 33(1): 9-11. |
JIA Zhihua, WEI Lijun, YIN Ping, et al. Studies on sulfide electrochemical hydrogen storage materials[J]. Chemical Industry Times, 2019, 33(1): 9-11. | |
12 | 赵琳, 张建星, 祝维燕, 等. 液态有机物储氢技术研究进展[J]. 化学试剂, 2019, 41(1): 47-53. |
ZHAO Lin, ZHANG Jianxing, ZHU Weiyan, et al. Research progress of hydrogen storage technology for liquid organic matter[J]. Chemical Reagents, 2019, 41(1): 47-53. | |
13 | TEICHMANN D, ARLT W, WASSERSCHEID P. Liquid organic hydrogen carriers as an efficient vector for the transport and storage of renewable energy[J]. International Journal of Hydrogen Energy, 2012, 37(23): 18118-18132. |
14 | TEICHMANN D, ARLT W, WASSERSCHEID P, et al. A future energy supply based on liquid organic hydrogen Carriers (LOHC)[J]. Energy & Environmental Science, 2011, 4(8): 2767. |
15 | GEORGIADIS M C, KIKKINIDES E S, MAKRIDIS S S, et al. Design and optimization of advanced materials and processes for efficient hydrogen storage[J]. Computers & Chemical Engineering, 2009, 33(5): 1077-1090. |
16 | ZHU Y F, YANG C, ZHU J Y, et al. Structural and electrochemical hydrogen storage properties of Mg2Ni-based alloys[J]. Journal of Alloys and Compounds, 2011, 509(17): 5309-5314. |
17 | YE H, XIA B J, WU W Q, et al. Effect of rare earth composition on the high-rate capability and low-temperature capacity of AB5-type hydrogen storage alloys[J]. Journal of Power Sources, 2002, 111(1): 145-151. |
18 | VALØEN L O, ZALUSKA A, ZALUSKI L, et al. Structure and related properties of (La, Ce, Nd, Pr)Ni5 alloys[J]. Journal of Alloys and Compounds, 2000, 306(1/2): 235-244. |
19 | MENDELSOHN M H, GRUEN D M, DWIGHT A E. The effect on hydrogen decomposition pressures of group IIIA and IVA element substitutions for Ni In LaNi5 alloys[J]. Materials Research Bulletin, 1978, 13(11): 1221-1224. |
20 | SRIDHAR KUMAR M P, ZHANG W L, PETROV K, et al. Effect of Ce, Co, and Sn substitution on gas phase and electrochemical hydriding/dehydriding properties of LaNi5[J]. Journal of the Electrochemical Society, 1995, 142(10): 3424-3428. |
21 | VOGT T. Crystal structure of nonstoichiometric La(Ni, Sn)5+x alloys and their properties as metal hydride electrodes[J]. Electrochemical and Solid-State Letters, 1999, 2(3): 111. |
22 | PRINCIPI G, AGRESTI F, MADDALENA A, et al. The problem of solid state hydrogen storage[J]. Energy, 2009, 34(12): 2087-2091. |
23 | TERESIAK A, UHLEMANN M, THOMAS J, et al. Influence of Co and Pd on the formation of nanostructured LaMg2Ni and its hydrogen reactivity[J]. Journal of Alloys and Compounds, 2014, 582: 647-658. |
24 | TIAN X, YUN G H, WANG H Y, et al. Preparation and electrochemical properties of La-Mg-Ni-based La0.75Mg0.25Ni3.3Co0.5 multiphase hydrogen storage alloy as negative material of Ni/MH battery[J]. International Journal of Hydrogen Energy, 2014, 39(16): 8474-8481. |
25 | BOGDANOVIĆ B, SCHWICKARDI M. Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials[J]. Journal of Alloys and Compounds, 1997, 253/254: 1-9. |
26 | SRINIVASAN S S, BRINKS H W, HAUBACK B C, et al. Long term cycling behavior of titanium doped NaAlH4 prepared through solvent mediated milling of NaH and Al with titanium dopant precursors[J]. Journal of Alloys and Compounds, 2004, 377(1/2): 283-289. |
27 | NICKELS E A, JONES M O, DAVID W I, et al. Tuning the decomposition temperature in complex hydrides: synthesis of a mixed alkali metal borohydride[J]. Angewandte Chemie: International Edition, 2008, 47(15): 2817-2819. |
28 | CHOUDHURY P, SRINIVASAN S S, BHETHANABOTLA V R, et al. Nano-Ni doped Li-Mn-B-H system as a new hydrogen storage candidate[J]. International Journal of Hydrogen Energy, 2009, 34(15): 6325-6334. |
29 | GEORGE L, SAXENA S K. Structural stability of metal hydrides, alanates and borohydrides of alkali and alkali-earth elements: a review[J]. International Journal of Hydrogen Energy, 2010, 35(11): 5454-5470. |
30 | CAI W T, WANG H, LIU J W, et al. Towards easy reversible dehydrogenation of LiBH4 by catalyzing hierarchic nanostructured CoB[J]. Nano Energy, 2014, 10: 235-244. |
31 | ZHU Y Y, OUYANG L Z, ZHONG H, et al. Closing the loop for hydrogen storage: facile regeneration of NaBH4 from its hydrolytic product[J]. Angewandte Chemie: International Edition, 2020, 59(22): 8623-8629. |
32 | TERZIEVA M, KHRUSSANOVA M, PESHEV P. Hydriding and dehydriding characteristics of Mg-LaNi5 composite materials prepared by mechanical alloying[J]. Journal of Alloys and Compounds, 1998, 267(1/2): 235-239. |
33 | URBANCZYK R, PEINECKE K, FELDERHOFF M, et al. Aluminium alloy based hydrogen storage tank operated with sodium aluminium hexahydride Na3AlH6[J]. International Journal of Hydrogen Energy, 2014, 39(30): 17118-17128. |
34 | ZÜTTEL A, WENGER P, RENTSCH S, et al. LiBH4 a new hydrogen storage material[J]. Journal of Power Sources, 2003, 118(1/2): 1-7. |
35 | SRINIVASAN S, ESCOBAR D, GOSWAMI Y, et al. Effects of catalysts doping on the thermal decomposition behavior of Zn(BH4)2[J]. International Journal of Hydrogen Energy, 2008, 33(9): 2268-2272. |
36 | SCHÜTH F, BOGDANOVIĆ B, FELDERHOFF M. Light metal hydrides and complex hydrides for hydrogen storage[J]. Chemical Communications, 2004(20): 2249-2258. |
37 | 周亚平, 冯奎, 孙艳, 等. 述评碳纳米管储氢研究[J]. 化学进展, 2003, 15(5): 345-350. |
ZHOU Yaping, FENG Kui, SUN Yan, et al. A brief review on the study of hydrogen storage in terms of carbon nanotubes[J]. Progress in Chemistry, 2003, 15(5): 345-350. | |
38 | DILLON A C, JONES K M, BEKKEDAHL T A, et al. Storage of hydrogen in single-walled carbon nanotubes[J]. Nature, 1997, 386(6623): 377-379. |
39 | CHEN P, WU X, LIN J, et al. High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures[J]. Science, 1999, 285(5424): 91-93. |
40 | LIU C, FAN Y Y, LIU M, et al. Hydrogen storage in single-walled carbon nanotubes at room temperature[J]. Science, 1999, 286(5442): 1127-1129. |
41 | TIBBETTS G G, MEISNER G P, OLK C H. Hydrogen storage capacity of carbon nanotubes, filaments, and vapor-grown fibers[J]. Carbon, 2001, 39(15): 2291-2301. |
42 | YANG F H, YANG R T. Ab initio molecular orbital study of adsorption of atomic hydrogen on graphite: insight into hydrogen storage in carbon nanotubes[J]. Carbon, 2002, 40(3): 437-444. |
43 | YANG R T. Hydrogen storage by alkali-doped carbon nanotubes: revisited[J]. Carbon, 2000, 38(4): 623-626. |
44 | LIU C, CHEN Y, WU C Z, et al. Hydrogen storage in carbon nanotubes revisited[J]. Carbon, 2010, 48(2): 452-455. |
45 | ARIHARAN A, VISWANATHAN B, NANDHAKUMAR V. Nitrogen-incorporated carbon nanotube derived from polystyrene and polypyrrole as hydrogen storage material[J]. International Journal of Hydrogen Energy, 2018, 43(10): 5077-5088. |
46 | SANKARAN M, VISWANATHAN B, SRINIVASA MURTHY S. Boron substituted carbon nanotubes—How appropriate are they for hydrogen storage?[J]. International Journal of Hydrogen Energy, 2008, 33(1): 393-403. |
47 | NARESH MUTHU R, RAJASHABALA S, KANNAN R. Hexagonal boron nitride (h-BN) nanoparticles decorated multi-walled carbon nanotubes (MWCNT) for hydrogen storage[J]. Renewable Energy, 2016, 85: 387-394. |
48 | MANANGHAYA M, YU D, SANTOS G N, et al. Scandium and titanium containing single-walled carbon nanotubes for hydrogen storage: a thermodynamic and first principle calculation[J]. Scientific Reports, 2016, 6: 27370. |
49 | GHOSH S, PADMANABHAN V. Hydrogen storage in titanium-doped single-walled carbon nanotubes with stone-Wales defects[J]. Diamond and Related Materials, 2017, 77: 46-52. |
50 | GHOSH S, PADMANABHAN V. Beryllium-doped single-walled carbon nanotubes with Stone-Wales defects: a promising material to store hydrogen at room temperature[J]. International Journal of Hydrogen Energy, 2017, 42(38): 24237-24246. |
51 | 张峰, 冯翠红, 张丽鹏, 等. 物理吸附储氢材料的研究进展[J]. 硅酸盐通报, 2013, 32(9): 1785-1789, 1793. |
ZHANG Feng, FENG Cuihong, ZHANG Lipeng, et al. Study progress on the hydrogen storage material by physical absorption[J]. Bulletin of the Chinese Ceramic Society, 2013, 32(9): 1785-1789, 1793. | |
52 | 杜晓明, 李静, 吴尔冬. 沸石吸附储氢研究进展[J]. 化学进展, 2010, 22(1): 248-254. |
DU Xiaoming, LI Jing, WU Erdong. The study of adsorption of hydrogen on zeolites[J]. Progress in Chemistry, 2010, 22(1): 248-254. | |
53 | ROY P, DAS N. Ultrasonic assisted synthesis of Bikitaite zeolite: a potential material for hydrogen storage application[J]. Ultrasonics Sonochemistry, 2017, 36: 466-473. |
54 | WEITKAMP J, FRITZ M, ERNST S. Zeolites as media for hydrogen storage[J]. International Journal of Hydrogen Energy, 1995, 20(12): 967-970. |
55 | DONG J X, WANG X Y, XU H, et al. Hydrogen storage in several microporous zeolites[J]. International Journal of Hydrogen Energy, 2007, 32(18): 4998-5004. |
56 | WU H, ZHOU W, YILDIRIM T. Hydrogen storage in a prototypical zeolitic imidazolate framework-8[J]. Journal of the American Chemical Society, 2007, 129(17): 5314-5315. |
57 | NISHIHARA H, HOU P X, LI L X, et al. High-pressure hydrogen storage in zeolite-templated carbon[J]. The Journal of Physical Chemistry C, 2009, 113(8): 3189-3196. |
58 | YANG Z, XIA Y, MOKAYA R. Enhanced hydrogen storage capacity of high surface area zeolite-like carbon materials[J]. Journal of the American Chemical Society, 2007, 129(6): 1673-1679. |
59 | ISIDRO-ORTEGA F J, PACHECO-SÁNCHEZ J H, DESALES-GUZMÁN L A. Hydrogen storage on lithium decorated zeolite templated carbon, DFT study[J]. International Journal of Hydrogen Energy, 2017, 42(52): 30704-30717. |
60 | HANB, P-H LYU, SUN W-F, SUN, et al. First-principles study on hydrogen storage performance of transition metal-doped zeolite template carbon[J]. Crystals, 2019, 9(8): 397. |
61 | MUSYOKA N M, RAMBAU K M, MANYALA N, et al. Utilization of waste tyres pyrolysis oil vapour in the synthesis of Zeolite Templated Carbons (ZTCs) for hydrogen storage application[J]. Journal of Environmental Science and Health, Part A, 2018, 53(11): 1022-1028. |
62 | MOLEFE L Y, MUSYOKA N M, REN J, et al. Polymer-based shaping strategy for zeolite templated carbons(ZTC) and their metal organic framework (MOF) composites for improved hydrogen storage properties[J]. Frontiers in Chemistry, 2019, 7: 864. |
63 | ISIDRO-ORTEGA F J, PACHECO-SÁNCHEZ J H, ALEJO R, et al. Theoretical studies in the stability of vacancies in zeolite templated carbon for hydrogen storage[J]. International Journal of Hydrogen Energy, 2019, 44(13): 6437-6447. |
64 | MYRZAKHANOV M, SHARIPOV R, UTELBAYEVA A, et al. Storage of hydrogen in the benzene by catalytic hydrogenation[C]//6th International Conference on Environment (ICENV2018): Empowering Environment and Sustainable Engineering Nexus Through Green Technology. Penang, Malaysia. AIP Publishing, 2019. |
65 | BOUFADEN N, AKKARI R, PAWELEC B, et al. Dehydrogenation of methylcyclohexane to toluene over partially reduced silica-supported Pt-Mo catalysts[J]. Journal of Molecular Catalysis A: Chemical, 2016, 420: 96-106. |
66 | KALENCHUK A N, BOGDAN V I, DUNAEV S F, et al. Dehydrogenation of polycyclic naphthenes on a Pt/C catalyst for hydrogen storage in liquid organic hydrogen carriers[J]. Fuel Processing Technology, 2018, 169: 94-100. |
67 | BINIWALE R B, RAYALU S, DEVOTTA S, et al. Chemical hydrides: a solution to high capacity hydrogen storage and supply[J]. International Journal of Hydrogen Energy, 2008, 33(1): 360-365. |
68 | OKADA Y, SASAKI E, WATANABE E, et al. Development of dehydrogenation catalyst for hydrogen generation in organic chemical hydride method[J]. International Journal of Hydrogen Energy, 2006, 31(10): 1348-1356. |
69 | MARKIEWICZ M, ZHANG Y Q, BÖSMANN A, et al. Environmental and health impact assessment of Liquid Organic Hydrogen Carrier (LOHC) systems—challenges and preliminary results[J]. Energy & Environmental Science, 2015, 8(3): 1035-1045. |
70 | YAN J, WANG W Y, MIAO L, et al. Dehydrogenation of methylcyclohexane over PtSn supported on MgAl mixed metal oxides derived from layered double hydroxides[J]. International Journal of Hydrogen Energy, 2018, 43(19): 9343-9352. |
71 | BANO S, SILUVAI ANTONY P, JANGDE V, et al. Hydrogen transportation using liquid organic hydrides: a comprehensive life cycle assessment[J]. Journal of Cleaner Production, 2018, 183: 988-997. |
[1] | 龚鹏程, 严群, 陈锦富, 温俊宇, 苏晓洁. 铁酸钴复合碳纳米管活化过硫酸盐降解铬黑T的性能及机理[J]. 化工进展, 2023, 42(7): 3572-3581. |
[2] | 孙旭东, 赵玉莹, 李诗睿, 王琦, 李晓健, 张博. 我国地方性氢能发展政策的文本量化分析[J]. 化工进展, 2023, 42(7): 3478-3488. |
[3] | 许春树, 姚庆达, 梁永贤, 周华龙. 氧化石墨烯/碳纳米管对几种典型高分子材料的性能影响[J]. 化工进展, 2023, 42(6): 3012-3028. |
[4] | 薛博, 杨婷婷, 王雪峰. 聚苯胺/碳纳米管气敏材料的研究进展[J]. 化工进展, 2023, 42(3): 1448-1456. |
[5] | 陈韶云, 周贤太, 纪红兵. 金属卟啉/碳纳米管仿生催化剂的制备及其在Baeyer-Villiger氧化反应中的催化机理[J]. 化工进展, 2023, 42(3): 1332-1340. |
[6] | 张巍, 王锐, 缪平, 田戈. 全球可再生能源电转甲烷的应用[J]. 化工进展, 2023, 42(3): 1257-1269. |
[7] | 孙晖, 孟祥海, 魏景海, 周红军, 徐春明. 绿电制氢生产氨的新场景与实践[J]. 化工进展, 2023, 42(2): 1098-1102. |
[8] | 张辛亥, 赵思琛, 朱辉, 张首石, 王凯. 多种碳材料与碳酸钠复合后脱硫性能对比[J]. 化工进展, 2022, 41(S1): 424-435. |
[9] | 王红霞, 徐婉怡, 张早校. 可再生电力电解制绿色氢能的发展现状与建议[J]. 化工进展, 2022, 41(S1): 118-131. |
[10] | 周红军, 周颖, 徐春明. 中国碳中和目标下CO2转化的思考与实践[J]. 化工进展, 2022, 41(6): 3381-3385. |
[11] | 周红军, 周颖, 徐春明. 中国碳达峰碳中和目标下炼化一体化新路径与实践[J]. 化工进展, 2022, 41(4): 2226-2230. |
[12] | 张爱京, 江胜娟, 周明正, 柴茂荣, 张劲. 纳米管壁数对氮掺杂碳纳米管氧还原反应活性的影响[J]. 化工进展, 2022, 41(4): 2038-2045. |
[13] | 王集杰, 韩哲, 陈思宇, 汤驰洲, 沙峰, 唐珊, 姚婷婷, 李灿. 太阳燃料甲醇合成[J]. 化工进展, 2022, 41(3): 1309-1317. |
[14] | 陈伟锋, 尚娟, 邢百汇, 魏皓天, 顾超华, 花争立. 关于天然气管网安全掺氢比10%的商榷[J]. 化工进展, 2022, 41(3): 1487-1493. |
[15] | 李昊阳, 张炜, 李小森, 徐纯刚. 水合物储氢的研究进展[J]. 化工进展, 2022, 41(12): 6285-6294. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |