化工进展 ›› 2022, Vol. 41 ›› Issue (8): 4086-4097.DOI: 10.16085/j.issn.1000-6613.2021-1969
韩明阳(), 乔慧, 付佳铭, 马泽雯, 王妍, 欧阳嘉()
收稿日期:
2021-09-15
修回日期:
2022-01-14
出版日期:
2022-08-25
发布日期:
2022-08-22
通讯作者:
欧阳嘉
作者简介:
韩明阳(1996—),男,硕士研究生,研究方向为木质纤维原料利用。E-mail:基金资助:
HAN Mingyang(), QIAO Hui, FU Jiaming, MA Zewen, WANG Yan, OUYANG Jia()
Received:
2021-09-15
Revised:
2022-01-14
Online:
2022-08-25
Published:
2022-08-22
Contact:
OUYANG Jia
摘要:
木质纤维素是目前中国最丰富的可再生资源,但由于其交织的复杂结构阻碍了内部纤维素和半纤维素的后续转化,这促使研究者们去寻求有效的预处理方法以解决目前的困境。近年来,随着预处理溶剂不断被发现和新型溶剂的快速涌现,非水溶剂预处理作为一种新兴的预处理方式在木质纤维素生物炼制中展现出良好的效果和应用前景。本文在系统介绍了各种非水溶剂理化性质和特点的基础上,综述了各种非水溶剂对木质纤维素预处理的作用原理、半纤维素和木质素的去除效果以及对纤维素酶解性能的影响,同时总结归纳了不同非水溶剂预处理的主要优缺点,并对非水溶剂预处理面临的挑战和未来的发展方向进行了展望,以期对未来绿色、低廉、高效的预处理方法提供借鉴和指导。
中图分类号:
韩明阳, 乔慧, 付佳铭, 马泽雯, 王妍, 欧阳嘉. 非水溶剂预处理木质纤维原料研究进展[J]. 化工进展, 2022, 41(8): 4086-4097.
HAN Mingyang, QIAO Hui, FU Jiaming, MA Zewen, WANG Yan, OUYANG Jia. Research progress of non-aqueous solvents on the pretreatment of lignocellulose[J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4086-4097.
溶剂 | 化学式 | 介电常数(εr) | Hildebrand溶解参数/MPa1/2 | 极性参数ET(30)/kcal·mol-1 | 沸点/℃ | 闪点/℃ |
---|---|---|---|---|---|---|
乙醇 | C2H6O | 24.55 | 26.5 | 0.654 | 78.3 | 12 |
甲醇 | CH4O | 32.66 | 29.6 | 0.762 | 64.5 | 11.1 |
丙三醇 | C3H8O3 | 47 | 36.1 | 0.817 | 290 | 176 |
乙二醇 | C2H6O2 | 37.7 | 32.9 | 0.79 | 197.3 | 111.1 |
甲酸 | CH2O2 | 58.5(16℃) | 24.9 | 0.833 | 100.6 | 69 |
乙酸 | C2H4O2 | 6.17(20℃) | 21.4 | 0.648 | 117.9 | 39 |
丙酮 | C3H6O | 20.56 | 20 | 0.355 | 56.5 | -20 |
甲基异丁基酮 | C6H12O | 13.11(20℃) | 17.4 | 0.179 | 116.5 | 13.3 |
γ-戊内酯 | C5H8O2 | — | — | — | 207 | 81 |
甲基四氢呋喃 | C5H10O | 6.97 | — | — | 80 | -11 |
表1 非水溶剂的物理化学性质[10]
溶剂 | 化学式 | 介电常数(εr) | Hildebrand溶解参数/MPa1/2 | 极性参数ET(30)/kcal·mol-1 | 沸点/℃ | 闪点/℃ |
---|---|---|---|---|---|---|
乙醇 | C2H6O | 24.55 | 26.5 | 0.654 | 78.3 | 12 |
甲醇 | CH4O | 32.66 | 29.6 | 0.762 | 64.5 | 11.1 |
丙三醇 | C3H8O3 | 47 | 36.1 | 0.817 | 290 | 176 |
乙二醇 | C2H6O2 | 37.7 | 32.9 | 0.79 | 197.3 | 111.1 |
甲酸 | CH2O2 | 58.5(16℃) | 24.9 | 0.833 | 100.6 | 69 |
乙酸 | C2H4O2 | 6.17(20℃) | 21.4 | 0.648 | 117.9 | 39 |
丙酮 | C3H6O | 20.56 | 20 | 0.355 | 56.5 | -20 |
甲基异丁基酮 | C6H12O | 13.11(20℃) | 17.4 | 0.179 | 116.5 | 13.3 |
γ-戊内酯 | C5H8O2 | — | — | — | 207 | 81 |
甲基四氢呋喃 | C5H10O | 6.97 | — | — | 80 | -11 |
溶剂(体积分数) | 催化剂(质量分数) | 底物 | 预处理条件 | 半纤维素去除率/% | 木质素去除率/% | 纤维素酶解得率/% | 参考文献 |
---|---|---|---|---|---|---|---|
40%乙醇 | — | 甘蔗渣 | 195℃,30min | 66.25 | 47.79 | 92.2 | [ |
50%乙醇 | — | 甘蔗渣 | 190℃,45min | 72.1 | 50.1 | 90.83 | [ |
60%乙醇 | — | 甘蔗渣 | 190℃,45min | 56.3 | 44.6 | 92.50 | [ |
70%乙醇 | — | 甘蔗渣 | 190℃,45min | 42.3 | 42.8 | 46.04 | [ |
80%乙醇 | — | 甘蔗渣 | 190℃,45min | 24.7 | 21.2 | 33.09 | [ |
50%乙醇 | — | 桉树 | 170℃,10min | 18.9 | 21.1 | 8.1 | [ |
50%乙醇 | 1% H2SO4 | 桉树 | 140℃,10min | 90.2 | 70.0 | 55.6 | [ |
50%乙醇 | 1% H2SO4 | 桉树 | 150℃,10min | 96.6 | 74.0 | 62.1 | [ |
50%乙醇 | 1% H2SO4 | 桉树 | 160℃,10min | 98.3 | 83.3 | 77.5 | [ |
50%乙醇 | 1% H2SO4 | 桉树 | 170℃,10min | 99.2 | 80.7 | 75.8 | [ |
60%乙醇 | — | 甘蔗渣 | 120℃,60min | 13.4 | 2.5 | 23.6 | [ |
60%乙醇 | 5%NaOH | 甘蔗渣 | 120℃,60min | 22.6 | 17.9 | 72.0 | [ |
60%乙醇 | 5% NaOH | 甘蔗渣 | 180℃,30min | 92.9 | 71.8 | 93.0 | [ |
60%乙醇 | 正丙胺 | 玉米秸秆 | 140℃,40min | 78.9 | 81.7 | 83.2 | [ |
50%甲醇 | 碱性液体 | 甘蔗渣 | 120℃,180min | — | 82.75 | 92.82 | [ |
50%甲醇 | 2% NaOH | 菜花废弃物 | 80℃,90min | — | 86.7 | 97.9 | [ |
表2 低沸点醇类预处理木质纤维素生物质
溶剂(体积分数) | 催化剂(质量分数) | 底物 | 预处理条件 | 半纤维素去除率/% | 木质素去除率/% | 纤维素酶解得率/% | 参考文献 |
---|---|---|---|---|---|---|---|
40%乙醇 | — | 甘蔗渣 | 195℃,30min | 66.25 | 47.79 | 92.2 | [ |
50%乙醇 | — | 甘蔗渣 | 190℃,45min | 72.1 | 50.1 | 90.83 | [ |
60%乙醇 | — | 甘蔗渣 | 190℃,45min | 56.3 | 44.6 | 92.50 | [ |
70%乙醇 | — | 甘蔗渣 | 190℃,45min | 42.3 | 42.8 | 46.04 | [ |
80%乙醇 | — | 甘蔗渣 | 190℃,45min | 24.7 | 21.2 | 33.09 | [ |
50%乙醇 | — | 桉树 | 170℃,10min | 18.9 | 21.1 | 8.1 | [ |
50%乙醇 | 1% H2SO4 | 桉树 | 140℃,10min | 90.2 | 70.0 | 55.6 | [ |
50%乙醇 | 1% H2SO4 | 桉树 | 150℃,10min | 96.6 | 74.0 | 62.1 | [ |
50%乙醇 | 1% H2SO4 | 桉树 | 160℃,10min | 98.3 | 83.3 | 77.5 | [ |
50%乙醇 | 1% H2SO4 | 桉树 | 170℃,10min | 99.2 | 80.7 | 75.8 | [ |
60%乙醇 | — | 甘蔗渣 | 120℃,60min | 13.4 | 2.5 | 23.6 | [ |
60%乙醇 | 5%NaOH | 甘蔗渣 | 120℃,60min | 22.6 | 17.9 | 72.0 | [ |
60%乙醇 | 5% NaOH | 甘蔗渣 | 180℃,30min | 92.9 | 71.8 | 93.0 | [ |
60%乙醇 | 正丙胺 | 玉米秸秆 | 140℃,40min | 78.9 | 81.7 | 83.2 | [ |
50%甲醇 | 碱性液体 | 甘蔗渣 | 120℃,180min | — | 82.75 | 92.82 | [ |
50%甲醇 | 2% NaOH | 菜花废弃物 | 80℃,90min | — | 86.7 | 97.9 | [ |
溶剂 | 催化剂 | 底物 | 预处理条件 | 半纤维素去除率/% | 木质素去除率/% | 纤维素酶解得率/% | 参考文献 |
---|---|---|---|---|---|---|---|
100%甘油 | — | 麦草 | 240℃,4h | — | 70 | 90 | [ |
100%甘油 | 0.02% H2SO4 | 甘蔗渣 | 160℃,30min | 67 | 28 | — | [ |
100%甘油 | 0.04% H2SO4 | 甘蔗渣 | 160℃,30min | 83 | 31 | — | [ |
100%甘油 | 0.06% H2SO4 | 甘蔗渣 | 200℃,15min | 82 | 52 | 70 | [ |
80%乙二醇 | — | 玉米秸秆 | 120℃,60min | 7.5 | 27.7 | — | [ |
80%乙二醇 | 0.6% H2SO4 | 玉米秸秆 | 120℃,60min | 81.3 | 80.3 | 70.6 | [ |
90%乙二醇 | — | 甘蔗渣 | 150℃,60min | 6.5 | 3.6 | 29.8 | [ |
90%乙二醇 | 1mol/L HCl | 甘蔗渣 | 150℃,60min | 99.3 | 67.1 | 80.1 | [ |
90%乙二醇 | 1mol/L NaOH | 甘蔗渣 | 150℃,60min | 28.8 | 90.9 | 90.0 | [ |
90%乙二醇 | 0.006mol/L AlCl3 | 稻草 | 150℃,30min | 0.2 | 35.0 | — | [ |
90%乙二醇 | 0.028mol/L AlCl3 | 稻草 | 150℃,30min | 82.4 | 83.5 | — | [ |
90%乙二醇 | 0.055mol/L AlCl3 | 稻草 | 150℃,30min | 90.1 | 87.7 | 94 | [ |
表3 高沸点醇类预处理木质纤维素生物质
溶剂 | 催化剂 | 底物 | 预处理条件 | 半纤维素去除率/% | 木质素去除率/% | 纤维素酶解得率/% | 参考文献 |
---|---|---|---|---|---|---|---|
100%甘油 | — | 麦草 | 240℃,4h | — | 70 | 90 | [ |
100%甘油 | 0.02% H2SO4 | 甘蔗渣 | 160℃,30min | 67 | 28 | — | [ |
100%甘油 | 0.04% H2SO4 | 甘蔗渣 | 160℃,30min | 83 | 31 | — | [ |
100%甘油 | 0.06% H2SO4 | 甘蔗渣 | 200℃,15min | 82 | 52 | 70 | [ |
80%乙二醇 | — | 玉米秸秆 | 120℃,60min | 7.5 | 27.7 | — | [ |
80%乙二醇 | 0.6% H2SO4 | 玉米秸秆 | 120℃,60min | 81.3 | 80.3 | 70.6 | [ |
90%乙二醇 | — | 甘蔗渣 | 150℃,60min | 6.5 | 3.6 | 29.8 | [ |
90%乙二醇 | 1mol/L HCl | 甘蔗渣 | 150℃,60min | 99.3 | 67.1 | 80.1 | [ |
90%乙二醇 | 1mol/L NaOH | 甘蔗渣 | 150℃,60min | 28.8 | 90.9 | 90.0 | [ |
90%乙二醇 | 0.006mol/L AlCl3 | 稻草 | 150℃,30min | 0.2 | 35.0 | — | [ |
90%乙二醇 | 0.028mol/L AlCl3 | 稻草 | 150℃,30min | 82.4 | 83.5 | — | [ |
90%乙二醇 | 0.055mol/L AlCl3 | 稻草 | 150℃,30min | 90.1 | 87.7 | 94 | [ |
溶剂 | 催化剂 | 底物 | 预处理条件 | 后处理条件 | 半纤维素去除率/% | 木质素去除率/% | 纤维素酶解得率/% | 参考文献 |
---|---|---|---|---|---|---|---|---|
85%甲酸 | — | 甘蔗梢 | 125℃,1.5h | — | 96.3 | 90.8 | — | [ |
68%甲酸 | — | 甘蔗渣 | 107℃,1h | — | 78.1 | 60.0 | 60.0 | [ |
78%甲酸 | — | 甘蔗渣 | 107℃,1h | — | 84.0 | 74.2 | 79.1 | [ |
88%甲酸 | — | 甘蔗渣 | 107℃,1h | — | 90.7 | 74.5 | 58.2 | [ |
88%甲酸 | — | 甘蔗渣 | 107℃,1h | 1% NaOH | 84.3 | 87.6 | 90.1 | [ |
88%甲酸 | — | 甘蔗渣 | 107℃,1h | 2% NaOH | 85.8 | 88.7 | 94.3 | [ |
88%甲酸 | — | 甘蔗渣 | 107℃,1h | 3% NaOH | 86.1 | 88.8 | 95.7 | [ |
88%甲酸 | — | 甘蔗渣 | 107℃,1h | 4% NaOH | 84.5 | 87.9 | 93.3 | [ |
88%甲酸 | — | 甘蔗渣 | 107℃,1h | 1% Ca(OH)2 | 84.9 | 87.8 | 97.7 | [ |
88%甲酸 | — | 甘蔗渣 | 107℃,1h | 2% Ca(OH)2 | 85.7 | 89.1 | 95.4 | [ |
88%甲酸 | — | 甘蔗渣 | 107℃,1h | 3% Ca(OH)2 | 87.0 | 91.7 | 88.0 | [ |
88%甲酸 | — | 甘蔗渣 | 107℃,1h | 4% Ca(OH)2 | 97.5 | 90.7 | 89.8 | [ |
88%甲酸 | — | 玉米芯 | 80℃,3h | — | 90.1 | 87.1 | 9.1 | [ |
88%甲酸 | — | 玉米芯 | 80℃,3h | 2% NaOH | 90.1 | 87.1 | 14.2 | [ |
88%甲酸 | — | 玉米芯 | 80℃,3h | CaCO3 | 90.1 | 87.1 | 38.4 | [ |
88%甲酸 | — | 玉米芯 | 80℃,3h | 50℃热水 | 90.1 | 87.1 | 81.2 | [ |
88%甲酸 | — | 玉米芯 | 80℃,3h | Na2CO3 | 90.1 | 87.1 | 98.5 | [ |
88%甲酸 | — | 玉米芯 | 80℃,1.5h | 1%H2O2 | — | 87.9 | 83.7 | [ |
20%乙酸 | 0.7%H2SO4 | 油茶果壳 | 135℃,0.5h | — | 9.0 | 11.9 | — | [ |
60%乙酸 | 0.7%H2SO4 | 油茶果壳 | 135℃,0.5h | — | 80.2 | 67.1 | — | [ |
80%乙酸 | 0.3%H2SO4 | 甘蔗渣 | 107℃,1.5h | NaOH | 58.3 | 71.6 | 62 | [ |
50%乙酸 | 50%H2O2 | 玉米秸秆 | 80℃,2h | — | 68 | 45.0 | — | [ |
50%乙酸 | 50%H2O2 | 甘蔗渣 | 80℃,2h | — | 55 | 69.7 | — | [ |
50%乙酸 | 50%H2O2 | 桉树皮 | 80℃,2h | — | 41 | 74.6 | — | [ |
表4 有机酸预处理木质纤维素生物质
溶剂 | 催化剂 | 底物 | 预处理条件 | 后处理条件 | 半纤维素去除率/% | 木质素去除率/% | 纤维素酶解得率/% | 参考文献 |
---|---|---|---|---|---|---|---|---|
85%甲酸 | — | 甘蔗梢 | 125℃,1.5h | — | 96.3 | 90.8 | — | [ |
68%甲酸 | — | 甘蔗渣 | 107℃,1h | — | 78.1 | 60.0 | 60.0 | [ |
78%甲酸 | — | 甘蔗渣 | 107℃,1h | — | 84.0 | 74.2 | 79.1 | [ |
88%甲酸 | — | 甘蔗渣 | 107℃,1h | — | 90.7 | 74.5 | 58.2 | [ |
88%甲酸 | — | 甘蔗渣 | 107℃,1h | 1% NaOH | 84.3 | 87.6 | 90.1 | [ |
88%甲酸 | — | 甘蔗渣 | 107℃,1h | 2% NaOH | 85.8 | 88.7 | 94.3 | [ |
88%甲酸 | — | 甘蔗渣 | 107℃,1h | 3% NaOH | 86.1 | 88.8 | 95.7 | [ |
88%甲酸 | — | 甘蔗渣 | 107℃,1h | 4% NaOH | 84.5 | 87.9 | 93.3 | [ |
88%甲酸 | — | 甘蔗渣 | 107℃,1h | 1% Ca(OH)2 | 84.9 | 87.8 | 97.7 | [ |
88%甲酸 | — | 甘蔗渣 | 107℃,1h | 2% Ca(OH)2 | 85.7 | 89.1 | 95.4 | [ |
88%甲酸 | — | 甘蔗渣 | 107℃,1h | 3% Ca(OH)2 | 87.0 | 91.7 | 88.0 | [ |
88%甲酸 | — | 甘蔗渣 | 107℃,1h | 4% Ca(OH)2 | 97.5 | 90.7 | 89.8 | [ |
88%甲酸 | — | 玉米芯 | 80℃,3h | — | 90.1 | 87.1 | 9.1 | [ |
88%甲酸 | — | 玉米芯 | 80℃,3h | 2% NaOH | 90.1 | 87.1 | 14.2 | [ |
88%甲酸 | — | 玉米芯 | 80℃,3h | CaCO3 | 90.1 | 87.1 | 38.4 | [ |
88%甲酸 | — | 玉米芯 | 80℃,3h | 50℃热水 | 90.1 | 87.1 | 81.2 | [ |
88%甲酸 | — | 玉米芯 | 80℃,3h | Na2CO3 | 90.1 | 87.1 | 98.5 | [ |
88%甲酸 | — | 玉米芯 | 80℃,1.5h | 1%H2O2 | — | 87.9 | 83.7 | [ |
20%乙酸 | 0.7%H2SO4 | 油茶果壳 | 135℃,0.5h | — | 9.0 | 11.9 | — | [ |
60%乙酸 | 0.7%H2SO4 | 油茶果壳 | 135℃,0.5h | — | 80.2 | 67.1 | — | [ |
80%乙酸 | 0.3%H2SO4 | 甘蔗渣 | 107℃,1.5h | NaOH | 58.3 | 71.6 | 62 | [ |
50%乙酸 | 50%H2O2 | 玉米秸秆 | 80℃,2h | — | 68 | 45.0 | — | [ |
50%乙酸 | 50%H2O2 | 甘蔗渣 | 80℃,2h | — | 55 | 69.7 | — | [ |
50%乙酸 | 50%H2O2 | 桉树皮 | 80℃,2h | — | 41 | 74.6 | — | [ |
溶剂 | 物料 | 预处理条件 | 半纤维素去除率/% | 木质素去除率/% | 纤维素酶解得率/% | 参考文献 |
---|---|---|---|---|---|---|
[Bmim][Cl] | 云杉 | 120℃,1h | 15 | 12.7 | 62.2 | [ |
[Bmim][Cl]+Na2SiO3 | 云杉 | 120℃,1h | 27.1 | 31.9 | 59 | [ |
[Bmim][Cl] | 柳树 | 120℃,1h | 10.5 | 17.5 | 31.5 | [ |
[Bmim][Cl]+Na2SiO3 | 柳树 | 120℃,1h | 35.8 | 31.7 | 98.6 | [ |
[Bmim][Cl] | 大豆秸秆 | 120℃,1h | 16 | 20 | 46.6 | [ |
[Bmim][Cl]+Na2SiO3 | 大豆秸秆 | 120℃,1h | 44.4 | 44.6 | 57.7 | [ |
GH-EG-PTSA | 柳枝稷 | 120℃,30min | 79.36 | 82.07 | 74.69 | [ |
LA/ChCl | 柳枝稷 | 微波辐射45s | 83.65 | 72.23 | 75 | [ |
LA/ChCl | 玉米秸秆 | 微波辐射45s | 90.06 | 79.6 | 78.5 | [ |
表5 新型溶剂预处理木质纤维素生物质
溶剂 | 物料 | 预处理条件 | 半纤维素去除率/% | 木质素去除率/% | 纤维素酶解得率/% | 参考文献 |
---|---|---|---|---|---|---|
[Bmim][Cl] | 云杉 | 120℃,1h | 15 | 12.7 | 62.2 | [ |
[Bmim][Cl]+Na2SiO3 | 云杉 | 120℃,1h | 27.1 | 31.9 | 59 | [ |
[Bmim][Cl] | 柳树 | 120℃,1h | 10.5 | 17.5 | 31.5 | [ |
[Bmim][Cl]+Na2SiO3 | 柳树 | 120℃,1h | 35.8 | 31.7 | 98.6 | [ |
[Bmim][Cl] | 大豆秸秆 | 120℃,1h | 16 | 20 | 46.6 | [ |
[Bmim][Cl]+Na2SiO3 | 大豆秸秆 | 120℃,1h | 44.4 | 44.6 | 57.7 | [ |
GH-EG-PTSA | 柳枝稷 | 120℃,30min | 79.36 | 82.07 | 74.69 | [ |
LA/ChCl | 柳枝稷 | 微波辐射45s | 83.65 | 72.23 | 75 | [ |
LA/ChCl | 玉米秸秆 | 微波辐射45s | 90.06 | 79.6 | 78.5 | [ |
溶剂 | 优点 | 缺点 |
---|---|---|
低沸点醇类 | 价格较为便宜、沸点低便于回收;回收半纤维和木质纯度较高;无污染 | 溶剂挥发性高、易燃性强、不安全,高温下有一定压力 |
高沸点醇类 | 粗甘油成本较低,高温下溶剂压力低,可以在常压下进行,生物相容性较好 | 甘油木质素溶解能力较差,乙二醇成本较高,溶剂回收需要额外成本 |
甲酸 | 预处理条件温和(<130℃),木质素和半纤维素脱除效果好,沸点低便于回收 | 预处理底物发生甲酰化抑制纤维素酶解,需要额外的脱甲酰化后处理 |
丙酮 | 沸点低,与水不会形成共沸物,脱木质素效果好 | 需要高压环境、毒性强、溶剂成本高 |
离子液体 | 细胞穿透能力强、稳定性好、适应性强、效率高、具有可设计性、污染小 | 提取选择性差、缺乏专一性、价格昂贵 |
低共熔溶剂 | 制备简单、低挥发性、高热稳定性、具有可设计性、溶剂可生物降解、可循环使用 | 黏度较高,拥有较好处理能力的低共熔溶剂种类有限 |
表6 常见非水溶剂预处理处理方法的主要优缺点
溶剂 | 优点 | 缺点 |
---|---|---|
低沸点醇类 | 价格较为便宜、沸点低便于回收;回收半纤维和木质纯度较高;无污染 | 溶剂挥发性高、易燃性强、不安全,高温下有一定压力 |
高沸点醇类 | 粗甘油成本较低,高温下溶剂压力低,可以在常压下进行,生物相容性较好 | 甘油木质素溶解能力较差,乙二醇成本较高,溶剂回收需要额外成本 |
甲酸 | 预处理条件温和(<130℃),木质素和半纤维素脱除效果好,沸点低便于回收 | 预处理底物发生甲酰化抑制纤维素酶解,需要额外的脱甲酰化后处理 |
丙酮 | 沸点低,与水不会形成共沸物,脱木质素效果好 | 需要高压环境、毒性强、溶剂成本高 |
离子液体 | 细胞穿透能力强、稳定性好、适应性强、效率高、具有可设计性、污染小 | 提取选择性差、缺乏专一性、价格昂贵 |
低共熔溶剂 | 制备简单、低挥发性、高热稳定性、具有可设计性、溶剂可生物降解、可循环使用 | 黏度较高,拥有较好处理能力的低共熔溶剂种类有限 |
1 | 国家发展和改革委员会. 可再生能源中长期发展规划[J]. 可再生能源, 2007, 25(5): 1-5. |
National Development and Reform Commission. Medium and long-term development plan for renewable energy[J]. Renewable Energy Resources, 2007, 25(5): 1-5. | |
2 | SOLTANIAN S, AGHBASHLO M, ALMASI F, et al. A critical review of the effects of pretreatment methods on the exergetic aspects of lignocellulosic biofuels[J]. Energy Conversion and Management, 2020, 212: 112792. |
3 | KARAGOZ P, BILL R M, OZKAN M. Lignocellulosic ethanol production: evaluation of new approaches, cell immobilization and reactor configurations[J]. Renewable Energy, 2019, 143: 741-752. |
4 | MANKAR A R, PANDEY A, MODAK A, et al. Pretreatment of lignocellulosic biomass: a review on recent advances[J]. Bioresource Technology, 2021, 334: 125235. |
5 | MORENO A D, OLSSON L. Pretreatment of lignocellulosic feedstocks[M]. Belin: Springer International Publishing, 2017. |
6 | GALBE M, WALLBERG O. Pretreatment for biorefineries: a review of common methods for efficient utilisation of lignocellulosic materials[J]. Biotechnology for Biofuels, 2019, 12: 294. |
7 | 曹运齐, 解先利, 郭振强, 等. 木质纤维素预处理技术研究进展[J]. 化工进展, 2020, 39(2): 489-495. |
CAO Yunqi, XIE Xianli, GUO Zhenqiang, et al. Research progress on lignocellulose pretreatment technology[J]. Chemical Industry and Engineering Progress, 2020, 39(2): 489-495. | |
8 | ZHAO Xuebing, CHENG Keke, LIU Dehua. Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis[J]. Applied Microbiology and Biotechnology, 2009, 82(5): 815-827. |
9 | MELLMER M A, MARTIN ALONSO D, LUTERBACHER J S, et al. Effects of γ-valerolactone in hydrolysis of lignocellulosic biomass to monosaccharides[J]. Green Chemistry, 2014, 16(11): 4659-4662. |
10 | ZHANG Zhanying, HARRISON M D, RACKEMANN D W, et al. Organosolv pretreatment of plant biomass for enhanced enzymatic saccharification[J]. Green Chemistry, 2016, 18(2): 360-381. |
11 | DURAND M, MOLINIER V, KUNZ W, et al. Classification of organic solvents revisited by using the COSMO-RS approach[J]. Chemistry, 2011, 17(18): 5155-5164. |
12 | 赵地顺, 付林林, 张娟, 等. 共溶剂存在下N-烯丙基吡啶氯盐离子液体对纤维素的溶解性能研究[J]. 高分子学报, 2012(9): 937-942. |
ZHAO Dishun, FU Linlin, ZHANG Juan, et al. Study on the dissolution of cellulose in N-allylpyridinium chloride ionic liquid and co-solvent composites[J]. Acta Polymerica Sinica, 2012(9): 937-942. | |
13 | ZHAO Xuebing, LI Siming, WU Ruchun, et al. Organosolv fractionating pre-treatment of lignocellulosic biomass for efficient enzymatic saccharification: chemistry, kinetics, and substrate structures[J]. Biofuels, Bioproducts and Biorefining, 2017, 11(3): 567-590. |
14 | JESSOP P G, JESSOP D A, FU Dongbao, et al. Solvatochromic parameters for solvents of interest in green chemistry[J]. Green Chemistry, 2012, 14(5): 1245. |
15 | WEI Weiqi, WU Shubin, XU Shaohua. Enhancement of enzymatic saccharification of bagasse by ethanol-based organosolv auto-catalyzed pretreatment[J]. Journal of Chemical Technology & Biotechnology, 2017, 92(3): 580-587. |
16 | ZHANG Hongdan, WU Shubin. Efficient sugar release by acetic acid ethanol-based organosolv pretreatment and enzymatic saccharification[J]. Journal of Agricultural and Food Chemistry, 2014, 62(48): 11681-11687. |
17 | CHOI J H, JANG S K, KIM J H, et al. Simultaneous production of glucose, furfural, and ethanol organosolv lignin for total utilization of high recalcitrant biomass by organosolv pretreatment[J]. Renewable Energy, 2019, 130: 952-960. |
18 | ZHANG Hongdan, WEI Weiqi, ZHANG Jiajie, et al. Enhancing enzymatic saccharification of sugarcane bagasse by combinatorial pretreatment and Tween 80[J]. Biotechnology for Biofuels, 2018, 11: 309. |
19 | ZHANG Jiajie, XIE Jun, ZHANG Hongdan. Sodium hydroxide catalytic ethanol pretreatment and surfactant on the enzymatic saccharification of sugarcane bagasse[J]. Bioresource Technology, 2021, 319: 124171. |
20 | TANG Chenglun, SHAN Junqiang, CHEN Yanjun, et al. Organic amine catalytic organosolv pretreatment of corn stover for enzymatic saccharification and high-quality lignin[J]. Bioresource Technology, 2017, 232: 222-228. |
21 | YOU Yanzhi, LI Pengfei, LEI Fuhou, et al. Optimization of enzymatic hydrolysis on sugarcane bagasse pretreated with soda-green liquor and methanol[J]. Journal of Biobased Materials and Bioenergy, 2017, 11(5): 433-440. |
22 | ZHONG Lei, WANG Chao, XU Miaomiao, et al. Alkali-catalyzed organosolv pretreatment of lignocellulose enhances enzymatic hydrolysis and results in highly antioxidative lignin[J]. Energy & Fuels, 2021, 35(6): 5039-5048. |
23 | 杨博. 木质素组装对纤维素酶水解促进机制的研究[D]. 南京: 南京林业大学, 2019. |
YANG Bo. Study on the mechanism of cellulase hydrolysis promoted by lignin assembly[D]. Nanjing: Nanjing Forestry University, 2019. | |
24 | ZHOU Ziyuan, LEI Fuhou, LI Pengfei, et al. Lignocellulosic biomass to biofuels and biochemicals: a comprehensive review with a focus on ethanol organosolv pretreatment technology[J]. Biotechnology and Bioengineering, 2018, 115(11): 2683-2702. |
25 | PARK Y C, KIM T H, KIM J S. Effect of organosolv pretreatment on mechanically pretreated biomass by use of concentrated ethanol as the solvent[J]. Biotechnology and Bioprocess Engineering, 2017, 22(4): 431-439. |
26 | SILVEIRA M H L, MORAIS A R C, COSTA LOPES A M DA, et al. Current pretreatment technologies for the development of cellulosic ethanol and biorefineries[J]. ChemSusChem, 2015, 8(20): 3366-3390. |
27 | JÖNSSON L J, MARTÍN C. Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects[J]. Bioresource Technology, 2016, 199: 103-112. |
28 | WANG Yunbo, GUO Xiaojun, LI Kaijia, et al. Comparison of a solvent mixture assisted dilute acid and alkali pretreatment in sugar production from hybrid Pennisetum [J]. Industrial Crops and Products, 2019, 141: 111806 |
29 | AGIRREZABAL-TELLERIA I, GANDARIAS I, ARIAS P L. Heterogeneous acid-catalysts for the production of furan-derived compounds (furfural and hydroxymethylfurfural) from renewable carbohydrates: a review[J]. Catalysis Today, 2014, 234: 42-58. |
30 | KIM J S, LEE Y Y, KIM T H. A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass[J]. Bioresource Technology, 2016, 199: 42-48. |
31 | SANNIGRAHI P, KIM D H, JUNG S, et al. Pseudo-lignin and pretreatment chemistry[J]. Energy & Environmental Science, 2011, 4(4): 1306-1310. |
32 | PARK Y, KIM J, KIM T. Pretreatment of corn stover using organosolv with hydrogen peroxide for effective enzymatic saccharification[J]. Energies, 2018, 11(5): 1301. |
33 | BORAND M N, KARAOSMANOĞLU F. Effects of organosolv pretreatment conditions for lignocellulosic biomass in biorefinery applications: a review[J]. Journal of Renewable and Sustainable Energy, 2018, 10(3): 033104. |
34 | ZHANG Ke, PEI Zhijian, WANG Donghai. Organic solvent pretreatment of lignocellulosic biomass for biofuels and biochemicals: a review[J]. Bioresource Technology, 2016, 199: 21-33. |
35 | MANSOURI N E EL, SALVADÓ J. Analytical methods for determining functional groups in various technical lignins[J]. Industrial Crops and Products, 2007, 26(2): 116-124. |
36 | GAO Cuijuan, YANG Xiaofeng, WANG Huaimin, et al. Robust succinic acid production from crude glycerol using engineered Yarrowia lipolytica [J]. Biotechnology for Biofuels, 2016, 9(1): 179. |
37 | JIANG Liqun, WU Yaxiang, WANG Xiaobo, et al. Crude glycerol pretreatment for selective saccharification of lignocellulose via fast pyrolysis and enzyme hydrolysis[J]. Energy Conversion and Management, 2019, 199: 111894. |
38 | SUN Fubao, CHEN Hongzhang. Enhanced enzymatic hydrolysis of wheat straw by aqueous glycerol pretreatment[J]. Bioresource Technology, 2008, 99(14): 6156-6161. |
39 | EBRAHIMI M, VILLAFLORES O B, ORDONO E E, et al. Effects of acidified aqueous glycerol and glycerol carbonate pretreatment of rice husk on the enzymatic digestibility, structural characteristics, and bioethanol production[J]. Bioresource Technology, 2017, 228: 264-271. |
40 | PASCAL K, REN Hongyan, SUN F F, et al. Mild acid-catalyzed atmospheric glycerol organosolv pretreatment effectively improves enzymatic hydrolyzability of lignocellulosic biomass[J]. ACS Omega, 2019, 4(22): 20015-20023. |
41 | SUN F F, WANG Liang, HONG Jiapeng, et al. The impact of glycerol organosolv pretreatment on the chemistry and enzymatic hydrolyzability of wheat straw[J]. Bioresource Technology, 2015, 187: 354-361. |
42 | HII K L, YEAP S P, MASHITAH M D. Pretreatment of pressed pericarp fibers (PPF) using alcohols as solvent to increase the accessibility of cellulose for cellulase production[J]. Journal of the Korean Society for Applied Biological Chemistry, 2012, 55(4): 507-514. |
43 | XUE Fengyang, LI Wenzhi, AN Shengxin, et al. Ethylene glycol based acid pretreatment of corn stover for cellulose enzymatic hydrolysis[J]. RSC Advances, 2021, 11(23): 14140-14147. |
44 | WEI Weiqi, WANG Baoxian, WANG Xiaoxiang, et al. Comparison of acid and alkali catalyzed ethylene glycol organosolv pretreatment for sugar production from bagasse[J]. Bioresource Technology, 2021, 320(Pt A): 124293. |
45 | TANG Song, DONG Qian, FANG Zhen, et al. Complete recovery of cellulose from rice straw pretreated with ethylene glycol and aluminum chloride for enzymatic hydrolysis[J]. Bioresource Technology, 2019, 284: 98-104. |
46 | ZHANG Jiaguang, YAN Ning. Formic acid-mediated liquefaction of chitin[J]. Green Chemistry, 2016, 18(18): 5050-5058. |
47 | ZHAO Xuebing, MORIKAWA Y, QI Feng, et al. A novel kinetic model for polysaccharide dissolution during atmospheric acetic acid pretreatment of sugarcane bagasse[J]. Bioresource Technology, 2014, 151: 128-136. |
48 | PATHAK P, GUPTA A, BHARDWAJ N K, et al. Impact of mild and harsh conditions of formic acid-based organosolv pretreatment on biomass fractionation of sugarcane tops[J]. Biomass Conversion and Biorefinery, 2021, 11(5): 2027-2040. |
49 | ZHAO Xuebing, LIU Dehua. Fractionating pretreatment of sugarcane bagasse by aqueous formic acid with direct recycle of spent liquor to increase cellulose digestibility: the Formiline process[J]. Bioresource Technology, 2012, 117: 25-32. |
50 | QIAO Hui, OUYANG Shuiping, SHI Jinjie, et al. Mild and efficient two-step pretreatment of lignocellulose using formic acid solvent followed by alkaline salt[J]. Cellulose, 2021, 28(3): 1283-1293. |
51 | CHEN Changzhou, LI Mingfei, WU Yuying, et al. Integration of ambient formic acid process and alkaline hydrogen peroxide post-treatment of furfural residue to enhance enzymatic hydrolysis[J]. Industrial & Engineering Chemistry Research, 2014, 53(33): 12935-12942. |
52 | TANG Song, LIU Rukuan, SUN F F, et al. Bioprocessing of tea oil fruit hull with acetic acid organosolv pretreatment in combination with alkaline H2O2 [J]. Biotechnology for Biofuels, 2017, 10: 86. |
53 | ZHAO Xuebing, WEN Jialong, CHEN Hongmei, et al. The fate of lignin during atmospheric acetic acid pretreatment of sugarcane bagasse and the impacts on cellulose enzymatic hydrolyzability for bioethanol production[J]. Renewable Energy, 2018, 128: 200-209. |
54 | MOTA T R, OLIVEIRA D M, MORAIS G R, et al. Hydrogen peroxide-acetic acid pretreatment increases the saccharification and enzyme adsorption on lignocellulose[J]. Industrial Crops and Products, 2019, 140: 111657. |
55 | BAEZA J, ANA M F, FREER J, et al. Organosolv-pulping iii—The influence of formic acid delignification on the enzymatic hydrolysis of Pinus radiata D. Don sawdust[J]. Applied Biochemistry & Biotechnology, 1991, 31(3): 273-282. |
56 | ZHAO Xuebing, LIU Dehua. Multi-products co-production improves the economic feasibility of cellulosic ethanol: a case of Formiline pretreatment-based biorefining[J]. Applied Energy, 2019, 250: 229-244. |
57 | ZHAO Xuebing, LIU Dehua. Kinetic modeling and mechanisms of acid-catalyzed delignification of sugarcane bagasse by aqueous acetic acid[J]. BioEnergy Research, 2013, 6(2): 436-447. |
58 | SMIT A, HUIJGEN W. Effective fractionation of lignocellulose in herbaceous biomass and hardwood using a mild acetone organosolv process[J]. Green Chemistry, 2017, 19(22): 5505-5514. |
59 | GONG Chen, GOUNDALKAR M J, BUJANOVIC B M, et al. Evaluation of different sulfur-free delignification methods for hot-water extracted hardwood[J]. Journal of Wood Chemistry and Technology, 2012, 32(2): 93-104. |
60 | HUIJGEN W J J, REITH J H, DEN UIL H. Pretreatment and fractionation of wheat straw by an acetone-based organosolv process[J]. Industrial & Engineering Chemistry Research, 2010, 49(20): 10132-10140. |
61 | KALOGIANNIS K G, MATSAKAS L, ASPDEN J, et al. Acid assisted organosolv delignification of beechwood and pulp conversion towards high concentrated cellulosic ethanol via high gravity enzymatic hydrolysis and fermentation[J]. Molecules, 2018, 23(7): 1647. |
62 | TENG Junjiang, MA Hao, WANG Furong, et al. Catalytic fractionation of raw biomass to biochemicals and organosolv lignin in a methyl isobutyl ketone/H2O biphasic system[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(4): 2020-2026. |
63 | PISKUN A S, FTOUNI J, TANG Z, et al. Hydrogenation of levulinic acid to γ-valerolactone over anatase-supported Ru catalysts: effect of catalyst synthesis protocols on activity[J]. Applied Catalysis A: General, 2018, 549: 197-206. |
64 | SHUAI Li, QUESTELL-SANTIAGO Y M, LUTERBACHER J S. A mild biomass pretreatment using γ-valerolactone for concentrated sugar production[J]. Green Chemistry, 2016, 18(4): 937-943. |
65 | LI Suxiang, ZHAO Chengke, YUE Fengxia, et al. Revealing structural modifications of lignin in acidic γ-valerolactone-H2O pretreatment[J]. Polymers, 2020, 12(1): 116. |
66 | XU Zhiping, LI Wenzhi, DU Zhijie, et al. Conversion of corn stalk into furfural using a novel heterogeneous strong acid catalyst in γ-valerolactone[J]. Bioresource Technology, 2015, 198: 764-771. |
67 | 张毅, 张宏, 刘云云, 等. 纤维素燃料乙醇预处理技术研究进展[J]. 可再生能源, 2021, 39(2): 148-155. |
ZHANG Yi, ZHANG Hong, LIU Yunyun, et al. Research progress of cellulosic fuel ethanol pretreatment technology[J]. Renewable Energy Resources, 2021, 39(2): 148-155. | |
68 | PAUL A, MUTHUKUMAR S, PRASAD S. Review—Room-temperature ionic liquids for electrochemical application with special focus on gas sensors[J]. Journal of the Electrochemical Society, 2020, 167(3): 037511. |
69 | SWATLOSKI R P, SPEAR S K, HOLBREY J D, et al. Dissolution of cellulose[correction of cellose]with ionic liquids[J]. Journal of the American Chemical Society, 2002, 124(18): 4974-4975. |
70 | ALAYOUBI R, MEHMOOD N, HUSSON E, et al. Low temperature ionic liquid pretreatment of lignocellulosic biomass to enhance bioethanol yield[J]. Renewable Energy, 2020, 145: 1808-1816. |
71 | BHATIA S K, JAGTAP S S, BEDEKAR A A, et al. Recent developments in pretreatment technologies on lignocellulosic biomass: effect of key parameters, technological improvements, and challenges[J]. Bioresource Technology, 2020, 300: 122724. |
72 | YAVIR K, MARCINKOWSKI Ł, MARCINKOWSKA R, et al. Analytical applications and physicochemical properties of ionic liquid-based hybrid materials: a review[J]. Analytica Chimica Acta, 2019, 1054: 1-16. |
73 | SUN Xiyan, SUN Xitong, ZHANG Fan. Combined pretreatment of lignocellulosic biomass by solid base (calcined Na2SiO3) and ionic liquid for enhanced enzymatic saccharification[J]. RSC Advances, 2016, 6(101): 99455-99466. |
74 | GROFF D, GEORGE A, SUN Ning, et al. Acid enhanced ionic liquid pretreatment of biomass[J]. Green Chemistry, 2013, 15(5): 1264. |
75 | 董艳梅, 安艳霞, 马阳阳, 等. 深度共熔溶剂预处理木质纤维素生物质研究进展[J]. 化工进展, 2021, 40(3): 1594-1603. |
DONG Yanmei, AN Yanxia, MA Yangyang, et al. Research progress on deep eutectic solvent of lignocellulose pretreatment[J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1594-1603. | |
76 | CHEN Wenjun, XUE Zhimin, WANG Jinfang, et al. Investigation on the thermal stability of deep eutectic solvents[J]. Acta Physico-Chimica Sinica, 2018, 34(8): 904-911. |
77 | ZHU Jiahong, XU Yingjie, FENG Xiao, et al. A detailed study of physicochemical properties and microstructure of EmimCl-EG deep eutectic solvents: their influence on SO2 absorption behavior[J]. Journal of Industrial and Engineering Chemistry, 2018, 67: 148-155. |
78 | YU Dongkun, MU Tiancheng. Strategy to form eutectic molecular liquids based on noncovalent interactions[J]. The Journal of Physical Chemistry B, 2019, 123(23): 4958-4966. |
79 | CHEN Zhu, JACOBY W A, WAN Caixia. Ternary deep eutectic solvents for effective biomass deconstruction at high solids and low enzyme loadings[J]. Bioresource Technology, 2019, 279: 281-286. |
80 | CHEN Zhu, WAN Caixia. Ultrafast fractionation of lignocellulosic biomass by microwave-assisted deep eutectic solvent pretreatment[J]. Bioresource Technology, 2018, 250: 532-537. |
81 | MALAEKE H, HOUSAINDOKHT M R, MONHEMI H, et al. Deep eutectic solvent as an efficient molecular liquid for lignin solubilization and wood delignification[J]. Journal of Molecular Liquids, 2018, 263: 193-199. |
[1] | 李由, 吴越, 钟禹, 林琦璇, 任俊莉. 酸性熔盐水合物预处理麦秆高效制备木糖及其对酶解效率的影响[J]. 化工进展, 2023, 42(9): 4974-4983. |
[2] | 吴亚, 赵丹, 方荣苗, 李婧瑶, 常娜娜, 杜春保, 王文珍, 史俊. 用于复杂原油乳液的高效破乳剂开发及应用研究进展[J]. 化工进展, 2023, 42(8): 4398-4413. |
[3] | 杨许召, 李庆, 袁康康, 张盈盈, 韩敬莉, 吴诗德. 含Gemini离子液体低共熔溶剂热力学性质[J]. 化工进展, 2023, 42(6): 3123-3129. |
[4] | 吕超, 张习文, 金理健, 杨林军. 新型两相吸收剂-离子液体系统高效捕获CO2[J]. 化工进展, 2023, 42(6): 3226-3232. |
[5] | 张乐乐, 钱运东, 朱华曈, 冯思龙, 杨秀娜, 于颖, 杨强, 卢浩. 加氢原料煤焦油脱水除盐预处理工艺优化限值[J]. 化工进展, 2023, 42(5): 2298-2305. |
[6] | 王川东, 张君奇, 刘丁源, 马媛媛, 李锋, 宋浩. 微生物共利用木糖和葡萄糖生产化学品研究进展[J]. 化工进展, 2023, 42(1): 354-372. |
[7] | 华渠成, 段庆华. 离子液体极压抗磨剂的研究进展[J]. 化工进展, 2022, 41(S1): 331-339. |
[8] | 陈钰, 刘冲, 邱于荟, 贲梓欣, 牟天成. 离子液体和低共熔溶剂绿色回收废旧锂离子电池的研究进展[J]. 化工进展, 2022, 41(S1): 485-496. |
[9] | 黄岳峰, 马丽莎, 张莉莉, 王志国. 木质纤维素复合生物质薄膜材料的功能化应用研究进展[J]. 化工进展, 2022, 41(9): 4840-4854. |
[10] | 单清雯, 张娟, 王亚娟, 刘文强. 聚合离子液体的合成及其吸附脱硫性能[J]. 化工进展, 2022, 41(8): 4571-4579. |
[11] | 蔡政汉, 何晨露, 谢海亮, 王琼, 陈燕丹, 吕建华, 郑新宇, 黄彪, 林冠烽. 超声辅助熔融草酸法高效绿色再生饱和活性炭[J]. 化工进展, 2022, 41(4): 2115-2122. |
[12] | 解先利, 刘云云, 余强, 张宇, 张荣清, 邱雨心. 低共熔溶剂预处理提高甘草渣酶解效果优化[J]. 化工进展, 2022, 41(3): 1349-1356. |
[13] | 阮佳纬, 叶香珠, 陈立芳, 漆志文. 离子液体和低共熔溶剂催化二氧化碳合成有机碳酸酯的研究进展[J]. 化工进展, 2022, 41(3): 1176-1186. |
[14] | 阮敏, 孙宇桐, 黄忠良, 李辉, 张轩, 吴希锴, 赵成, 姚世蓉, 张拴保, 张巍, 黄兢. 污泥预处理-厌氧消化体系的能源经济性评价[J]. 化工进展, 2022, 41(3): 1503-1516. |
[15] | 王娜, 宋秀兰, 昝博韬. 复合菌群利用模拟APG协同FNA预处理剩余污泥水解液合成PHA[J]. 化工进展, 2022, 41(2): 1017-1024. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |