1 |
OLANIRAN Ademola O, IGBINOSA Etinosa O. Chlorophenols and other related derivatives of environmental concern: properties, distribution and microbial degradation processes[J]. Chemosphere, 2011, 83(10): 1297-1306.
|
2 |
KOHRING G W, ROGERS J E, WIEGEL J. Anaerobic biodegradation of 2,4-dichlorophenol in freshwater lake sediments at different temperatures[J]. Applied and Environmental Microbiology, 1989, 55(2): 348-353.
|
3 |
车碧宁, 张耀斌. 纳米Fe3O4强化厌氧处理含酚废水研究[J]. 水处理技术, 2020, 46(3): 124-127, 134.
|
|
CHE Bining, ZHANG Yaobin. Study on anaerobic advanced treatment of phenol wastewater by Fe3O4 nanoparticles[J]. Technology of Water Treatment, 2020, 46(3): 124-127, 134.
|
4 |
LOVLEY Derek R, ANDERSON Robert T. Influence of dissimilatory metal reduction on fate of organic and metal contaminants in the subsurface[J]. Hydrogeology Journal, 2000, 8(1): 77-88.
|
5 |
LOVLEY D R, PHILLIPS E J. Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese[J]. Applied and Environmental Microbiology, 1988, 54(6): 1472-1480.
|
6 |
LOVLEY D R, PHILLIPS E J. Organic matter mineralization with reduction of ferric iron in anaerobic sediments[J]. Applied and Environmental Microbiology, 1986, 51(4): 683-689.
|
7 |
WEBER Karrie A, ACHENBACH Laurie A, COATES John D. Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction[J]. Nature Reviews Microbiology, 2006, 4(10): 752-764.
|
8 |
LI F B, LI X M, ZHOU S G, et al. Enhanced reductive dechlorination of DDT in an anaerobic system of dissimilatory iron-reducing bacteria and iron oxide[J]. Environmental Pollution, 2010, 158(5): 1733-1740.
|
9 |
WEI Na, FINNERAN Kevin T. Influence of ferric iron on complete dechlorination of trichloroethylene (TCE) to ethene: Fe(Ⅲ) reduction does not always inhibit complete dechlorination[J]. Environmental Science & Technology, 2011, 45(17): 7422-7430.
|
10 |
卢晓霞, 李广贺, 张旭, 等. 不同氧化还原条件下氯乙烯的微生物脱氯[J]. 环境科学, 2002, 23(2): 29-33.
|
|
LU Xiaoxia, LI Guanghe, ZHANG Xu, et al. Dechlorination of chlorinated ethenes under different redox conditions[J]. Chinese Journal of Enviromental Science, 2002, 23(2): 29-33.
|
11 |
GORBY Y A. Bacterial nanowires: electrically conductive filaments and their implications for energy transformation and distribution in natural and engineered systems[C]//2006 Bio Micro and Nanosystems Conference. January 15-18, 2006, San Francisco, CA, USA. IEEE, 2006: 20.
|
12 |
SHI Liang, DONG Hailiang, REGUERA Gemma, et al. Extracellular electron transfer mechanisms between microorganisms and minerals[J]. Nature Reviews Microbiology, 2016, 14(10): 651-662.
|
13 |
ZHAO Zhiqiang, ZHANG Yaobin, WOODARD T L, et al. Enhancing syntrophic metabolism in up-flow anaerobic sludge blanket reactors with conductive carbon materials[J]. Bioresource Technology, 2015, 191: 140-145.
|
14 |
ZHAO Zhiqiang, ZHANG Yaobin, CHEN Shuo, et al. Bioelectrochemical enhancement of anaerobic methanogenesis for high organic load rate wastewater treatment in a up-flow anaerobic sludge blanket (UASB) reactor[J]. Scientific Reports, 2014, 4: 6658.
|
15 |
PETROUTSOS Dimitris, KATAPODIS Petros, SAMIOTAKI Martina, et al. Detoxification of 2, 4-dichlorophenol by the marine microalga tetraselmis marina[J]. Phytochemistry, 2008, 69(3): 707-714.
|
16 |
ZHAO Zhiqiang, ZHANG Yaobin, WANG Liying, et al. Potential for direct interspecies electron transfer in an electric-anaerobic system to increase methane production from sludge digestion[J]. Scientific Reports, 2015, 5: 11094.
|
17 |
LI Shiyang, CAO Yi, BI Cancan, et al. Promoting electron transfer to enhance anaerobic treatment of azo dye wastewater with adding Fe(OH)3 [J]. Bioresource Technology, 2017, 245: 138-144.
|
18 |
DESANTIS T Z, HUGENHOLTZ P, LARSEN N, et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB[J]. Applied and Environmental Microbiology, 2006, 72(7): 5069-5072.
|
19 |
王申宛, 郑晓燕, 校导, 等. 生物炭的制备、改性及其在环境修复中的应用进展[J]. 化工进展, 2020, 39(S2): 352-361.
|
|
WANG Shenwan, ZHENG Xiaoyan, XIAO Dao, et al. Research progress of production,modification and application in environment remediation of biochar[J]. Chemical Industry and Engineering Progress, 2020, 39(S2): 352-361.
|
20 |
ZAITSEV V S, FILIMONOV D S, PRESNYAKOV I A, et al. Physical and chemical properties of magnetite and magnetite-polymer nanoparticles and their colloidal dispersions[J]. Journal of Colloid and Interface Science, 1999, 212(1): 49-57.
|
21 |
YANG Dongxing, VELAMAKANNI Aruna, Gülay BOZOKLU, et al. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy[J]. Carbon, 2009, 47(1): 145-152.
|
22 |
Laura KLÜPFEL, KEILUWEIT Marco, KLEBER Markus, et al. Redox properties of plant biomass-derived black carbon (biochar)[J]. Environmental Science & Technology, 2014, 48(10): 5601-5611.
|
23 |
唐柱云, 陆光华. 苯酚、2, 4-二氯酚与苯胺类化合物联合毒性效益[J]. 环境科技, 2014, 27(4): 18-22, 51.
|
|
TANG Zhuyun, LU Guanghua. Joint toxicity effect of phenol or 2, 4-dichlorophenol and anilines[J]. Environmental Science and Technology, 2014, 27(4): 18-22, 51.
|
24 |
MORI Koji, HARAYAMA Shigeaki. Methanobacterium petrolearium sp. nov. and Methanobacterium ferruginis sp. nov., mesophilic methanogens isolated from salty environments[J]. International Journal of Systematic and Evolutionary Microbiology, 2011, 61: 138-143.
|
25 |
ROTARU Amelia Elena, SHRESTHA Pravin Malla, LIU Fanghua, et al. A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane[J]. Energy & Environmental Science, 2014, 7(1): 408-415.
|
26 |
江心白. 生物电化学体系中硝基芳香族化合物的强化还原机制[D]. 南京: 南京理工大学, 2016.
|
|
JIANG Xinbai. The mechanism of enhanced reductive degradation of nitroaromatic compounds in bioelectrochemical system[D]. Nanjing: Nanjing University of Science and Technology, 2016.
|
27 |
HANIA Wajdi Ben, POSTEC Anne, Thomas AÜLLO, et al. Mesotoga infera sp. nov., a mesophilic member of the order Thermotogales, isolated from an underground gas storage aquifer[J]. International Journal of Systematic and Evolutionary Microbiology, 2013, 63(Pt 8): 3003-3008.
|
28 |
FRANCHI Oscar, ROSENKRANZ Francisca, CHAMY Rolando. Key microbial populations involved in anaerobic degradation of phenol and p-cresol using different inocula[J]. Electronic Journal of Biotechnology, 2018, 35: 33-38.
|
29 |
YAMADA Takeshi, IMACHI Hiroyuki, OHASHI Akiyoshi, et al. Bellilinea caldifistulae Gen. nov., sp. nov. and Longilinea arvoryzae Gen. nov., sp. nov., strictly anaerobic, filamentous bacteria of the Phylum Chloroflexi isolated from methanogenic propionate-degrading consortia[J]. International Journal of Systematic and Evolutionary Microbiology, 2007, 57(10): 2299-2306.
|
30 |
WARD Lewis M, HEMP James, PACE Laura A, et al. Draft genome sequence of leptolinea tardivitalis YMTK-2, a mesophilic anaerobe from the Chloroflexi class Anaerolineae [J]. Genome Announcements, 2015, 3(6): e01356.
|
31 |
LI Yang, REN Chongyang, ZHAO Zisheng, et al. Enhancing anaerobic degradation of phenol to methane via solubilizing Fe(Ⅲ) oxides for dissimilatory iron reduction with organic chelates[J]. Bioresource Technology, 2019, 291: 121858.
|