化工进展 ›› 2021, Vol. 40 ›› Issue (6): 2952-2961.DOI: 10.16085/j.issn.1000-6613.2020-1886
王雅君1(), 张文灿1(), 李宇明1, 姜桂元1, 姚文清2()
收稿日期:
2020-09-17
修回日期:
2021-01-24
出版日期:
2021-06-06
发布日期:
2021-06-22
通讯作者:
王雅君,姚文清
作者简介:
王雅君(1984—),女,副研究员,博士生导师,研究方向为光催化。E-mail:基金资助:
WANG Yajun1(), ZHANG Wencan1(), LI Yuming1, JIANG Guiyuan1, YAO Wenqing2()
Received:
2020-09-17
Revised:
2021-01-24
Online:
2021-06-06
Published:
2021-06-22
Contact:
WANG Yajun,YAO Wenqing
摘要:
光催化分解水制氢是获取氢能的理想方式,开发高效的光催化剂成为本领域研究的热点。碳点因为具有独特的上转换性能、可见光响应以及带隙可调的性质且水溶性好、无生物毒性、光致发光性能优异,在光催化产氢领域的应用引起了极大关注。目前合成碳点的方法主要包括自上而下和自下而上两种方式。通过表面钝化、表面功能化或元素掺杂等改性手段可以进一步增强碳点的光电性能和抗腐蚀性能。本文从碳点主要的制备和改性手段出发,概述了近年来碳点用于光催化分解水制氢领域主要的研究成果,总结了碳点分别作为光催化剂主体、助催化剂、光敏剂以及Z型结构的电子转移介质在光催化制氢中的应用。同时指出目前碳点在光催化制氢领域还普遍存在着机理不明晰、产氢效率偏低的问题,未来该领域的研究方向将侧重于大规模合成结构更精确、目标特定性更强的碳点以及探究碳点在光催化产氢过程中的优化机制。
中图分类号:
王雅君, 张文灿, 李宇明, 姜桂元, 姚文清. 碳点用于光催化分解水制氢的研究进展[J]. 化工进展, 2021, 40(6): 2952-2961.
WANG Yajun, ZHANG Wencan, LI Yuming, JIANG Guiyuan, YAO Wenqing. Research progress of carbon dots in photocatalytic hydrogen production[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 2952-2961.
1 | FUJISHIMA Akira, HONDA Kenichi. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38. |
2 | WANG Yajun, SHI Rui, LIN Jie, et al. Enhancement of photocurrent and photocatalytic activity of ZnO hybridized with graphite-like C3N4[J]. Energy & Environmental Science, 2011, 4(8): 2922-2929. |
3 | WANG Yajun, BAI Xiaojuan, PAN Chengsi, et al. Enhancement of photocatalytic activity of Bi2WO6 hybridized with graphite-like C3N4[J]. Journal of Materials Chemistry, 2012, 22(23): 11568-11573. |
4 | LIN Lihua, YU Zhiyang, WANG Xinchen. Crystalline carbon nitride semiconductors for photocatalytic water splitting[J]. Angewandte Chemie, 2019, 58(19): 6164-6175. |
5 | WANG Yajun, ZHANG Wenchan, LIU Mengmeng, et al. Enhanced removal of pollutant in a BiPO4-SiO2 hybrid hydrogel via an adsorption-enrichment and in situ photocatalysis synergy[J]. Journal of Materials Science, 2020, 55(17): 7441-7452. |
6 | ZHU Yanyan, WANG Yajun, LING Qiang, et al. Enhancement of full-spectrum photocatalytic activity over BiPO4/Bi2WO6 clomposites[J]. Applied Catalysis B: Environmental, 2017, 200: 222-229. |
7 | WANG Yajun, ZHANG Yunnuan, JIANG Zhiqiang, et al. Controlled fabrication and enhanced visible-light photocatalytic hydrogen production of Au@CdS/MIL-101 heterostructure[J]. Applied Catalysis B: Environmental, 2016, 185: 307-314. |
8 | CHEN Yubin, FENG Xiaoyang, GUO Xu, et al. Toward a fundamental understanding of factors affecting the function of cocatalysts in photocatalytic water splitting[J]. Current Opinion in Green and Sustainable Chemistry, 2019, 17: 21-28. |
9 | WANG Yajun, WANG Qisheng, ZHAN Xueying, et al. Visible light driven type Ⅱ heterostructures and their enhanced photocatalysis properties: a review[J]. Nanoscale, 2013, 5(18): 8326-8339. |
10 | MONDAL Somen, YUCKNOVSKY Anna, AKULOV Katherine, et al. Efficient photosensitizing capabilities and ultrafast carrier dynamics of doped carbon dots[J]. Journal of the American Chemical Society, 2019, 141(38): 15413-15422. |
11 | ZHOU Yiqun, ZAHRAN Elsayed M, QUIROGA Bruno A, et al. Size-dependent photocatalytic activity of carbon dots with surface-state determined photoluminescence[J]. Applied Catalysis B: Environmental, 2019, 248: 157-166. |
12 | 陶淞源, 朱守俊, 杨柏. 新型碳基发光纳米材料——碳点: 研究进展及展望[J]. 科学观察, 2019, 14(6): 35-37. |
TAO Songyuan, ZHU Shoujun, YANG Bai. A new kinds of carbon—based luminous nanomaterials-carbon dots: its progresses and prospects[J]. Science Focus, 2019, 14(6): 35-37. | |
13 | XU Xiaoyou, Robert RAY, GU Yunlong, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments[J]. Journal of the American Chemical Society, 2004, 126(40): 12736-12737. |
14 | ZHANG Jia, YU Shuhong. Carbon dots: large-scale synthesis, sensing and bioimaging[J]. Materials Today, 2016, 19(7): 382-393. |
15 | YU Huijun, SHI Run, ZHAO Yufei, et al. Smart utilization of carbon dots in semiconductor photocatalysis[J]. Advanced Materials, 2016, 28(43): 9454-9477. |
16 | SHANG Jinghua, ZHAO Minggang, QU Huiyan, et al. Fabrication of CQDs/MoS2/Mo foil for the improved electrochemical detection[J]. Analytica Chimica Acta, 2019, 1079: 79-85. |
17 | WANG Wei, CHENG Lu, LIU Wenguang. Biological applications of carbon dots[J]. Science China-Chemistry, 2014, 57(4): 522-539. |
18 | XU Quan, ZHAO Junguang, LIU Yao, et al. Enhancing the luminescence of carbon dots by doping nitrogen element and its application in the detection of Fe(Ⅲ)[J]. Journal of Materials Science, 2015, 50(6): 2571-2576. |
19 | REDDY Ch Venkata, REDDY Kakarla Raghava, SHETTI Nagaraj P, et al. Hetero-nanostructured metal oxide-based hybrid photocatalysts for enhanced photoelectrochemical water splitting—A review[J]. International Journal of Hydrogen Energy, 2020, 45(36): 18331-18347. |
20 | FANG Siyuan, SUN Zhuxing, HU Yunhang. Insights into the thermo-photo catalytic production of hydrogen from water on a low-cost NiOx-loaded TiO2 catalyst[J]. ACS Catalysis, 2019, 9(6): 5047-5056. |
21 | REDDY C V, REDDY K R, HARISH V V N, et al. Metal-organic frameworks (MOFs)-based efficient heterogeneous photocatalysts: synthesis, properties and its applications in photocatalytic hydrogen generation, CO2 reduction and photodegradation of organic dyes[J]. International Journal of Hydrogen Energy, 2020, 45(13): 7656-7679. |
22 | CHEN Xiaobo, SHEN Shaohua, GUO Liejin, et al. Semiconductor-based photocatalytic hydrogen generation[J]. Chemical Reviews, 2010, 110(11): 6503-6570. |
23 | ZHOU Hailong, QU Yongquan, ZEID Tahani, et al. Towards highly efficient photocatalysts using semiconductor nanoarchitectures[J]. Energy & Environmental Science, 2012, 5(5): 6732-6743. |
24 | KALAIYARASAN Gopi, VEERAPANDIAN Murugan, JEBAMERCY Gnanasekaran, et al. Amygdalin-functionalized carbon quantum dots for probing beta-glucosidase activity for cancer diagnosis and therapeutics[J]. ACS Biomaterials Science & Engineering, 2019, 5(6): 3089-3099. |
25 | 郭丽君, 李瑞, 刘建新, 等. 半导体光催化分解水的析氢效率研究[J]. 化学进展, 2020, 32(1): 46-54. |
GUO LiJun, LI Rui, LIU Jianxin, et al. Study on hydrogen evolution efficiency of semiconductor photocatalysts for solar water splitting[J]. Progress in Chemistry, 2020, 32(1): 46-54. | |
26 | XIAO Nan, LI Songsong, LI Xuli, et al. The roles and mechanism of cocatalysts in photocatalytic water splitting to produce hydrogen[J]. Chinese Journal of Catalysis, 2020, 41(4): 642-671. |
27 | TIAN Jian, LENG Yanhua, ZHAO Zhenhuan, et al. Carbon quantum dots/hydrogenated TiO2 nanobelt heterostructures and their broad spectrum photocatalytic properties under UV, visible, and near-infrared irradiation[J]. Nano Energy, 2015, 11: 419-427. |
28 | PHANG Suejiun, TAN Llinglling. Recent advances in carbon quantum dot (CQD)-based two dimensional materials for photocatalytic applications[J]. Catalysis Science & Technology, 2019, 9(21): 5882-5905. |
29 | 冯宁, 李洪光, 郝京诚. 基于混酸回流制备碳点的中和过程[J]. 物理化学学报, 2020, 37:1-8. |
FENG Ning, LI Hongguang, HAO Jingcheng. Toward the neutralization of carbon dots prepared by mixed acid reflux[J]. Acta Physico Chimica Sinica, 2020, 37:1-8. | |
30 | TUERHONG Mhetaer, XU Yang, YIN Xuebo. Review on carbon dots and their applications[J]. Chinese Journal of Analytical Chemistry, 2017, 45(1): 139-150. |
31 | LI Lingling, ZHU Xunjin. Enhanced photocatalytic hydrogen evolution of carbon quantum dot modified 1D protonated nanorods of graphitic carbon nitride[J]. ACS Applied Nano Materials, 2018, 1(9): 5337-5344. |
32 | KOU Xiaoli, JIANG Shicui, PARK Soo Jin, et al. A review: recent advances in preparations and applications of heteroatom-doped carbon quantum dots[J]. Dalton Transactions, 2020, 49(21): 6915-6938. |
33 | SUN Yaping, ZHOU Bing, LIN Yi, et al. Quantum-sized carbon dots for bright and colorful photoluminescence[J]. Journal of the American Chemical Society, 2006, 128(24): 7756-7757. |
34 | ZENG Libin, LI Xinyong, FAN Shiying, et al. The bioelectrochemical synthesis of high-quality carbon dots with strengthened electricity output and excellent catalytic performance[J]. Nanoscale, 2019, 11(10): 4428-4437. |
35 | HU Shengliang, WEI Zhijia, CHANG Qing, et al. A facile and green method towards coal-based fluorescent carbon dots with photocatalytic activity[J]. Applied Surface Science, 2016, 378: 402-407. |
36 | PAN Jiaqi, YOU Mingzhu, CHI Chunyan, et al. The two dimension carbon quantum dots modified porous g-C3N4/TiO2 nano-heterojunctions for visible light hydrogen production enhancement[J]. International Journal of Hydrogen Energy, 2018, 43(13): 6586-6593. |
37 | NIU Fushuang, XU Yuanhong, LIU Mengli, et al. Bottom-up electrochemical preparation of solid-state carbon nanodots directly from nitriles/ionic liquids using carbon-free electrodes and the applications in specific ferric ion detection and cell imaging[J]. Nanoscale, 2016, 8(10): 5470-5477. |
38 | TITIRICI M M, WHITE R J, BRUN N, et al. Sustainable carbon materials[J]. Chemical Society Reviews, 2015, 44(1): 250-290. |
39 | CHEN Weifeng, LI Dejiang, TIAN Lialong, et al. Synthesis of graphene quantum dots from natural polymer starch for cell imaging[J]. Green Chemistry, 2018, 20(19): 4438-4442. |
40 | SI Mengying, ZHANG Jin, HE Yangyang, et al. Synchronous and rapid preparation of lignin nanoparticles and carbon quantum dots from natural lignocellulose[J]. Green Chemistry, 2018, 20(15): 3414-3419. |
41 | DING Zheyuan, LI Fengfeng, WEN Jialong, et al. Gram-scale synthesis of single-crystalline graphene quantum dots derived from lignin biomass[J]. Green Chemistry, 2018, 20(6): 1383-1390. |
42 | ALAM Al Mahmnur, PARK Byung Yong, GHOURI Zafar Khan, et al. Synthesis of carbon quantum dots from cabbage with down- and up-conversion photoluminescence properties: excellent imaging agent for biomedical applications[J]. Green Chemistry, 2015, 17(7): 3791-3797. |
43 | LIU Wen, DIAO Haipeng, CHANG Honghong, et al. Green synthesis of carbon dots from rose-heart radish and application for Fe3+ detection and cell imaging[J]. Sensors and Actuators B: Chemical, 2017, 241: 190-198. |
44 | 叶治国, 李桂新, 张艳慧. 利用虾壳/壳聚糖合成碳点及其发光性能的比较[J]. 广东化工, 2020, 47(7): 17-19. |
YE Zhiguo, LI Guixin, ZHANG Yanhui. Synthesis of carbon dots from shrimp shell and chitosan and comparison of their luminescent properties[J]. Guangdong Chemical Industry, 2020, 47(7): 17-19. | |
45 | ZHANG Jing, LIU Xiaojing, ZHOU Jun, et al. Carbon dots derived from algae as H2O2 sensors: the importance of nutrients in the biomass[J]. Nanoscale Advances, 2019, 1: 2151-2156. |
46 | DIMOS Konstantinos. Carbon quantum dots: surface passivation and functionalization[J]. Current Organic Chemistry, 2016, 20(6): 682-695. |
47 | SHEN Peilian, GAO Junkuo, CONG Jingkun, et al. Synthesis of cellulose-based carbon dots for bioimaging[J]. Chemistry Select, 2016, 1(7): 1314-1317. |
48 | LIU Hui, LI Rongsheng, ZHOU Jun, et al. Branched polyethylenimine-functionalized carbon dots as sensitive and selective fluorescent probes for N-acetylcysteine via an off-on mechanism[J]. Analyst, 2017, 142(22): 4221-4227. |
49 | ZHAO Pei, ZHU Liangliang. Dispersibility of carbon dots in aqueous and/or organic solvents[J]. Chemical Communications, 2018, 54(43): 5401-5406. |
50 | LI Di, JING Pengtao, SUN Lihuan, et al. Near-infrared excitation/emission and multiphoton-induced fluorescence of carbon dots[J]. Advanced Materials, 2018, 30(13): 1705913. |
51 | HU Shengliang, TIAN Ruixue, WU Lingling, et al. Chemical regulation of carbon quantum dots from synthesis to photocatalytic activity[J]. Chemistry-An Asian Journal, 2013, 8(5): 1035-1041. |
52 | ZHAO Hengxin, LIU Liqin, LIU Zhongde, et al. Highly selective detection of phosphate in very complicated matrixes with an off-on fluorescent probe of europium-adjusted carbon dots[J]. Chemical Communications, 2011, 47(9): 2604-2606. |
53 | WANG Fu, XIE Zheng, ZHANG Hao, et al. Highly luminescent organosilane-functionalized carbon dots[J]. Advanced Functional Materials, 2011, 21(6): 1027-1031. |
54 | YIN Jingyuan, LIU Huaji, JIANG Songzi, et al. Hyperbranched polymer functionalized carbon dots with multistimuli-responsive property[J]. ACS Macro Letters, 2013, 2(11): 1033-1037. |
55 | LI Hailong, ZHANG Yingwei, WANG Lei, et al. Nucleic acid detection using carbon nanoparticles as a fluorescent sensing platform[J]. Chemical Communications, 2011, 47(3): 961-963. |
56 | ZHANG Yunxiao, ZHANG Weide. Ternary catalysts based on amino-functionalized carbon quantum dots, graphitic carbon nitride nanosheets and cobalt complex for efficient H2 evolution under visible light irradiation[J]. Carbon, 2019, 145: 488-500. |
57 | WANG Yajun, CHEN Juan, LIU Liming, et al. Novel metal doped carbon quantum dots/CdS composites for efficient photocatalytic hydrogen evolution[J]. Nanoscale, 2019, 11(4): 1618-1625. |
58 | ZUO Gancheng, XIE Aming, PAN Xihao, et al. Fluorine-doped cationic carbon dots for efficient gene delivery[J]. ACS Applied Nano Materials, 2018, 1(5): 2376-2385. |
59 | KARAKOCAK Bediabegum, LIANG Jue, KAVADIYA Shalinee, et al. Optimizing the synthesis of red-emissive nitrogen-doped carbon dots for use in bioimaging[J]. ACS Applied Nano Materials, 2018, 1(7): 3682-3692. |
60 | GUO Ying, YANG Li, LI Wuwu, et al. Carbon dots doped with nitrogen and sulfur and loaded with copper() as a “turn-on” fluorescent probe for cystein, glutathione and homocysteine[J]. Microchimica Acta, 2016, 183(4): 1409-1416. |
61 | YANG Siwei, SUN Jing, LI Xiubing, et al. Large-scale fabrication of heavy doped carbon quantum dots with tunable-photoluminescence and sensitive fluorescence detection[J]. Journal of Materials Chemistry A, 2014, 2(23): 8660-8667. |
62 | WANG Yajun, CHEN Juan, XU Quan, et al. Novel visible-light-driven S-doped carbon dots/BiOI nanocomposites: improved photocatalytic activity and mechanism insight[J]. Journal of Materials Science, 2017, 52(12): 7282-7293. |
63 | LIU Yuanyuan, JIANG Liping, LI Bijun, et al. Nitrogen doped carbon dots: mechanism investigation and their application for label free CA125 analysis[J]. Journal of Materials Chemistry B, 2019, 7(19): 3053-3058. |
64 | PIRSAHEB Meghdad, ASADI Anver, SILLANP Mika, et al. Application of carbon quantum dots to increase the activity of conventional photocatalysts: a systematic review[J]. Journal of Molecular Liquids, 2018, 271: 857-871. |
65 | MEHTA A, POOJA D, THAKUR A, et al. Enhanced photocatalytic water splitting by gold carbon dot core shell nanocatalyst under visible/sunlight[J]. New Journal of Chemistry, 2017, 41(11): 4573-4581. |
66 | XU Xiaoyong, BAO Zhijia, ZHOU Gang, et al. Enriching photoelectrons via three transition channels in amino-conjugated carbon quantum dots to boost photocatalytic hydrogen generation[J]. ACS Applied Materials & Interfaces, 2016, 8(22): 14118-14124. |
67 | ACHILLEOS Demetra S, KASAP Hatice, REISNER Erwin. Photocatalytic hydrogen generation coupled to pollutant utilisation using carbon dots produced from biomass[J]. Green Chemistry, 2020, 22(9): 2831-2839. |
68 | JIAO Yingying, HUANG Qunzeng, WANG Jianshe, et al. A novel MoS2 quantum dots (QDs) decorated Z-scheme g-C3N4 nanosheet/N-doped carbon dots heterostructure photocatalyst for photocatalytic hydrogen evolution[J]. Applied Catalysis B: Environmental, 2019, 247: 124-132. |
69 | LIU Yan, ZHAO Yajie, SUN Yue, et al. A 4e-–2e- cascaded pathway for highly efficient production of H2 and H2O2 from water photo-splitting at normal pressure[J]. Applied Catalysis B: Environmental, 2020, 270: 118875. |
70 | SHI Weilong, GUO Feng, ZHU Cheng, et al. Carbon dots anchored on octahedral CoO as a stable visible-light-responsive composite photocatalyst for overall water splitting[J]. Journal of Materials Chemistry A, 2017, 5(37): 19800-19807. |
71 | LIU Changan, FU Yijun, XIA Yujian, et al. Cascaded photo-potential in a carbon dot-hematite system driving overall water splitting under visible light[J]. Nanoscale, 2018, 10(5): 2454-2460. |
72 | ZHANG Piyong, ZENG Gongchang, SONG Ting, et al. Synthesis of a plasmonic CuNi bimetal modified with carbon quantum dots as a non-semiconductor-driven photocatalyst for effective water splitting[J]. Journal of Catalysis, 2019, 369: 267-275. |
73 | ZHAO Juan, LIU Changan, WANG Huibo, et al. Carbon dots modified WO2-NaxWO3 composite as UV-vis-NIR broad spectrum-driven photocatalyst for overall water splitting[J]. Catalysis Today, 2020, 340: 152-160. |
74 | WANG Qun, HUANG Jianying, SUN Hongtao, et al. Uniform carbon dots@TiO2 nanotube arrays with full spectrum wavelength light activation for efficient dye degradation and overall water splitting[J]. Nanoscale, 2017, 9(41): 16046-16058. |
75 | SARGIN Idris, YANALAK Gizem, ARSLAN Gulsin, et al. Green synthesized carbon quantum dots as TiO2 sensitizers for photocatalytic hydrogen evolution[J]. International Journal of Hydrogen Energy, 2019, 44(39): 21781-21789. |
76 | TACHIBANA Yasuhiro, VAYSSIERES Lionel, DURRANT Jame R. Artificial photosynthesis for solar water-splitting[J]. Nature Photonics, 2012, 6(8): 511-518. |
77 | JIANG Longbo, YUAN Xingzhong, ZENG Guangming, et al. Construction of an all-solid-state Z-scheme photocatalyst based on graphite carbon nitride and its enhancement to catalytic activity[J]. Environmental Science: Nano, 2018, 5(3): 599-615. |
78 | WU Xiuqin, ZHAO Juan, WANG Liping, et al. Carbon dots as solid-state electron mediator for BiVO4/CDs/CdS Z-scheme photocatalyst working under visible light[J]. Applied Catalysis B: Environmental, 2017, 206: 501-509. |
79 | LIU Enzhou, XU Chenhui, JIN Chenyang, et al. Carbon quantum dots bridged TiO2 and Cd0.5Zn0.5S film as solid-state Z-scheme photocatalyst with enhanced H2 evolution activity[J]. Journal of the Taiwan Institute of Chemical Engineers, 2019, 97: 316-325. |
[1] | 杨建平. 降低HPPO装置反应系统原料消耗的PSE[J]. 化工进展, 2023, 42(S1): 21-32. |
[2] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[3] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[4] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[5] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[6] | 郑谦, 官修帅, 靳山彪, 张长明, 张小超. 铈锆固溶体Ce0.25Zr0.75O2光热协同催化CO2与甲醇合成DMC[J]. 化工进展, 2023, 42(S1): 319-327. |
[7] | 王正坤, 黎四芳. 双子表面活性剂癸炔二醇的绿色合成[J]. 化工进展, 2023, 42(S1): 400-410. |
[8] | 高雨飞, 鲁金凤. 非均相催化臭氧氧化作用机理研究进展[J]. 化工进展, 2023, 42(S1): 430-438. |
[9] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[10] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[11] | 许友好, 王维, 鲁波娜, 徐惠, 何鸣元. 中国炼油创新技术MIP的开发策略及启示[J]. 化工进展, 2023, 42(9): 4465-4470. |
[12] | 耿源泽, 周俊虎, 张天佑, 朱晓宇, 杨卫娟. 部分填充床燃烧器中庚烷均相/异相耦合燃烧[J]. 化工进展, 2023, 42(9): 4514-4521. |
[13] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[14] | 王晋刚, 张剑波, 唐雪娇, 刘金鹏, 鞠美庭. 机动车尾气脱硝催化剂Cu-SSZ-13的改性研究进展[J]. 化工进展, 2023, 42(9): 4636-4648. |
[15] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |