化工进展 ›› 2022, Vol. 41 ›› Issue (12): 6489-6499.doi: 10.16085/j.issn.1000-6613.2022-0445
江汝清1,2(), 余广炜1(
), 王玉1,2, 黎长江1, 邢贞娇1
收稿日期:
2022-03-22
修回日期:
2022-04-18
出版日期:
2022-12-20
发布日期:
2022-12-29
通讯作者:
余广炜
E-mail:rqjiang@iue.ac.cn;gwyu@iue.ac.cn
作者简介:
江汝清(1996—),女,硕士,研究方向为固废处置。E-mail:rqjiang@iue.ac.cn。
基金资助:
JIANG Ruqing1,2(), YU Guangwei1(
), WANG Yu1,2, LI Changjiang1, XING Zhenjiao1
Received:
2022-03-22
Revised:
2022-04-18
Online:
2022-12-20
Published:
2022-12-29
Contact:
YU Guangwei
E-mail:rqjiang@iue.ac.cn;gwyu@iue.ac.cn
摘要:
以直接红23染料(DR23)溶液模拟印染废水,对比分析了酸改性前后猪粪生物炭对DR23的吸附特性与机理。通过静态吸附实验考察了DR23溶液的pH、初始浓度、吸附时间、吸附温度、吸附剂添加量等条件对吸附效果的影响,并确定了该吸附过程的吸附动力学和吸附等温线。研究发现,相比于未改性生物炭(PMB),酸改性后生物炭(PMBacid)结构变得疏松多孔,表面官能团丰富,表现出更优的脱色性能,对DR23的吸附去除率最高可达96.10%,最大饱和吸附量为111.51mg/g,且在经过3次循环再生后,PMBacid对DR23的去除率仍可达到88.31%;此外,pH对PMBacid的脱色吸附性能影响较小。PMBacid对DR23的吸附是一个受反应速率和扩散控制的复杂过程,符合于伪二级动力学模型和Langmuir等温吸附模型;PMBacid对DR23的吸附机理取决于吸附剂的物理化学性质,其孔结构及各官能团通过不同的机制参与了生物炭对DR23的吸附过程。
中图分类号:
江汝清, 余广炜, 王玉, 黎长江, 邢贞娇. 酸改性猪粪生物炭的制备及其对直接红23染料的吸附性能[J]. 化工进展, 2022, 41(12): 6489-6499.
JIANG Ruqing, YU Guangwei, WANG Yu, LI Changjiang, XING Zhenjiao. Preparation of acid-modified pig manure biochar and its adsorption performance on Direct Red 23[J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6489-6499.
1 | 秦翠兰, 王磊元, 刘飞, 等. 畜禽粪便生物质资源利用的现状与展望[J]. 农机化研究, 2015, 37(6): 234-238. |
QIN Cuilan, WANG Leiyuan, LIU Fei, et al. Status and prospects of livestock manure utilization of biomass resources[J]. Journal of Agricultural Mechanization Research, 2015, 37(6): 234-238. | |
2 | 王广, 曾加其, 王丹凤. 畜禽粪污综合利用模式探讨[J]. 畜禽业, 2021, 32(1): 28. |
WANG Guang, ZENG Jiaqi, WANG Danfeng. Comprehensive utilization model of livestock and poultry manure [J]. Livestock and Poultry Industry, 2021, 32(1): 28. | |
3 | CANTRELL K B, HUNT P G, UCHIMIYA M, et al. Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar[J]. Bioresource Technology, 2012, 107: 419-428. |
4 | 张祖康. 污水处理场废渣的减量和资源化[J]. 石油化工环境保护, 2000(3): 1-5. |
ZHANG Z K. Decreasing and utilizing waste sludge of wastewater treatment plant[J]. Environment Protection in Petrochemical Industry, 2000(3): 1-5. | |
5 | 蔺丽丽, 蒋文举, 金燕, 等. 微波法制备污泥活性炭研究[J]. 环境工程学报, 2007, 1(4): 119-122. |
LIN Lili, JIANG Wenju, JIN Yan, et al. Study on activated carbon made from sewage sludge by microwave[J]. Chinese Journal of Environmental Engineering, 2007, 1(4): 119-122. | |
6 | GONZÁLEZ-GUTIÉRREZ L V, GONZÁLEZ-ALATORRE G, ESCAMILLA-SILVA E M. Proposed pathways for the reduction of a reactive azo dye in an anaerobic fixed bed reactor[J]. World Journal of Microbiology and Biotechnology, 2009, 25(3): 415-426. |
7 | ARDEJANI F D, BADII K, LIMAEE N Y, et al. Adsorption of Direct Red 80 dye from aqueous solution onto almond shells: effect of pH, initial concentration and shell type[J]. Journal of Hazardous Materials, 2008, 151(2/3): 730-737. |
8 | KALLEL F, BOUAZIZ F, CHAARI F, et al. Interactive effect of garlic straw on the sorption and desorption of Direct Red 80 from aqueous solution[J]. Process Safety and Environmental Protection, 2016, 102: 30-43. |
9 | AHMAD A L, PUASA S W, ZULKALI M M D. Micellar-enhanced ultrafiltration for removal of reactive dyes from an aqueous solution[J]. Desalination, 2006, 191(1/2/3): 153-161. |
10 | ALVENTOSA-DELARA E, BARREDO-DAMAS S, ALCAINA-MIRANDA M I, et al. Ultrafiltration technology with a ceramic membrane for reactive dye removal: optimization of membrane performance[J]. Journal of Hazardous Materials, 2012, 209/210: 492-500. |
11 | KIM T H, PARK C, YANG J, et al. Comparison of disperse and reactive dye removals by chemical coagulation and Fenton oxidation[J]. Journal of Hazardous Materials, 2004, 112(1/2): 95-103. |
12 | SZPYRKOWICZ L, JUZZOLINO C, KAUL S N. A comparative study on oxidation of disperse dyes by electrochemical process, ozone, hypochlorite and Fenton reagent[J]. Water Research, 2001, 35(9): 2129-2136. |
13 | NOROOZI B, SORIAL G A. Applicable models for multi-component adsorption of dyes: a review[J]. Journal of Environmental Sciences, 2013, 25(3): 419-429. |
14 | SADEGH H, ALI G A M, GUPTA V K, et al. The role of nanomaterials as effective adsorbents and their applications in wastewater treatment[J]. Journal of Nanostructure in Chemistry, 2017, 7(1): 1-14. |
15 | SUZAIMI N D, GOH P S, MALEK N A N N, et al. Enhancing the performance of porous rice husk silica through branched polyethyleneimine grafting for phosphate adsorption[J]. Arabian Journal of Chemistry, 2020, 13(8): 6682-6695. |
16 | AHMADI Z, RAMEZANI H, AZIZI S N, et al. Synthesis of zeolite NaY supported Mn-doped ZnS quantum dots and investigation of their photodegradation ability towards organic dyes[J]. Environmental Science and Pollution Research International, 2020, 27(9): 9707-9717. |
17 | ALAKHRAS F, ALHAJRI E, HAOUNATI R, et al. A comparative study of photocatalytic degradation of Rhodamine B using natural-based zeolite composites[J]. Surfaces and Interfaces, 2020, 20: 100611. |
18 | BOUDECHICHE N, FARES M, OUYAHIA S, et al. Comparative study on removal of two basic dyes in aqueous medium by adsorption using activated carbon from Ziziphus lotus stones[J]. Microchemical Journal, 2019, 146: 1010-1018. |
19 | OTERO M, ROZADA F, CALVO L F, et al. Kinetic and equilibrium modelling of the methylene blue removal from solution by adsorbent materials produced from sewage sludges[J]. Biochemical Engineering Journal, 2003, 15(1): 59-68. |
20 | SMITH K M, FOWLER G D, PULLKET S, et al. Sewage sludge-based adsorbents: a review of their production, properties and use in water treatment applications[J]. Water Research, 2009, 43(10): 2569-2594. |
21 | 龚真萍, 赵红, 郑永杰, 等. 生物炭材料的制备及其在印染废水处理中的应用[J]. 染整技术, 2021, 43(12): 1-4. |
GONG Zhenping, ZHAO Hong, ZHENG Yongjie, et al. Preparation of biochar material and its application in dyeing and printing wastewater treatment[J]. Textile Dyeing and Finishing Journal, 2021, 43(12): 1-4. | |
22 | 朱国婷, 邢献军, 汪家权, 等. 酸预处理活性炭对废水染料的吸附研究[J]. 环境科学与技术, 2016, 39(S2): 160-165. |
ZHU Guoting, XING Xianjun, WANG Jiaquan, et al. Study on the adsorption of dyes in wastewater on activated carbon pre-treated with acid[J]. Environmental Science & Technology, 2016, 39(S2): 160-165. | |
23 | 张志芳, 邵红, 孔祥西, 等. 花生壳活性炭的制备及其对染料废水的脱色性能研究[J]. 沈阳化工大学学报, 2014, 28(2): 130-136. |
ZHANG Zhifang, SHAO Hong, KONG Xiangxi, et al. Decoloring capability of activated carbon from peanut shell to dye wastewater[J]. Journal of Shenyang University of Chemical Technology, 2014, 28(2): 130-136. | |
24 | 孙良媛, 刘涛, 张乐. 中国规模化畜禽养殖的现状及其对生态环境的影响[J]. 华南农业大学学报(社会科学版), 2016, 15(2): 23-30. |
SUN Liangyuan, LIU Tao, ZHANG Le. The pollution of scale livestock and poultry breeding and its influence on eco-environment[J]. Journal of South China Agricultural University (Social Science Edition), 2016, 15(2): 23-30. | |
25 | 武淑霞, 刘宏斌, 黄宏坤, 等. 我国畜禽养殖粪污产生量及其资源化分析[J]. 中国工程科学, 2018, 20(5): 103-111. |
WU Shuxia, LIU Hongbin, HUANG Hongkun, et al. Analysis on the amount and utilization of manure in livestock and poultry breeding in China[J]. Engineering Science, 2018, 20(5): 103-111. | |
26 | CHLOPIN W, BALANDIN A. Über Die adsorption des bariumchlorids durch das kolloidale mangansuperoxydhydrat in wäßrigen lösungen[J]. Zeitschrift Für Anorganische Und Allgemeine Chemie, 1925, 149(1): 157-166. |
27 | LANGMUIR I. The constitution and fundamental properties of solids and liquids[J]. Journal of the Franklin Institute, 1917, 183(1): 102-105. |
28 | AKSU Z. Biosorption of reactive dyes by dried activated sludge: equilibrium and kinetic modelling[J]. Biochemical Engineering Journal, 2001, 7(1): 79-84. |
29 | HO Y S, MCKAY G. Pseudo-second order model for sorption processes[J]. Process Biochemistry, 1999, 34(5): 451-465. |
30 | NAUTIYAL P, SUBRAMANIAN K A, DASTIDAR M G. Adsorptive removal of dye using biochar derived from residual algae after in situ transesterification: alternate use of waste of biodiesel industry[J]. Journal of Environmental Management, 2016, 182: 187-197. |
31 | AKGÜL M. Enhancement of the anionic dye adsorption capacity of clinoptilolite by Fe3+-grafting[J]. Journal of Hazardous Materials, 2014, 267: 1-8. |
32 | LIU N, ZHU M L, WANG H, et al. Adsorption characteristics of Direct Red 23 from aqueous solution by biochar[J]. Journal of Molecular Liquids, 2016, 223: 335-342. |
33 | JIANG R Q, YU G W, NDAGIJIMANA P, et al. Effective adsorption of direct Red 23 by sludge biochar-based adsorbent: adsorption kinetics, thermodynamics and mechanisms study[J]. Water Science and Technology, 2021, 83(10): 2424-2436. |
34 | REN X L, LAI X H, ZHU K J, et al. Removal of acid turquoise blue 2G from aqueous solution by adsorbent derived from sludge and straw: kinetic, isotherm and thermodynamic study[J]. Desalination and Water Treatment, 2016, 57(1): 440-448. |
35 | SUN Y B, DING C C, CHENG W C, et al. Simultaneous adsorption and reduction of U( Ⅵ ) on reduced graphene oxide-supported nanoscale zerovalent iron[J]. Journal of Hazardous Materials, 2014, 280: 399-408. |
36 | VADIVELAN V, KUMAR K V. Equilibrium, kinetics, mechanism, and process design for the sorption of methylene blue onto rice husk[J]. Journal of Colloid and Interface Science, 2005, 286(1): 90-100. |
37 | 韩闯. 污泥生物炭水热制备及其对染料脱色研究[D]. 上海: 东华大学, 2017. |
HAN Chuang. Preparation of sludge biochar and its decolorization of dye[D]. Shanghai: Donghua University, 2017. | |
38 | KANG J, ZHANG H Y, DUAN X G, et al. Magnetic Ni-Co alloy encapsulated N-doped carbon nanotubes for catalytic membrane degradation of emerging contaminants[J]. Chemical Engineering Journal, 2019, 362: 251-261. |
39 | 王泽庆, 朱耀辉, 仲茜溪, 等. 南疆棉花秸秆生物炭对水中亚甲基蓝的吸附特性[J]. 广东化工, 2020, 47(5): 22-26. |
WANG Z Q, ZHU Y H, ZHONG X X, et al. Adsorption characteristics of aqueous methylene blue by biochar pyrolyzed from cotton straw in south Xinjiang[J]. Guangdong Chemical Industry, 2020, 47(5): 22-26. | |
40 | YAO Y, ZHANG Y, GAO B, et al. Removal of sulfamethoxazole (SMX) and sulfapyridine (SPY) from aqueous solutions by biochars derived from anaerobically digested bagasse[J]. Environmental Science and Pollution Research International, 2018, 25(26): 25659-25667. |
41 | LUO F, CHEN Z L, MEGHARAJ M, et al. Simultaneous removal of trichloroethylene and hexavalent chromium by green synthesized agarose-Fe nanoparticles hydrogel[J]. Chemical Engineering Journal, 2016, 294: 290-297. |
42 | WENG X L, LIN S, ZHONG Y H, et al. Chitosan stabilized bimetallic Fe/Ni nanoparticles used to remove mixed contaminants-amoxicillin and Cd (II) from aqueous solutions[J]. Chemical Engineering Journal, 2013, 229: 27-34. |
43 | GONG J, LIU J, JIANG Z W, et al. A facile approach to prepare porous cup-stacked carbon nanotube with high performance in adsorption of methylene blue[J]. Journal of Colloid and Interface Science, 2015, 445: 195-204. |
44 | SONG X D, XUE X Y, CHEN D Z, et al. Application of biochar from sewage sludge to plant cultivation: influence of pyrolysis temperature and biochar-to-soil ratio on yield and heavy metal accumulation[J]. Chemosphere, 2014, 109: 213-220. |
45 | 陈思. 污泥-稻壳共热解及生物炭吸附特性研究[D]. 武汉: 武汉大学, 2019. |
CHEN Si. Study on the co-pyrolysis of sludge-rice hull and the adsorption properties of biochar[D]. Wuhan: Wuhan University, 2019. |
[1] | 王一茹, 宋小三, 水博阳, 王三反. 胺功能化介孔二氧化硅捕集CO2的研究进展[J]. 化工进展, 2022, 41(S1): 536-544. |
[2] | 祁元, 徐欣蓉, 阮玮, 吴昊, 吴科, 周亚明, 杨宏旻. 改性活性碳纤维对苯胺吸附特性分析[J]. 化工进展, 2022, 41(S1): 622-630. |
[3] | 王子航, 梁瑞升, 邓超和, 王佳韵. 离子凝胶复合吸附剂的制备及空气取水性能[J]. 化工进展, 2022, 41(S1): 389-396. |
[4] | 曹正凯, 米晓斌, 吴子明, 孙士可, 曹均丰, 彭德强, 梁相程. 煤合成气净化除尘装置压降问题分析及应用优化[J]. 化工进展, 2022, 41(S1): 15-21. |
[5] | 蒲福龙, 伍尚炜, 郑映玲, 郑玉意, 侯雪丹. 基于乳酸的深度共熔溶剂提取秸秆木质素对纤维素酶水解效率的影响[J]. 化工进展, 2022, 41(9): 4937-4945. |
[6] | 李兴, 黄宏宇, 大坂侑吾, 呼和涛力, 肖林发, 李军. 碳材料吸附脱除二氧化硫性能的影响因素[J]. 化工进展, 2022, 41(9): 4963-4972. |
[7] | 袁权, 李海红, 刘浩杰. HNO3改性活性炭对不同价态离子的电吸附规律[J]. 化工进展, 2022, 41(9): 4986-4994. |
[8] | 刘畅, 李玉宝, 左奕, 李吉东. 羟基磷灰石负载黄芩苷的不同载药方法比较分析[J]. 化工进展, 2022, 41(9): 4995-5002. |
[9] | 杨柳, 王名威, 张耀斌. 磁铁矿负载生物炭强化厌氧微生物处理2,4-二氯苯酚废水[J]. 化工进展, 2022, 41(9): 5065-5073. |
[10] | 杨程嵛, 刘敏, 袁林, 胡璇, 陈滢. 竹基纤维素纳米纤丝交联改性后对水体中低浓度磷的吸附[J]. 化工进展, 2022, 41(9): 5074-5084. |
[11] | 肖毅, 王兵兵, 于旭亮, 王鑫, 蔡汉友. 换热壁面碳酸钙吸附与脱水行为的分子动力学[J]. 化工进展, 2022, 41(8): 4077-4085. |
[12] | 祖梅, 许海涛, 谢炜, 程海峰. 金属有机框架材料的水稳定性及吸水应用进展[J]. 化工进展, 2022, 41(8): 4254-4267. |
[13] | 张雨珂, 刘倩, 段媛媛, 赵英杰, 崔阳, 史利娟, 李向远, 李剑川, 范海明, 易群. 基于MOFs材料的低碳烃(C1~C3)分离研究进展[J]. 化工进展, 2022, 41(8): 4288-4302. |
[14] | 王震, 闫霆, 霍英杰. 氯化锰/氨热化学吸附储热的特性[J]. 化工进展, 2022, 41(8): 4425-4431. |
[15] | 黄霞, 何莹莹, 张艺蝶, 杨殿海, 戴晓虎, 谢丽. 基于生物炭强化有机固废好氧堆肥资源化的研究进展[J]. 化工进展, 2022, 41(8): 4544-4554. |
|