化工进展 ›› 2022, Vol. 41 ›› Issue (12): 6606-6614.DOI: 10.16085/j.issn.1000-6613.2022-0271
收稿日期:
2022-02-22
修回日期:
2022-04-13
出版日期:
2022-12-20
发布日期:
2022-12-29
通讯作者:
陈一萍
作者简介:
陈一萍(1980—),女,博士,教授,研究方向为水污染防治材料与技术。E-mail:chenyiping2005@qztc.edu.cn。
基金资助:
CHEN Yiping(), HUANG Yaoyi, ZHENG Chaohong
Received:
2022-02-22
Revised:
2022-04-13
Online:
2022-12-20
Published:
2022-12-29
Contact:
CHEN Yiping
摘要:
胶原基衍生炭具有原料来源广泛、成本低廉、孔结构可调、导电性能优异、缺陷密度高和多原子掺杂等优点,在水处理领域展现出巨大的发展潜力。本文回顾了胶原基衍生炭在国内外的研究现状;对目前常用的前体材料,包括虾壳、鱼鳞、蟹壳、牡蛎壳、动物骨骼和动物皮等进行归纳总结;并就不同的活化与改性工艺,包括碳酸钙或羟基磷灰石自活化法、羟基磷灰石(或碳酸钙)和KOH协同活化法、钾化合物辅助法等,对调控孔隙结构和表面官能团等方面的影响进行了分析比较;重点探讨了其在吸附与催化氧化等水处理领域中的应用。最后,针对水处理过程中存在的问题,提出了相应的对策措施并展望了发展趋势,以期为胶原基衍生炭在实际废水处理中的应用提供理论依据。
中图分类号:
陈一萍, 黄耀裔, 郑朝洪. 胶原基衍生炭在水处理领域的研究进展[J]. 化工进展, 2022, 41(12): 6606-6614.
CHEN Yiping, HUANG Yaoyi, ZHENG Chaohong. Research progress of collagen-derived carbon in water treatment[J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6606-6614.
活化方法 | 优点 | 缺点 | 参考文献 |
---|---|---|---|
自活化法 | |||
碳酸钙自活化 | 无须额外的模板或活化剂,活化成本低廉,无腐蚀性,操作简便 | 只能保留前体本身所固有的结构形态,对孔隙结构等的调控存在一定的局限性 | [ |
羟基磷灰石自活化 | [ | ||
羟基磷灰石(或碳酸钙)和KOH协同活化法 | 短时间内可刻蚀出大量的孔,碳表面含氧官能团更多 | KOH的用量较大,具有腐蚀性,对设备的要求较为苛刻,且高温热解过程中易造成杂原子的损失,后续加工时也易造成二次污染 | [ |
钾化合物辅助法 | 低温热解即可实现孔隙结构的调控,造孔效果好,减少化学试剂和能源的使用量,减少设备腐蚀 | 操作复杂,所需的设备比较多 | [ |
表1 各种活化方法的比较
活化方法 | 优点 | 缺点 | 参考文献 |
---|---|---|---|
自活化法 | |||
碳酸钙自活化 | 无须额外的模板或活化剂,活化成本低廉,无腐蚀性,操作简便 | 只能保留前体本身所固有的结构形态,对孔隙结构等的调控存在一定的局限性 | [ |
羟基磷灰石自活化 | [ | ||
羟基磷灰石(或碳酸钙)和KOH协同活化法 | 短时间内可刻蚀出大量的孔,碳表面含氧官能团更多 | KOH的用量较大,具有腐蚀性,对设备的要求较为苛刻,且高温热解过程中易造成杂原子的损失,后续加工时也易造成二次污染 | [ |
钾化合物辅助法 | 低温热解即可实现孔隙结构的调控,造孔效果好,减少化学试剂和能源的使用量,减少设备腐蚀 | 操作复杂,所需的设备比较多 | [ |
胶原基生物炭 | 制备工艺 | 生物炭特性 | 吸附效果 | 参考文献 |
---|---|---|---|---|
硅锰双金属氧化物改性虾壳衍生炭 | 预处理:室温,NaOH,24h;化学涂层:0.2mol/L Na2SiO3和0.05mol/L MnSO4,12h;热解条件:800℃,5℃/min,2h,N2氛围 | SBET=13.81m2/g;Vtotal=0.0655cm3/g;平均孔径为18.98nm | 对Cu2+的最大吸附容量为141.76mg/g | [ |
虾壳衍生水热炭 | 预处理:2.5mol/L NaOH,90℃,4h和50%NaOH,130℃,4h;水热反应条件:180℃,12h;后处理:1.5mol/L HCl,室温,1.5h | SBET=12.65m2/g; | 对甲基橙的最大吸附容量为755.08mg/g | [ |
小龙虾壳生物炭 | 热解条件:700℃,15℃/min,N2氛围,2h | SBET=21.75m2/g;Vtotal=0.13cm3/g;平均孔径为23.06nm | 对Pb2+的最大吸附容量为1166.44mg/g | [ |
鳌虾壳衍生炭 | 热解条件:600℃,N2氛围,2h | SBET=63.79m2/g; | 对Pb2+的最大吸附容量为190.7mg/g | [ |
ZnCl2改性小龙虾壳生物炭 | 热解条件:600℃,N2氛围,2h;后处理:2mol/LZnCl2溶液,24h | SBET=236.93m2/g;Vtotal=0.23cm3/g;平均孔径为39.17nm | 对三氯乙酸的最大吸附容量为17.8mg/g | [ |
小龙虾壳生物炭 | 热解条件:800℃,N2氛围,2h | 对磷的最大吸附容量为70.9mg/g | [ | |
氮掺杂石墨烯修饰磁性虾壳生物炭 | 热解条件:以Fe2+和Fe3+为磁性前驱物,800℃,10℃/min,N2氛围;后处理:结合氮掺杂石墨烯水凝胶,80℃,2h | SBET=398.05m2/g;Vtotal=6.6cm3/g; | 对Cr6+的最大吸附容量为350.42mg/g | [ |
氮掺杂多级孔虾壳衍生炭 | 热解条件:400℃,5℃/min,2h,N2氛围;活化条件:KOH,850℃,5℃/min,1h,N2氛围 | SBET=3171m2/g;Vtotal=1.934cm3/g;平均孔径为2.44nm | 对磺胺二甲基嘧啶和氯霉素的最大吸附容量分别为699.3mg/g和742.4mg/g | [ |
KOH活化虾壳衍生炭材料 | 热解条件:800℃,10℃/min,3h,N2氛围;活化条件:KOH,800℃,1h,N2氛围 | SBET=3160m2/g;Vtotal=2.382cm3/g;平均孔径为1.35nm | Cu2+、Cr6+和Cd2+共存时,金属离子总吸附量为560mg/g | [ |
虾壳与玉米秸秆共混衍生炭 | 热解条件:800℃,5℃/min,2h,N2氛围 | SBET=57.87m2/g;Vtotal=0.068cm3/g;平均孔径为6.89nm | 对Cu2+的最大吸附量为79.77mg/g | [ |
厚壳贻贝衍生炭 | 热解条件:800℃,4h,N2氛围 | SBET=4.363m2/g;Vtotal=0.09cm3/g;孔径为412.95nm | 对氟化物的最大吸附容量为82.93mg/g | [ |
蟹壳衍生炭 | 热解条件:800℃,10℃/min,2h,N2氛围 | 对金霉素的最大吸附容量为1432.3mg/g | [ | |
蟹壳衍生炭 | 热解条件:900℃,10℃/min,2h,N2氛围 | SBET=81.57m2/g;Vtotal=0.0861mL/g;平均孔径为4.22nm | 对孔雀石绿和刚果红的最大吸附容量分别为12502mg/g和20317mg/g | [ |
蟹壳衍生炭 | 热解条件:800℃,10℃/min,2h,N2氛围 | SBET=81.57m2/g;Vtotal=0.0861mL/g | 对磷的吸附量达到80mg/g | [ |
蟹壳活性炭 | 脱盐条件:1mol/L HCl,6h;热解条件:500℃,10℃/min,1.5h,N2氛围;活化条件:KOH,800℃,1h | SBET=2197m2/g;Vtotal=1.192cm3/g;平均孔径为2.17nm | 对酸性大红的最大吸附容量为1667mg/g | [ |
磁性蟹壳衍生炭 | 热解条件:500℃,8℃/min,1h,N2氛围;后处理:在碱性介质中化学共沉淀法,[Fe3+]∶[Fe2+]摩尔比为2∶1 | SBET=74.53m2/g;Vtotal=0.298cm3/g;平均孔径为3.94nm | 对As3+和Pb2+的最大吸附容量分别为15.8mg/g和62.4mg/g | [ |
蟹壳衍生炭 | 热解条件:700℃,10℃/min,2h,N2氛围;活化条件:KOH,800℃,1h | SBET=2441m2/g;Vtotal=1.682cm3/g;孔径为1.937nm | 对柴油的最大吸附容量为57.74mg/g | [ |
牡蛎壳生物炭 | 热解条件:900℃,2h | SBET=4.85m2/g;平均孔径为11.06nm | 对Cd2+和Pb2+的最大吸附容量分别为153.8mg/g和923.3mg/g | [ |
棉花/聚酯废料与牡蛎壳复合碳材料 | 热解条件:900℃,1~2h; 后处理:10% HCl,12h | SBET=645.05m2/g;Vtotal=0.38cm3/g;平均孔径为0.64nm | 对四环素的最大吸附容量为496.66mg/g | [ |
鱼骨炭 | 热解条件:900℃,10℃/min,2h,N2氛围;后处理:用0.1mol/L HCl和0.1mol/L NaOH先后润洗 | SBET=124m2/g;Vtotal=0.214cm3/g;平均孔径为7.4nm | 对四环素的最大吸附容量为141.70mg/g | [ |
牛骨衍生炭 | 热解条件:450℃,2h,N2氛围;改性方法:4% Fe2(SO4)3浸泡0.5h;8% Al2(SO4)3浸泡1h | SBET=91.3m2/g;Vtotal=0.3cm3/g;平均孔径为26.2nm | 对水中氟的最大吸附容量为45.455mg/g | [ |
牛骨衍生炭 | 预处理:300r/min研磨12h,离心;热解条件:600℃,2h,N2氛围 | SBET=313.09m2/g;Vtotal=0.4538cm3/g;平均孔径为6.46nm | 对Cd2+、Cu2+和Pb2+的吸附容量分别为165.77mg/g、287.58mg/g和558.88mg/g | [ |
鱼鳞衍生炭 | 预氧化条件:350℃,2h,O2氛围;热解与活化条件:与KOH混合,850℃,2.5h,10℃/min,N2氛围 | SBET=3370m2/g;Vtotal=1.91cm3/g;平均孔径为1.49nm | 对水中环丙沙星的最大吸附容量为1013.96mg/g | [ |
表2 胶原基衍生炭在吸附领域的应用
胶原基生物炭 | 制备工艺 | 生物炭特性 | 吸附效果 | 参考文献 |
---|---|---|---|---|
硅锰双金属氧化物改性虾壳衍生炭 | 预处理:室温,NaOH,24h;化学涂层:0.2mol/L Na2SiO3和0.05mol/L MnSO4,12h;热解条件:800℃,5℃/min,2h,N2氛围 | SBET=13.81m2/g;Vtotal=0.0655cm3/g;平均孔径为18.98nm | 对Cu2+的最大吸附容量为141.76mg/g | [ |
虾壳衍生水热炭 | 预处理:2.5mol/L NaOH,90℃,4h和50%NaOH,130℃,4h;水热反应条件:180℃,12h;后处理:1.5mol/L HCl,室温,1.5h | SBET=12.65m2/g; | 对甲基橙的最大吸附容量为755.08mg/g | [ |
小龙虾壳生物炭 | 热解条件:700℃,15℃/min,N2氛围,2h | SBET=21.75m2/g;Vtotal=0.13cm3/g;平均孔径为23.06nm | 对Pb2+的最大吸附容量为1166.44mg/g | [ |
鳌虾壳衍生炭 | 热解条件:600℃,N2氛围,2h | SBET=63.79m2/g; | 对Pb2+的最大吸附容量为190.7mg/g | [ |
ZnCl2改性小龙虾壳生物炭 | 热解条件:600℃,N2氛围,2h;后处理:2mol/LZnCl2溶液,24h | SBET=236.93m2/g;Vtotal=0.23cm3/g;平均孔径为39.17nm | 对三氯乙酸的最大吸附容量为17.8mg/g | [ |
小龙虾壳生物炭 | 热解条件:800℃,N2氛围,2h | 对磷的最大吸附容量为70.9mg/g | [ | |
氮掺杂石墨烯修饰磁性虾壳生物炭 | 热解条件:以Fe2+和Fe3+为磁性前驱物,800℃,10℃/min,N2氛围;后处理:结合氮掺杂石墨烯水凝胶,80℃,2h | SBET=398.05m2/g;Vtotal=6.6cm3/g; | 对Cr6+的最大吸附容量为350.42mg/g | [ |
氮掺杂多级孔虾壳衍生炭 | 热解条件:400℃,5℃/min,2h,N2氛围;活化条件:KOH,850℃,5℃/min,1h,N2氛围 | SBET=3171m2/g;Vtotal=1.934cm3/g;平均孔径为2.44nm | 对磺胺二甲基嘧啶和氯霉素的最大吸附容量分别为699.3mg/g和742.4mg/g | [ |
KOH活化虾壳衍生炭材料 | 热解条件:800℃,10℃/min,3h,N2氛围;活化条件:KOH,800℃,1h,N2氛围 | SBET=3160m2/g;Vtotal=2.382cm3/g;平均孔径为1.35nm | Cu2+、Cr6+和Cd2+共存时,金属离子总吸附量为560mg/g | [ |
虾壳与玉米秸秆共混衍生炭 | 热解条件:800℃,5℃/min,2h,N2氛围 | SBET=57.87m2/g;Vtotal=0.068cm3/g;平均孔径为6.89nm | 对Cu2+的最大吸附量为79.77mg/g | [ |
厚壳贻贝衍生炭 | 热解条件:800℃,4h,N2氛围 | SBET=4.363m2/g;Vtotal=0.09cm3/g;孔径为412.95nm | 对氟化物的最大吸附容量为82.93mg/g | [ |
蟹壳衍生炭 | 热解条件:800℃,10℃/min,2h,N2氛围 | 对金霉素的最大吸附容量为1432.3mg/g | [ | |
蟹壳衍生炭 | 热解条件:900℃,10℃/min,2h,N2氛围 | SBET=81.57m2/g;Vtotal=0.0861mL/g;平均孔径为4.22nm | 对孔雀石绿和刚果红的最大吸附容量分别为12502mg/g和20317mg/g | [ |
蟹壳衍生炭 | 热解条件:800℃,10℃/min,2h,N2氛围 | SBET=81.57m2/g;Vtotal=0.0861mL/g | 对磷的吸附量达到80mg/g | [ |
蟹壳活性炭 | 脱盐条件:1mol/L HCl,6h;热解条件:500℃,10℃/min,1.5h,N2氛围;活化条件:KOH,800℃,1h | SBET=2197m2/g;Vtotal=1.192cm3/g;平均孔径为2.17nm | 对酸性大红的最大吸附容量为1667mg/g | [ |
磁性蟹壳衍生炭 | 热解条件:500℃,8℃/min,1h,N2氛围;后处理:在碱性介质中化学共沉淀法,[Fe3+]∶[Fe2+]摩尔比为2∶1 | SBET=74.53m2/g;Vtotal=0.298cm3/g;平均孔径为3.94nm | 对As3+和Pb2+的最大吸附容量分别为15.8mg/g和62.4mg/g | [ |
蟹壳衍生炭 | 热解条件:700℃,10℃/min,2h,N2氛围;活化条件:KOH,800℃,1h | SBET=2441m2/g;Vtotal=1.682cm3/g;孔径为1.937nm | 对柴油的最大吸附容量为57.74mg/g | [ |
牡蛎壳生物炭 | 热解条件:900℃,2h | SBET=4.85m2/g;平均孔径为11.06nm | 对Cd2+和Pb2+的最大吸附容量分别为153.8mg/g和923.3mg/g | [ |
棉花/聚酯废料与牡蛎壳复合碳材料 | 热解条件:900℃,1~2h; 后处理:10% HCl,12h | SBET=645.05m2/g;Vtotal=0.38cm3/g;平均孔径为0.64nm | 对四环素的最大吸附容量为496.66mg/g | [ |
鱼骨炭 | 热解条件:900℃,10℃/min,2h,N2氛围;后处理:用0.1mol/L HCl和0.1mol/L NaOH先后润洗 | SBET=124m2/g;Vtotal=0.214cm3/g;平均孔径为7.4nm | 对四环素的最大吸附容量为141.70mg/g | [ |
牛骨衍生炭 | 热解条件:450℃,2h,N2氛围;改性方法:4% Fe2(SO4)3浸泡0.5h;8% Al2(SO4)3浸泡1h | SBET=91.3m2/g;Vtotal=0.3cm3/g;平均孔径为26.2nm | 对水中氟的最大吸附容量为45.455mg/g | [ |
牛骨衍生炭 | 预处理:300r/min研磨12h,离心;热解条件:600℃,2h,N2氛围 | SBET=313.09m2/g;Vtotal=0.4538cm3/g;平均孔径为6.46nm | 对Cd2+、Cu2+和Pb2+的吸附容量分别为165.77mg/g、287.58mg/g和558.88mg/g | [ |
鱼鳞衍生炭 | 预氧化条件:350℃,2h,O2氛围;热解与活化条件:与KOH混合,850℃,2.5h,10℃/min,N2氛围 | SBET=3370m2/g;Vtotal=1.91cm3/g;平均孔径为1.49nm | 对水中环丙沙星的最大吸附容量为1013.96mg/g | [ |
胶原基生物炭 | 制备工艺 | 生物炭特性 | 降解效果 | 参考文献 |
---|---|---|---|---|
多级孔虾壳衍生炭 | 热解条件:800℃,5℃/min,2h,N2氛围;后处理:室温,HCl,24h | SBET=594m2/g;Vtotal=0.93mL/g;平均孔径为3.1nm | 当[2,4-二氯苯酚]=100mg/L,[pH]=5.82,[虾壳衍生炭]=0.2mg/L时,60min后吸附率达到40%左右;加入[过硫酸根]=0.5g/L后,70min内去除率达到98% | [ |
鱼骨衍生炭 | 热解条件:800℃,5℃/min,2h,N2氛围 | SBET=758.44m2/g | 当[苯酚]=20mg/L;[过硫酸根]=1.0g/L;[鱼骨衍生炭]=0.1mg/L时,60min后苯酚的去除率接近100% | [ |
多级孔猪骨衍生炭 | 预炭化条件:450℃,N2氛围;热解条件:900℃,5℃/min,2h,N2氛围;后处理:6mol/L HCl,12h | SBET=1024.3m2/g | 当[2,4-二氯苯酚]=0.2g/L,[pH]=5.15,[猪骨炭]=0.2g/L时,预吸附60min后加入[过硫酸盐]=2g/L进行催化降解,180min后去除率接近100% | [ |
表3 胶原基衍生炭在催化领域的应用
胶原基生物炭 | 制备工艺 | 生物炭特性 | 降解效果 | 参考文献 |
---|---|---|---|---|
多级孔虾壳衍生炭 | 热解条件:800℃,5℃/min,2h,N2氛围;后处理:室温,HCl,24h | SBET=594m2/g;Vtotal=0.93mL/g;平均孔径为3.1nm | 当[2,4-二氯苯酚]=100mg/L,[pH]=5.82,[虾壳衍生炭]=0.2mg/L时,60min后吸附率达到40%左右;加入[过硫酸根]=0.5g/L后,70min内去除率达到98% | [ |
鱼骨衍生炭 | 热解条件:800℃,5℃/min,2h,N2氛围 | SBET=758.44m2/g | 当[苯酚]=20mg/L;[过硫酸根]=1.0g/L;[鱼骨衍生炭]=0.1mg/L时,60min后苯酚的去除率接近100% | [ |
多级孔猪骨衍生炭 | 预炭化条件:450℃,N2氛围;热解条件:900℃,5℃/min,2h,N2氛围;后处理:6mol/L HCl,12h | SBET=1024.3m2/g | 当[2,4-二氯苯酚]=0.2g/L,[pH]=5.15,[猪骨炭]=0.2g/L时,预吸附60min后加入[过硫酸盐]=2g/L进行催化降解,180min后去除率接近100% | [ |
1 | NIU Jin, SHAO Rong, LIU Mengyue, et al. Porous carbons derived from collagen-enriched biomass: tailored design, synthesis, and application in electrochemical energy storage and conversion[J]. Advanced Functional Materials, 2019, 29(46): 1905095. |
2 | WANG Jie, NIE Ping, DING Bing, et al. Biomass derived carbon for energy storage devices[J]. Journal of Materials Chemistry A, 2017, 5(6): 2411-2428. |
3 | HUANG Shuqiong, DING Yan, LI Yunchao, et al. Nitrogen and sulfur co-doped hierarchical porous biochar derived from the pyrolysis of Mantis shrimp shell for supercapacitor electrodes[J]. Energy & Fuels, 2021, 35(2): 1557-1566. |
4 | MONDAL A K, KRETSCHMER K, ZHAO Yufei, et al. Naturally nitrogen doped porous carbon derived from waste shrimp shells for high-performance lithium ion batteries and supercapacitors[J]. Microporous and Mesoporous Materials, 2017, 246: 72-80. |
5 | DOU Shuai, KE Xiaoxue, SHAO Zaidong, et al. Fish scale-based biochar with defined pore size and ultrahigh specific surface area for highly efficient adsorption of ciprofloxacin[J]. Chemosphere, 2022, 287: 131962. |
6 | GAO Yuan, ZHANG Yulin, LI Aimin, et al. Facile synthesis of high-surface area mesoporous biochar for energy storage via in situ template strategy[J]. Materials Letters, 2018, 230: 183-186. |
7 | LIAN Wanli, LI Hengyi, YANG Juhong, et al. Influence of pyrolysis temperature on the cadmium and lead removal behavior of biochar derived from oyster shell waste[J]. Bioresource Technology Reports, 2021, 15: 100709. |
8 | NIU Jin, SHAO Rong, LIU Mengyue, et al. Porous carbon electrodes with battery-capacitive storage features for high performance Li-ion capacitors[J]. Energy Storage Materials, 2018, 12: 145-152. |
9 | HUANG Wentao, ZHANG Hao, HUANG Yaqin, et al. Hierarchical porous carbon obtained from animal bone and evaluation in electric double-layer capacitors[J]. Carbon, 2011, 49(3): 838-843. |
10 | SONG Huihui, LI Hao, WANG Hui, et al. Chicken bone-derived N-doped porous carbon materials as an oxygen reduction electrocatalyst[J]. Electrochimica Acta, 2014, 147: 520-526. |
11 | SHAN Baohong, CUI Yongpeng, LIU Wei, et al. Fibrous bio-carbon foams: a new material for lithium-ion hybrid supercapacitors with ultrahigh integrated energy/power density and ultralong cycle life[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(11): 14989-15000. |
12 | 王勇. 植物麻杆基和胶原基生物质多孔炭的制备、表征及性能研究[D]. 北京: 北京化工大学, 2015: 1-175. |
WANG Yong. Preparation, characterization and properties of hemp stem-and pigskin collagen-derived porous carbons[D]. Beijing: Beijing University of Chemical Technology, 2015: 1-175. | |
13 | NIU Jin, LIU Mengyue, XU Feng, et al. Synchronously boosting gravimetric and volumetric performance: biomass-derived ternary-doped microporous carbon nanosheet electrodes for supercapacitors[J]. Carbon, 2018, 140: 664-672. |
14 | LIU Juan, YANG Xiaoyu, LIU Honghao, et al. Mixed biochar obtained by the co-pyrolysis of shrimp shell with corn straw: co-pyrolysis characteristics and its adsorption capability[J]. Chemosphere, 2021, 282: 131116. |
15 | NIU Jin, SHAO Rong, LIANG Jingjing, et al. Biomass-derived mesopore-dominant porous carbons with large specific surface area and high defect density as high performance electrode materials for Li-ion batteries and supercapacitors[J]. Nano Energy, 2017, 36: 322-330. |
16 | LIU Juan, YANG Xiaoyu, LIU Honghao, et al. Modification of calcium-rich biochar by loading Si/Mn binary oxide after NaOH activation and its adsorption mechanisms for removal of Cu(II) from aqueous solution[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 601: 124960. |
17 | CHEN Yingna, ZHANG Hailong, GUO Jian, et al. Highly efficient adsorption of p-xylene from aqueous solutions by hierarchical nanoporous biochar derived from crab shell[J]. Journal of Renewable Materials, 2021, 9(10): 1741-1755. |
18 | LIU Mengyue, NIU Jin, ZHANG Zhengping, et al. Porous carbons with tailored heteroatom doping and well-defined porosity as high-performance electrodes for robust Na-ion capacitors[J]. Journal of Power Sources, 2019, 414: 68-75. |
19 | QU Jiangying, Siyuan LYU, PENG Xiyue, et al. Nitrogen-doped porous “green carbon” derived from shrimp shell: combined effects of pore sizes and nitrogen doping on the performance of lithium sulfur battery[J]. Journal of Alloys and Compounds, 2016, 671: 17-23. |
20 | DENG Jiang, XIONG Tianyi, XU Fan, et al. Inspired by bread leavening: one-pot synthesis of hierarchically porous carbon for supercapacitors[J]. Green Chemistry, 2015, 17(7): 4053-4060. |
21 | LIU Mengyue, NIU Jin, ZHANG Zhengping, et al. Potassium compound-assistant synthesis of multi-heteroatom doped ultrathin porous carbon nanosheets for high performance supercapacitors[J]. Nano Energy, 2018, 51: 366-372. |
22 | MUNAR-FLOREZ D A, VARÓN-CARDENAS D A, RAMÍREZ-CONTRERAS N E, et al. Adsorption of ammonium and phosphates by biochar produced from oil palm shells: effects of production conditions[J]. Results in Chemistry, 2021, 3: 100119. |
23 | HE Chao, LIN Hengliang, DAI Leilei, et al. Waste shrimp shell-derived hydrochar as an emergent material for methyl orange removal in aqueous solutions[J]. Environment International, 2020, 134: 105340. |
24 | SUN Tao, XU Yingming, SUN Yuebing, et al. Crayfish shell biochar for the mitigation of Pb contaminated water and soil: characteristics, mechanisms, and applications[J]. Environmental Pollution, 2021, 271: 116308. |
25 | XIAO Yunlong, XUE Yingwen, GAO Fei, et al. Sorption of heavy metal ions onto crayfish shell biochar: effect of pyrolysis temperature, pH and ionic strength[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 80: 114-121. |
26 | LONG Li, XUE Yingwen, ZENG Yifan, et al. Synthesis, characterization and mechanism analysis of modified crayfish shell biochar possessed ZnO nanoparticles to remove trichloroacetic acid[J]. Journal of Cleaner Production, 2017, 166: 1244-1252. |
27 | PARK J H, WANG J J, XIAO Ran, et al. Effect of pyrolysis temperature on phosphate adsorption characteristics and mechanisms of crawfish char[J]. Journal of Colloid and Interface Science, 2018, 525: 143-151. |
28 | MAHMOUD M E, MOHAMED A K, SALAM M A. Self-decoration of N-doped graphene oxide 3-D hydrogel onto magnetic shrimp shell biochar for enhanced removal of hexavalent chromium[J]. Journal of Hazardous Materials, 2021, 408: 124951. |
29 | QIN Ling, ZHOU Zhiping, DAI Jiangdong, et al. Novel N-doped hierarchically porous carbons derived from sustainable shrimp shell for high-performance removal of sulfamethazine and chloramphenicol[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 62: 228-238. |
30 | GUO J, SONG Y, JI X, et al. Preparation and characterization of nanoporous activated carbon derived from prawn shell and its application for removal of heavy metal ions[J]. Materials, 2019, 12(2): E241. |
31 | LEE J I, KANG J K, HONG S H, et al. Thermally treated Mytilus coruscus shells for fluoride removal and their adsorption mechanism[J]. Chemosphere, 2021, 263: 128328. |
32 | XU Qi, ZHOU Qin, PAN Minmin, et al. Interaction between chlortetracycline and calcium-rich biochar: enhanced removal by adsorption coupled with flocculation[J]. Chemical Engineering Journal, 2020, 382: 122705. |
33 | DAI Lichun, ZHU Wenkun, HE Li, et al. Calcium-rich biochar from crab shell: an unexpected super adsorbent for dye removal[J]. Bioresource Technology, 2018, 267: 510-516. |
34 | DAI Lichun, TAN Furong, LI Hong, et al. Calcium-rich biochar from the pyrolysis of crab shell for phosphorus removal[J]. Journal of Environmental Management, 2017, 198: 70-74. |
35 | GAO Yuan, XU Shiping, YUE Qinyan, et al. Chemical preparation of crab shell-based activated carbon with superior adsorption performance for dye removal from wastewater[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 61: 327-335. |
36 | CHEN Tao, QUAN Xiangchun, JI Zehua, et al. Synthesis and characterization of a novel magnetic calcium-rich nanocomposite and its remediation behaviour for As(III) and Pb(II) co-contamination in aqueous systems[J]. Science of the Total Environment, 2020, 706: 135122. |
37 | CAI Lu, ZHANG Yan, ZHOU Yarui, et al. Effective adsorption of diesel oil by crab-shell-derived biochar nanomaterials[J]. Materials, 2019, 12(2): 236. |
38 | GU Siyi, ZHANG Daofang, GAO Yuquan, et al. Fabrication of porous carbon derived from cotton/polyester waste mixed with oyster shells: pore-forming process and application for tetracycline removal[J]. Chemosphere, 2021, 270: 129483. |
39 | MÓDENES A N, BAZARIN G, BORBA C E, et al. Tetracycline adsorption by tilapia fish bone-based biochar: mass transfer assessment and fixed-bed data prediction by hybrid statistical-phenomenological modeling[J]. Journal of Cleaner Production, 2021, 279: 123775. |
40 | 曹俊敏. 改性牛骨炭的制备及其对水中氟的吸附性能研究[D]. 南京: 南京信息工程大学, 2019: 1-69. |
CAO Junmin. Preparation of modified bovine bone biochar and its adsorption properties for fluorine in water[D]. Nanjing: Nanjing University of Information Science & Technology, 2019: 1-69. | |
41 | XIAO Jiang, HU Rui, CHEN Guangcai. Micro-nano-engineered nitrogenous bone biochar developed with a ball-milling technique for high-efficiency removal of aquatic Cd(II), Cu(II) and Pb(II)[J]. Journal of Hazardous Materials, 2020, 387: 121980. |
42 | YU Jiangfang, TANG Lin, PANG Ya, et al. Hierarchical porous biochar from shrimp shell for persulfate activation: a two-electron transfer path and key impact factors[J]. Applied Catalysis B: Environmental, 2020, 260: 118160. |
43 | REN Xiaoya, WANG Jingjing, YU Jiangfang, et al. Waste valorization: transforming the fishbone biowaste into biochar as an efficient persulfate catalyst for degradation of organic pollutant[J]. Journal of Cleaner Production, 2021, 291: 125225. |
44 | ZHOU Xuerong, ZENG Zhuotong, ZENG Guangming, et al. Persulfate activation by swine bone char-derived hierarchical porous carbon: multiple mechanism system for organic pollutant degradation in aqueous media[J]. Chemical Engineering Journal, 2020, 383: 123091. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 郑谦, 官修帅, 靳山彪, 张长明, 张小超. 铈锆固溶体Ce0.25Zr0.75O2光热协同催化CO2与甲醇合成DMC[J]. 化工进展, 2023, 42(S1): 319-327. |
[6] | 戴欢涛, 曹苓玉, 游新秀, 徐浩亮, 汪涛, 项玮, 张学杨. 木质素浸渍柚子皮生物炭吸附CO2特性[J]. 化工进展, 2023, 42(S1): 356-363. |
[7] | 崔守成, 徐洪波, 彭楠. 两种MOFs材料用于O2/He吸附分离的模拟分析[J]. 化工进展, 2023, 42(S1): 382-390. |
[8] | 王正坤, 黎四芳. 双子表面活性剂癸炔二醇的绿色合成[J]. 化工进展, 2023, 42(S1): 400-410. |
[9] | 陈崇明, 陈秋, 宫云茜, 车凯, 郁金星, 孙楠楠. 分子筛基CO2吸附剂研究进展[J]. 化工进展, 2023, 42(S1): 411-419. |
[10] | 高雨飞, 鲁金凤. 非均相催化臭氧氧化作用机理研究进展[J]. 化工进展, 2023, 42(S1): 430-438. |
[11] | 许春树, 姚庆达, 梁永贤, 周华龙. 共价有机框架材料功能化策略及其对Hg(Ⅱ)和Cr(Ⅵ)的吸附性能研究进展[J]. 化工进展, 2023, 42(S1): 461-478. |
[12] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[13] | 顾永正, 张永生. HBr改性飞灰对Hg0的动态吸附及动力学模型[J]. 化工进展, 2023, 42(S1): 498-509. |
[14] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[15] | 郭强, 赵文凯, 肖永厚. 增强流体扰动强化变压吸附甲硫醚/氮气分离的数值模拟[J]. 化工进展, 2023, 42(S1): 64-72. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |