化工进展 ›› 2022, Vol. 41 ›› Issue (8): 4098-4110.DOI: 10.16085/j.issn.1000-6613.2021-2178
关浩然1(), 朱丽娜2, 朱凌岳1, 苑丹丹1, 张雨晴1, 王宝辉1()
收稿日期:
2021-10-25
修回日期:
2022-01-12
出版日期:
2022-08-25
发布日期:
2022-08-22
通讯作者:
王宝辉
作者简介:
关浩然(1998—),男,硕士研究生,研究方向为电化学合成氨。E-mail:GUAN Haoran1(), ZHU Lina2, ZHU Lingyue1, YUAN Dandan1, ZHANG Yuqing1, WANG Baohui1()
Received:
2021-10-25
Revised:
2022-01-12
Online:
2022-08-25
Published:
2022-08-22
Contact:
WANG Baohui
摘要:
氨是基本有机化学工业及化肥生产的主要原料。工业上利用哈伯法合成氨,该工艺不仅耗能大且转化率仅有10%~15%。相比传统合成氨工艺,电化学合成氨有着清洁环保、反应条件温和等优点。本文综述了氮气、硝酸盐及一氧化氮作为氮源时电化学合成氨的特点与优势,并依据不同氮源的特点,剖析了电化学合成氨的反应机制。文中针对不同的氮源,分析总结了多种氢源方案与氢化机理,系统地概述了反应催化剂的研究进展。分别讨论了氮气在水中溶解度较差、硝酸盐在反应过程中元素价态跨度大而生成诸多中间产物、氮氧化物体系不稳定、电解体系中存在析氢竞争反应等问题,提出了通过改变氢源的组成或结构抑制析氢反应、开发新型高活性位点及氧空位的催化剂体系强化反应选择性、研制非水电解质体系提高反应速率及合成效率等解决思路。
中图分类号:
关浩然, 朱丽娜, 朱凌岳, 苑丹丹, 张雨晴, 王宝辉. 利用不同氢源及氮源电化学合成氨研究进展与挑战[J]. 化工进展, 2022, 41(8): 4098-4110.
GUAN Haoran, ZHU Lina, ZHU Lingyue, YUAN Dandan, ZHANG Yuqing, WANG Baohui. Progress and challenges of electrochemical synthesis of ammonia from different hydrogen and nitrogen sources[J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4098-4110.
温度/℃ | 阴极/催化剂 | 阳极 | 还原电位(vs.RHE)/V | 电解质 | /mol·s-1·cm-2 | FE/% | 参考文献 |
---|---|---|---|---|---|---|---|
贵金属 | |||||||
RT | THH Au NRs | 石墨棒 | -0.2 | 0.1mol/L KOH | 2.7×10-11 | 3.9 | [ |
AT | pAu/NF | Ag/AgCl(饱和KCl溶液) | -0.2 | 0.1mol/L Na2SO4 | 1.54×10-10 | 13.36 | [ |
AT | TA-Au NW | — | -0.3 | 0.1mol/L Na2SO4 | 4.36×10-9g·s-1· | 14.83 | [ |
AT | NCM-Au NPs | Pt | -0.3 | 0.1mol/L HCl | 5.88×10-10 | 22 | [ |
AT | Rh NNs | 碳棒 | -0.2 | 0.1mol/L KOH | 6.63×10-9g·s-1· | 0.7 | [ |
AT | Pd/C | Pt | 0.1 | 0.05mol/L H2SO4 | 1.25×10-9g·s-1· | 8.2 | [ |
过渡金属(铁基) | |||||||
65 | γ-Fe2O3/CP | 石墨棒 | -0.4 | 0.1mol/L KOH | 1.64×10-11 | 1.96 | [ |
AT | 磁性Fe3O4 | 石墨片 | -0.15 | 0.1mol/L Na2SO4 | 3.36×10-9g·s-1· | 16.9 | [ |
250 | Fe2O3/AC | Ni | 1.55 | 熔融NaOH-KOH | 8.27×10-9 | 13.7 | [ |
RT | Fe2O3/CNT | Pt | -2.0(vs.Ag/AgCl) | KHCO3 | 3.59×10-12 | 95.1 | [ |
25 | o-Fe2O3-CNT/CP | 石墨棒 | -0.9(vs.Ag/AgCl) | 0.1mol/L KOH | 2.37×10-11 | 8.28 | [ |
90 | MOF(Fe) | Pt | 1.2 | 2mol/L KOH | 2.12×10-9 | 1.43 | [ |
AT | α-Fe/Fe3O4 | Pt | 0.15 | [C4mpyr][eFAP] | 2.35×10-11 | 32 | [ |
AT | Fe-SS | Pt | -0.8(vs.NHE) | [C4mpyr][eFAP] | 2.2×10-11 | 35 | [ |
AT | Fe-FTO | Pt | -0.8(vs.NHE) | [P6,6,6,14][eFAP] | 6.5×10-12 | 60 | [ |
过渡金属(钼基) | |||||||
RT | Mo-D-R-5h | Pt | -0.49 | 0.01mol/L H2SO4 | 3.09×10-11 | 0.72 | [ |
RT | MoS2/CC | 石墨棒 | -0.5 | 0.1mol/L HCl | 8.08×10-11 | 1.17 | [ |
AT | Mo2C/C | Pt | -0.3 | 0.5mol/L Li2SO4 | 3.14×10-9g·s-1· | 7.8 | [ |
过渡金属(钒基) | |||||||
RT | VN/CC | 石墨棒 | -0.3 | 0.1mol/L HCl | 2.48×10-10 | 3.58 | [ |
25 | VN/钛网 | 石墨棒 | -0.5 | 0.1mol/L HCl | 1.21×10-8g·s-1· | 2.25 | [ |
AT | VO2(空心微球) | Ag/AgCl(饱和KCl溶液) | -0.7 | 0.1mol/L Na2SO4 | 4.13×10-9g·s-1· | 3.97 | [ |
AT | V2CTx MXene | — | -0.7 | 0.1mol/L Na2SO4 | 3.5×10-9g·s-1· | 4 | [ |
过渡金属(钴基) | |||||||
RT | CoP HNC | Pt | -0.4 | 1.0mol/L KOH | 8.8×10-11 | 7.36 | [ |
AT | CMO-NR | — | -0.1 | 0.1mol/L Na2SO4 或0.1mol/L KOH | 1.31×10-9g·s-1· | 22.76 | [ |
AT | Co4N/Co2C@rGO | 石墨棒 | -0.1 | 0.1mol/L HCl | 6.7×10-9g·s-1· | 24.97 | [ |
90 | MOF(Co) | Pt | 1.2 | 2mol/L KOH | 1.64×10-9 | 1.06 | [ |
其他过渡金属 | |||||||
RT | Sn(Ⅱ)肽菁碳箔电极 | Pt | -0.3 | 1mol/L KOH | 1.4×10-11 | 2 | [ |
AT | Nb2O5 | 石墨棒 | -0.55 | 0.1mol/L HCl | 6.8×10-11 | 9.26 | [ |
AT | Nb2O5 NA/CC | 石墨棒 | -0.6 | 0.1mol/L Na2SO4 | 1.58×10-10 | 2.26 | [ |
AT | Ni-MOF-74 | Pt | -0.7(vs.Ag/AgCl) | 0.1mol/L Na2SO4 | 6.68×10-11 | 23.69 | [ |
90 | MOF(Cu) | Pt | 1.2 | 2mol/L KOH | 1.24×10-9 | 0.96 | [ |
非金属 | |||||||
RT | B4C/CP | 石墨棒 | -0.75 | 0.1mol/L HCl | 4.34×10-11 | 15.95 | [ |
AT | NPC-750 | Pt | 0.9 | 0.05mol/L H2SO4 | 2.33×10-10 | 1.42 | [ |
AT | CNS | Pt | -1.19 | 0.25mol/L LiClO4 | (1.59±0.12)×10-9 | 11.56 | [ |
复合材料 | |||||||
25 | Li+/PEBCD | Pt | -0.6 | 0.5mol/L Li2SO4 | 3.28×10-11 | 0.42 | [ |
RT | Au/C3N4 | Pt | -0.1 | 0.05mol/L H2SO4 | 3.63×10-7g·s-1· | 11.1 | [ |
AT | Au/TiO2 | Pt | -0.2 | 0.05mol/L H2SO4 | 3.5×10-10 | 8.11 | [ |
60 | Au/TiO2 | Pt | -0.2 | 0.05mol/L H2SO4 | 5×10-10 | 13.5 | [ |
RT | Ag-Au/ZIF | Pt | -2.9 | THF | 1×10-11 | 18±4 | [ |
AT | NiS@MoS2 | 碳棒 | -0.1 | 0.1mol/L Na2SO4 | N/A | 14.8 | [ |
AT | NiS@MoS2 | 碳棒 | -0.3 | 0.1mol/L Na2SO4 | 2.68×10-9g·s-1· | N/A | [ |
AT | 非晶型Au/CeO x -rGO | Pt | -0.2 | 0.1mol/L HCl | 2.7×10-8 | 10.1 | [ |
200~250 | Ru/Cs+/MgO|Pd-Ag | Pt | — | CsH2PO4/SiP2O7 复合材料 | 9×10-9 | 2.6 | [ |
表1 以水为氢源电化学合成氨(表中均为NRR反应)
温度/℃ | 阴极/催化剂 | 阳极 | 还原电位(vs.RHE)/V | 电解质 | /mol·s-1·cm-2 | FE/% | 参考文献 |
---|---|---|---|---|---|---|---|
贵金属 | |||||||
RT | THH Au NRs | 石墨棒 | -0.2 | 0.1mol/L KOH | 2.7×10-11 | 3.9 | [ |
AT | pAu/NF | Ag/AgCl(饱和KCl溶液) | -0.2 | 0.1mol/L Na2SO4 | 1.54×10-10 | 13.36 | [ |
AT | TA-Au NW | — | -0.3 | 0.1mol/L Na2SO4 | 4.36×10-9g·s-1· | 14.83 | [ |
AT | NCM-Au NPs | Pt | -0.3 | 0.1mol/L HCl | 5.88×10-10 | 22 | [ |
AT | Rh NNs | 碳棒 | -0.2 | 0.1mol/L KOH | 6.63×10-9g·s-1· | 0.7 | [ |
AT | Pd/C | Pt | 0.1 | 0.05mol/L H2SO4 | 1.25×10-9g·s-1· | 8.2 | [ |
过渡金属(铁基) | |||||||
65 | γ-Fe2O3/CP | 石墨棒 | -0.4 | 0.1mol/L KOH | 1.64×10-11 | 1.96 | [ |
AT | 磁性Fe3O4 | 石墨片 | -0.15 | 0.1mol/L Na2SO4 | 3.36×10-9g·s-1· | 16.9 | [ |
250 | Fe2O3/AC | Ni | 1.55 | 熔融NaOH-KOH | 8.27×10-9 | 13.7 | [ |
RT | Fe2O3/CNT | Pt | -2.0(vs.Ag/AgCl) | KHCO3 | 3.59×10-12 | 95.1 | [ |
25 | o-Fe2O3-CNT/CP | 石墨棒 | -0.9(vs.Ag/AgCl) | 0.1mol/L KOH | 2.37×10-11 | 8.28 | [ |
90 | MOF(Fe) | Pt | 1.2 | 2mol/L KOH | 2.12×10-9 | 1.43 | [ |
AT | α-Fe/Fe3O4 | Pt | 0.15 | [C4mpyr][eFAP] | 2.35×10-11 | 32 | [ |
AT | Fe-SS | Pt | -0.8(vs.NHE) | [C4mpyr][eFAP] | 2.2×10-11 | 35 | [ |
AT | Fe-FTO | Pt | -0.8(vs.NHE) | [P6,6,6,14][eFAP] | 6.5×10-12 | 60 | [ |
过渡金属(钼基) | |||||||
RT | Mo-D-R-5h | Pt | -0.49 | 0.01mol/L H2SO4 | 3.09×10-11 | 0.72 | [ |
RT | MoS2/CC | 石墨棒 | -0.5 | 0.1mol/L HCl | 8.08×10-11 | 1.17 | [ |
AT | Mo2C/C | Pt | -0.3 | 0.5mol/L Li2SO4 | 3.14×10-9g·s-1· | 7.8 | [ |
过渡金属(钒基) | |||||||
RT | VN/CC | 石墨棒 | -0.3 | 0.1mol/L HCl | 2.48×10-10 | 3.58 | [ |
25 | VN/钛网 | 石墨棒 | -0.5 | 0.1mol/L HCl | 1.21×10-8g·s-1· | 2.25 | [ |
AT | VO2(空心微球) | Ag/AgCl(饱和KCl溶液) | -0.7 | 0.1mol/L Na2SO4 | 4.13×10-9g·s-1· | 3.97 | [ |
AT | V2CTx MXene | — | -0.7 | 0.1mol/L Na2SO4 | 3.5×10-9g·s-1· | 4 | [ |
过渡金属(钴基) | |||||||
RT | CoP HNC | Pt | -0.4 | 1.0mol/L KOH | 8.8×10-11 | 7.36 | [ |
AT | CMO-NR | — | -0.1 | 0.1mol/L Na2SO4 或0.1mol/L KOH | 1.31×10-9g·s-1· | 22.76 | [ |
AT | Co4N/Co2C@rGO | 石墨棒 | -0.1 | 0.1mol/L HCl | 6.7×10-9g·s-1· | 24.97 | [ |
90 | MOF(Co) | Pt | 1.2 | 2mol/L KOH | 1.64×10-9 | 1.06 | [ |
其他过渡金属 | |||||||
RT | Sn(Ⅱ)肽菁碳箔电极 | Pt | -0.3 | 1mol/L KOH | 1.4×10-11 | 2 | [ |
AT | Nb2O5 | 石墨棒 | -0.55 | 0.1mol/L HCl | 6.8×10-11 | 9.26 | [ |
AT | Nb2O5 NA/CC | 石墨棒 | -0.6 | 0.1mol/L Na2SO4 | 1.58×10-10 | 2.26 | [ |
AT | Ni-MOF-74 | Pt | -0.7(vs.Ag/AgCl) | 0.1mol/L Na2SO4 | 6.68×10-11 | 23.69 | [ |
90 | MOF(Cu) | Pt | 1.2 | 2mol/L KOH | 1.24×10-9 | 0.96 | [ |
非金属 | |||||||
RT | B4C/CP | 石墨棒 | -0.75 | 0.1mol/L HCl | 4.34×10-11 | 15.95 | [ |
AT | NPC-750 | Pt | 0.9 | 0.05mol/L H2SO4 | 2.33×10-10 | 1.42 | [ |
AT | CNS | Pt | -1.19 | 0.25mol/L LiClO4 | (1.59±0.12)×10-9 | 11.56 | [ |
复合材料 | |||||||
25 | Li+/PEBCD | Pt | -0.6 | 0.5mol/L Li2SO4 | 3.28×10-11 | 0.42 | [ |
RT | Au/C3N4 | Pt | -0.1 | 0.05mol/L H2SO4 | 3.63×10-7g·s-1· | 11.1 | [ |
AT | Au/TiO2 | Pt | -0.2 | 0.05mol/L H2SO4 | 3.5×10-10 | 8.11 | [ |
60 | Au/TiO2 | Pt | -0.2 | 0.05mol/L H2SO4 | 5×10-10 | 13.5 | [ |
RT | Ag-Au/ZIF | Pt | -2.9 | THF | 1×10-11 | 18±4 | [ |
AT | NiS@MoS2 | 碳棒 | -0.1 | 0.1mol/L Na2SO4 | N/A | 14.8 | [ |
AT | NiS@MoS2 | 碳棒 | -0.3 | 0.1mol/L Na2SO4 | 2.68×10-9g·s-1· | N/A | [ |
AT | 非晶型Au/CeO x -rGO | Pt | -0.2 | 0.1mol/L HCl | 2.7×10-8 | 10.1 | [ |
200~250 | Ru/Cs+/MgO|Pd-Ag | Pt | — | CsH2PO4/SiP2O7 复合材料 | 9×10-9 | 2.6 | [ |
1 | 刘化章. 合成氨工业: 过去、现在和未来——合成氨工业创立100周年回顾、启迪和挑战[J]. 化工进展, 2013, 32(9): 1995-2005. |
LIU Huazhang. Ammonia synthesis industry: past, present and future—Retrospect, enlightenment and challenge from 100 years of ammonia synthesis industry[J]. Chemical Industry and Engineering Progress, 2013, 32(9): 1995-2005. | |
2 | GIDDEY S, BADWAL S P S, KULKARNI A. Review of electrochemical ammonia production technologies and materials[J]. International Journal of Hydrogen Energy, 2013, 38(34): 14576-14594. |
3 | Philibert CÉDRIC. Renewable energy for industry: from green energy to green materials and 1078 fuels[R]. IEA Report, 2017. |
4 | SURYANTO Bryan H R, DU Hoanglong, WANG Dabin, et al. Challenges and prospects in the catalysis of electroreduction of nitrogen to ammonia[J]. Nature Catalysis, 2019, 2(4): 290-296. |
5 | HOWALT J G, BLIGAARD T, ROSSMEISL J, et al. DFT based study of transition metal nano-clusters for electrochemical NH3 production[J]. Physical Chemistry Chemical Physics, 2013, 15(20): 7785-7795. |
6 | ABGHOUI Younes, GARDEN Anna Louise, HOWALT Jakob G, et al. Electroreduction of N2 to ammonia at ambient conditions on mononitrides of Zr, Nb, Cr, and V: a DFT guide for experiments[J]. ACS Catalysis, 2016, 6(2): 635-646. |
7 | DENG Jiao, IÑIGUEZ Jesus A, LIU Chong. Electrocatalytic nitrogen reduction at low temperature[J]. Joule, 2018, 2(5): 846-856. |
8 | Anna MENCIÓ, Josep MAS-PLA, OTERO Neus, et al. Nitrate pollution of groundwater; all right…, but nothing else?[J]. Science of the Total Environment, 2016, 539: 241-251. |
9 | Sergi GARCIA-SEGURA, Mariana LANZARINI-LOPES, HRISTOVSKI Kiril, et al. Electrocatalytic reduction of nitrate: fundamentals to full-scale water treatment applications[J]. Applied Catalysis B: Environmental, 2018, 236: 546-568. |
10 | STIRLING András, PÁPAI I, János MINK, et al. Density functional study of nitrogen oxides[J]. The Journal of Chemical Physics, 1994, 100(4):2910-2923. |
11 | HIRAKAWA Hiroaki, HASHIMOTO Masaki, SHIRAISHI Yasuhiro, et al. Selective nitrate-to-ammonia transformation on surface defects of titanium dioxide photocatalysts[J]. ACS Catalysis, 2017, 7(5): 3713-3720. |
12 | REN Haitao, JIA Shaoyi, ZOU Jijun, et al. A facile preparation of Ag2O/P25 photocatalyst for selective reduction of nitrate[J]. Applied Catalysis B: Environmental, 2015,176: 53-61. |
13 | NIU Huan, ZHANG Zhaofu, WANG Xiting, et al. Theoretical insights into the mechanism of selective nitrate-to-ammonia electroreduction on single-atom catalysts[J]. Advanced Functional Materials, 2021, 31(11): 2008533. |
14 | YU Yu, WANG Changhong, YU Yifu, et al. Promoting selective electroreduction of nitrates to ammonia over electron-deficient Co modulated by rectifying Schottky contacts[J]. Science China-Chemistry, 2020, 63(10): 1469-1476. |
15 | WANG Yuting, YU YIfu, JIA Rannran, et al. Electrochemical synthesis of nitric acid from air and ammonia through waste utilization[J]. National Science Review, 2019, 6 (4): 730-738. |
16 | JIA Ranran, WANG Yuting, WANG Changhong, et al. Boosting selective nitrate electroreduction to ammonium by constructing oxygen vacancies in TiO2 [J]. ACS Catalysis, 2020, 10(6): 3533-3540. |
17 | FU Xianbiao, ZHAO Xingang, HU Xiaobing, et al. Alternative route for electrochemical ammonia synthesis by reduction of nitrate on copper nanosheets[J]. Applied Materials Today, 2020, 19: 100620. |
18 | CHEN Gaofeng, YUAN Yifei, JIANG Haifeng, et al. Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper-molecular solid catalyst[J]. Nature Energy, 2020, 5(8): 605-613. |
19 | LI Jie, ZHAN Guangming, YANG Jianhua, et al. Efficient ammonia electrosynthesis from nitrate on strained ruthenium nanoclusters[J]. Journal of the American Chemical Society, 2020, 142(15): 7036-7046. |
20 | LONG Jun, CHEN Shiming, ZHANG Yunlong, et al. Direct electrochemical ammonia synthesis from nitric oxide[J]. Angewandte Chemie International Edition, 2020, 59(24): 9711-9718. |
21 | ZHANG Longcheng, LIANG Jie, WANG Yuanyuan, et al. High-performance electrochemical NO reduction into NH3 by MoS2 nanosheet[J]. Angewandte Chemie International Edition, 2021, 60(48): 25263-25268. |
22 | SHIPMAN M A, SYMES M D. Recent progress towards the electrosynthesis of ammonia from sustainable resources[J]. Catalysis Today, 2017, 286: 57-68. |
23 | CHEN Cheng, MA Guilin. Preparation, proton conduction, and application in ammonia synthesis at atmospheric pressure of La0.9Ba0.1Ga1– x Mg x O3– α [J]. Journal of Materials Science, 2008, 43(15): 5109-5114. |
24 | GUO Yingxin, LIU Baoxin, YANG Qing, et al. Preparation via microemulsion method and proton conduction at intermediate-temperature of BaCe1– x Y x O3– α [J]. Electrochemistry Communications, 2009, 11(1): 153-156. |
25 | KISHIRA Shota, QING Geletu, shuya SUZU, et al. Ammonia synthesis at intermediate temperatures in solid-state electrochemical cells using cesium hydrogen phosphate based electrolytes and noble metal catalysts[J]. International Journal of Hydrogen Energy, 2017, 42(43): 26843-26854. |
26 | KOSAKA Fumihiko, NAKAMURA Takehisa, OIKAWA Akio, et al. Electrochemical acceleration of ammonia synthesis on Fe-based alkali-promoted electrocatalyst with proton conducting solid electrolyte[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(11): 10439-10446. |
27 | DÍEZ-RAMÍREZ J, KYRIAKOU V, GARAGOUNIS I, et al. Enhancement of ammonia synthesis on a Co3Mo3N-Ag electrocatalyst in a K-β-Al2O3 solid electrolyte cell[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(10): 8844-8851. |
28 | MURAKAMI Tsuyoshi, NISHIKIORI Tokujiro, NOHIRA Toshiyuki, et al. Electrolytic synthesis of ammonia in molten salts under atmospheric pressure[J]. Journal of the American Chemical Society, 2003, 125(2): 334-335. |
29 | AMAR IBRAHIM A, LAN Rong, PETIT Christophe T G, et al. Electrochemical synthesis of ammonia based on a carbonate-oxide composite electrolyte[J]. Solid State Ionics, 2011, 182(1): 133-138. |
30 | BICER Yusuf, DINCER Ibrahim. Electrochemical synthesis of ammonia in molten salt electrolyte using hydrogen and nitrogen at ambient pressure[J]. Journal of the Electrochemical Society, 2017, 164(8): H5036-H5042. |
31 | HATTORI Masashi, IIJIMA Shinya, NAKAO Takuya, et al. Solid solution for catalytic ammonia synthesis from nitrogen and hydrogen gases at 50℃[J]. Nature Communications, 2020, 11(1): 2001. |
32 | BAO Di, ZHANG Qi, MENG Fanlu, et al. Electrochemical reduction of N2 under ambient conditions for artificial N2 fixation and renewable energy storage using N2/NH3 cycle[J]. Advanced Materials, 2017, 29(3). |
33 | WANG Hongjing, YU Hongjie, WANG Ziqiang, et al. Electrochemical fabrication of porous Au film on Ni foam for nitrogen reduction to ammonia[J]. Small, 2019, 15(6): 1804769. |
34 | LIU Songliang, YIN Shuli, JIAO Shiqian, et al. Au nanowire modified with tannic acid for enhanced electrochemical synthesis of ammonia[J]. Materials Today Energy, 2021, 21: 100828. |
35 | WANG Hong, WANG Lu, WANG Qiang, et al. Ambient electrosynthesis of ammonia: electrode porosity and composition engineering[J]. Angewandte Chemie International Edition, 2018, 57(38): 12360-12364. |
36 | LIU Huimin, HAN Shuhe, ZHAO Yue, et al. Surfactant-free atomically ultrathin rhodium nanosheet nanoassemblies for efficient nitrogen electroreduction[J]. Journal of Materials Chemistry A, 2018, 6(7): 3211-3217. |
37 | WANG Jun, YU Liang, HU Lin, et al. Ambient ammonia synthesis via palladium-catalyzed electrohydrogenation of dinitrogen at low overpotential[J]. Nature Communications, 2018, 9: 1795. |
38 | KONG Jimin, Ahyoun LIM, YOON Changwon, et al. Electrochemical synthesis of NH3 at low temperature and atmospheric pressure using a γ-Fe2O3 catalyst[J]. Acs Sustainable Chemistry & Engineering, 2017, 5(11): 10986-10995. |
39 | HE Xiaojia, GUO Haoran, ZHANG Xinglong, et al. Facile electrochemical fabrication of magnetic Fe3O4 for electrocatalytic synthesis of ammonia used for hydrogen storage application[J]. International Journal of Hydrogen Energy, 2021, 46(47): 24128-24134. |
40 | CUI Baochen, ZHANG Jianhua, LIU Shuzhi, et al. Electrochemical synthesis of ammonia directly from N2 and water over iron-based catalysts supported on activated carbon[J]. Green Chemistry, 2017, 19(1): 298-304. |
41 | CHEN Shiming, PERATHONER Siglinda, CLAUDIO Ampelli, et al. Electrocatalytic synthesis of ammonia at room temperature and atmospheric pressure from water and nitrogen on a carbon-nanotube-based electrocatalyst[J]. Angewandte Chemie International Edition, 2017, 56(10):2699-2703. |
42 | CUI Xiaoyang, TANG Cheng, LIU Xiaomeng, et al. Highly selective electrochemical reduction of dinitrogen to ammonia at ambient temperature and pressure over iron oxide catalysts[J]. Chemistry, 2018, 24(69): 18494-18501. |
43 | ZHAO Xinran, YIN Fengxiang, LIU Ning, et al. Highly efficient metal-organic-framework catalysts for electrochemical synthesis of ammonia from N2 (air) and water at low temperature and ambient pressure[J]. Journal of Materials Science, 2017, 52(17): 10175-10185. |
44 | SURYANTO Bryan H R, KANG Colin S M, WANG Dabin, et al. Rational electrode-electrolyte design for efficient ammonia electrosynthesis under ambient conditions[J]. ACS Energy Letters, 2018, 3(6): 1219-1224. |
45 | ZHOU Fengling, AZOFRA L M, Muataz ALI, et al. Electro-synthesis of ammonia from nitrogen at ambient temperature and pressure in ionic liquid[J]. Energy & Environmental Science. 2017, 10(12): 2516-2520. |
46 | YANG Dashuai, CHEN Ting, WANG Zhijiang. Electrochemical reduction of aqueous nitrogen (N2) at a low overpotential on (110)-oriented Mo nanofilm[J]. Journal of Materials Chemistry A, 2017, 5(36): 18967-18971. |
47 | ZHANG Ling, JI Xuqiang, REN Xiang, et al. Electrochemical ammonia synthesis via nitrogen reduction reaction on a MoS2 catalyst: theoretical and experimental studies[J]. Advanced Materials, 2018, 30(28): e1800191. |
48 | CHENG Hui, DING Liangxin, CHEN Gaofeng, et al. Molybdenum carbide nanodots enable efficient electrocatalytic nitrogen fixation under ambient conditions[J]. Advanced Materials, 2018, 30(46): e1803694. |
49 | ZHANG Xiaoping, KONG Rongmei, DU Huitong, et al. Highly efficient electrochemical ammonia synthesis via nitrogen reduction reactions on a VN nanowires array under ambient conditions[J]. Chemical Communications, 2018, 54(42): 5323-5325. |
50 | ZHANG Rong, ZHANG Ya, REN Xiang, et al. High-efficiency electrosynthesis of ammonia with high selectivity under ambient conditions enabled by VN nanosheet array[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(8): 9545-9549. |
51 | ZHANG Rong, GUO Haoran, YANG Li, et al. Electrocatalytic N2 fixation over hollow VO2 microspheres at ambient conditions[J]. ChemElectroChem, 2019, 6(4): 1014-1018. |
52 | XIA Jiaojiao, GUO Haoran, YU Guangsen, et al. 2D vanadium carbide (MXene) for electrochemical synthesis of ammonia under ambient conditions[J]. Catalysis Letters, 2021, 151(12): 3516-3522. |
53 | GUO Wenhan, LIANG Zibin, ZHAO Junliang, et al.Hierarchical cobalt phosphide hollow nanocages toward electrocatalytic ammonia synthesis under ambient pressure and room temperature[J]. Small Methods, 2018, 2(12): 1800204. |
54 | ZHANG Yizhen, HU Jue, ZHANG Chengxu, et al. Electrochemical synthesis of ammonia from nitrogen catalyzed by CoMoO4 nanorods under ambient conditions[J]. Journal of Materials Chemistry A, 2021, 9(8): 5060-5066. |
55 | QIAO Huici, YU Jie, LU Jinwei, et al. Co4N/Co2C@rGO with abundant Co—C and N—C bonds as highly efficient electrocatalyst for N2 reduction[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(3): 1373-1382. |
56 | SHIPMAN M A, SYMES M D. A re-evaluation of Sn (Ⅱ) phthalocyanine as a catalyst for the electrosynthesis of ammonia[J]. Electrochimica Acta, 2017, 258: 618-622. |
57 | HAN Jingrui, LIU Zaichun, MA Yongjun, et al. Ambient N2 fixation to NH3 at ambient conditions: using Nb2O5 nanofiber as a high-performance electrocatalyst[J]. Nano Energy, 2018, 52: 264-270. |
58 | KONG Wenhan, LIU Zaichun, HAN Jingrui, et al. Ambient electrochemical N2-to-NH3 fixation enabled by Nb2O5 nanowire array[J]. Inorganic Chemistry Frontiers, 2019, 6(2): 423-427. |
59 | 杨通, 何小波, 银凤翔. M-MOF-74(M=Ni,Co,Zn)的制备及其电化学催化合成氨性能[J]. 化工学报, 2020, 71(6): 2857-2870. |
YANG Tong, HE Xiaobo, YIN Fengxiang. Preparation of M-MOF-74 (M = Ni, Co, Zn) and its performance in electrocatalytic synthesis of ammonia[J]. CIESC Journal, 2020, 71(6): 2857-2870. | |
60 | QIU Weibin, XIE Xiaoying, QIU Jianding, et al. High-performance artificial nitrogen fixation at ambient conditions using a metal-free electrocatalyst[J]. Nature Communications, 2018, 9: 3485. |
61 | LIU Yanming, SU Yan, QUAN Xie, et al. Facile ammonia synthesis from electrocatalytic N2 reduction under ambient conditions on N-doped porous carbon[J]. ACS Catalysis, 2018, 8(2): 1186-1191. |
62 | SONG Yang, JOHNSON Daniel, PENG Rui, et al. A physical catalyst for the electrolysis of nitrogen to ammonia[J]. Science Advances, 2018, 4(4): e1700336. |
63 | CHEN Gaofeng, CAO Xinrui, WU Shunqing, et al. Ammonia electrosynthesis with high selectivity under ambient conditions via a Li+ incorporation strategy[J]. Journal of the American Chemical Society, 2017, 139(29): 9771-9774. |
64 | WANG Xiaoqian, WANG Wenyu, QIAO Man, et al. Atomically dispersed Au1 catalyst towards efficient electrochemical synthesis of ammonia[J]. Science Bulletin, 2018, 63(19): 1246-1253. |
65 | SHI Miaomiao, BAO Di, WULAN Bari, et al. Au sub-nanoclusters on TiO2 toward highly efficient and selective electrocatalyst for N2 conversion to NH3 at ambient conditions[J]. Advanced Materials, 2017, 29(17): e1606550. |
66 | LEE Hiang Kwee, Charlynn Sher Lin KOH, LEE Yinhong, et al. Favoring the unfavored: selective electrochemical nitrogen fixation using a reticular chemistry approach[J]. Science Advances, 2018, 4(3): eaar3208. |
67 | HUANG Shoushuang, GAO Chunyan, XIN Peijun, et al. An advanced electrocatalyst for efficient synthesis of ammonia based on chemically coupled NiS@MoS2 heterostructured nanospheres[J]. Sustainable Energy & Fuels, 2021, 5(10): 2640-2648. |
68 | LI Sijia, BAO Di, SHI Miaomiao, et al. Amorphizing of Au nanoparticles by CeO x -RGO hybrid support towards highly efficient electrocatalyst for N2 reduction under ambient conditions[J]. Advanced Materials, 2017, 29(33): 1700001. |
69 | IMAMURA Kanako, KUBOTA Jun. Electrochemical membrane cell for NH3 synthesis from N2 and H2O by electrolysis at 200 to 250℃ using a Ru catalyst, hydrogen-permeable Pd membrane and phosphate-based electrolyte[J]. Sustainable Energy & Fuels, 2018, 2(6): 1278-1286. |
70 | LIU Ruiquan, XIE Yahong, WANG Jide, et al. Synthesis of ammonia at atmospheric pressure with Ce0.8M0.2O2- δ (M=La, Y, Gd, Sm) and their proton conduction at intermediate temperature[J]. Solid State Ionics, 2006, 177(1/2): 73-76. |
71 | MURAKAMI Tsuyoshi, NOHIRA Toshiyuki, OGATA Yukio H, et al. Electrolytic ammonia synthesis in molten salts under atmospheric pressure using methane as a hydrogen source[J]. Electrochemical and Solid-State Letters, 2005, 8(4). |
72 | MURAKAMI Tsuyoshi, NOHIRA Toshiyuki, OGATA Yukio H, et al. Electrochemical synthesis of ammonia and coproduction of metal sulfides from hydrogen sulfide and nitrogen under atmospheric pressure[J]. Journal of the Electrochemical Society, 2005, 152(6): D109. |
73 | KIM Kwiyong, LEE Nara, YOO Chung-Yul, et al. Communication-electrochemical reduction of nitrogen to ammonia in 2-propanol under ambient temperature and pressure[J]. Journal of the Electrochemical Society, 2016, 163(7): F610-F612. |
74 | TSUNETO Akira, KUDO Akihiko, SAKATA Tadayoshi. Lithium-mediated electrochemical reduction of high pressure N2 to NH3 [J]. Journal of Electroanalytical Chemistry, 1994, 367(1/2): 183-188. |
75 | PAPPENFUS TED M, LARAMY Janice K, THOMA Laura M, et al. Wind to ammonia: electrochemical processes in room temperature ionic liquids[J]. ECS Transactions, 2009, 16(49): 89-93. |
76 | SURYANTO B H R, MATUSZEK K, CHOI J, et al. Nitrogen reduction to ammonia at high efficiency and rates based on a phosphonium proton shuttle[J]. Science, 2021, 372(6547): 1187-1191. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 胡喜, 王明珊, 李恩智, 黄思鸣, 陈俊臣, 郭秉淑, 于博, 马志远, 李星. 二硫化钨复合材料制备与储钠性能研究进展[J]. 化工进展, 2023, 42(S1): 344-355. |
[6] | 张杰, 白忠波, 冯宝鑫, 彭肖林, 任伟伟, 张菁丽, 刘二勇. PEG及其复合添加剂对电解铜箔后处理的影响[J]. 化工进展, 2023, 42(S1): 374-381. |
[7] | 赵巍, 赵德银, 李世瀚, 刘洪达, 孙进, 郭艳秋. 三嗪型天然气管道缓蚀型减阻剂合成与应用[J]. 化工进展, 2023, 42(S1): 391-399. |
[8] | 王正坤, 黎四芳. 双子表面活性剂癸炔二醇的绿色合成[J]. 化工进展, 2023, 42(S1): 400-410. |
[9] | 高雨飞, 鲁金凤. 非均相催化臭氧氧化作用机理研究进展[J]. 化工进展, 2023, 42(S1): 430-438. |
[10] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[11] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[12] | 刘炫麟, 王驿凯, 戴苏洲, 殷勇高. 热泵中氨基甲酸铵分解反应特性及反应器结构优化[J]. 化工进展, 2023, 42(9): 4522-4530. |
[13] | 赖诗妮, 江丽霞, 李军, 黄宏宇, 小林敬幸. 含碳掺氨燃料的研究进展[J]. 化工进展, 2023, 42(9): 4603-4615. |
[14] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[15] | 王晋刚, 张剑波, 唐雪娇, 刘金鹏, 鞠美庭. 机动车尾气脱硝催化剂Cu-SSZ-13的改性研究进展[J]. 化工进展, 2023, 42(9): 4636-4648. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |