化工进展 ›› 2022, Vol. 41 ›› Issue (7): 3890-3899.DOI: 10.16085/j.issn.1000-6613.2021-1775
王超超1(), 吴翼伶1, 陈嘉巧1, 蔡天宁1, 刘文如1,2,3, 李祥1,2,3, 吴鹏1,2,3()
收稿日期:
2021-08-18
修回日期:
2021-11-02
出版日期:
2022-07-25
发布日期:
2022-07-23
通讯作者:
吴鹏
作者简介:
王超超(1995—),男,硕士研究生,研究方向为污水处理与回用。E-mail: 基金资助:
WANG Chaochao1(), WU Yiling1, CHEN Jiaqiao1, CAI Tianning1, LIU Wenru1,2,3, LI Xiang1,2,3, WU Peng1,2,3()
Received:
2021-08-18
Revised:
2021-11-02
Online:
2022-07-25
Published:
2022-07-23
Contact:
WU Peng
摘要:
构建新型厌氧水解酸化(AnHA)-短程反硝化厌氧氨氧化(PD/A)工艺,实现了低碳氮比模拟生活污水和低浓度硝酸盐模拟废水的同步和高效处理。通过控制进水NO3--N/NH4+-N=1.2、COD/TN=2.36,调控生活污水分段进水比为3∶7,AnHA反应器HRT=3.2h,AnHA-PD/A系统实现了94.78% TN去除,相应出水TN浓度仅为5.47mg/L,远低于我国城镇污水处理厂一级A排放标准。稳定运行期间,PD-Anammox过程作为AnHA-PD/A系统内最为主要的氮素去除过程,其对系统TN去除贡献率高达95.87%。气相色谱结果表明,乙酸作为AnHA出水主要有机成分(43.65%),即优质碳源供给极大地促进了PD/A系统内NO2--N供给过程。微生物高通量测序表明,Commamonas和Omatilinea作为AnHA系统内相对丰度最高的水解和酸化菌属,在大分子有机物的降解产酸过程中发挥重要作用,相应丰度分别为2.97%和3.74%;PD/A系统内主要优势功能菌属为Candidatus Brocadia和Thauera,相应丰度分别为2.93%和7.37%。
中图分类号:
王超超, 吴翼伶, 陈嘉巧, 蔡天宁, 刘文如, 李祥, 吴鹏. 新型厌氧水解酸化-短程反硝化厌氧氨氧化工艺同步处理生活污水和含硝酸盐模拟废水[J]. 化工进展, 2022, 41(7): 3890-3899.
WANG Chaochao, WU Yiling, CHEN Jiaqiao, CAI Tianning, LIU Wenru, LI Xiang, WU Peng. A novel anaerobic hydrolysis acidification-partial denitrification anaerobic ammonia oxidation process for advanced nitrogen removal from simulated domestic and nitrate-containing wastewater[J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3890-3899.
运行特征 | NH4+-N/mg·L-1 | COD/mg·L-1 | NO3--N/mg·L-1 | Q1/Q2 | 生活污水分段 进水比(a∶b) | AnHA 反应器HRT/h | PD/A 反应器HRT/h |
---|---|---|---|---|---|---|---|
阶段Ⅰ-1(1~30天) | 50 | 260 | 50 | 1.0 | 10∶0 | 0 | 6 |
阶段Ⅰ-2(31~62天) | 50 | 260 | 60 | 1.2 | 10∶0 | 0 | 6 |
阶段Ⅱ-1(63~90天) | 50 | 260 | 60 | 1.2 | 5∶5 | 4.5 | 6 |
阶段Ⅱ-2(91~132天) | 50 | 260 | 60 | 1.2 | 3∶7 | 3.2 | 6 |
阶段Ⅱ-3(133~170天) | 50 | 260 | 60 | 1.2 | 1∶9 | 2.5 | 6 |
表1 AnHA-PD/A系统运行工况
运行特征 | NH4+-N/mg·L-1 | COD/mg·L-1 | NO3--N/mg·L-1 | Q1/Q2 | 生活污水分段 进水比(a∶b) | AnHA 反应器HRT/h | PD/A 反应器HRT/h |
---|---|---|---|---|---|---|---|
阶段Ⅰ-1(1~30天) | 50 | 260 | 50 | 1.0 | 10∶0 | 0 | 6 |
阶段Ⅰ-2(31~62天) | 50 | 260 | 60 | 1.2 | 10∶0 | 0 | 6 |
阶段Ⅱ-1(63~90天) | 50 | 260 | 60 | 1.2 | 5∶5 | 4.5 | 6 |
阶段Ⅱ-2(91~132天) | 50 | 260 | 60 | 1.2 | 3∶7 | 3.2 | 6 |
阶段Ⅱ-3(133~170天) | 50 | 260 | 60 | 1.2 | 1∶9 | 2.5 | 6 |
模拟生活污水 | 含硝酸盐模拟废水 | |||
---|---|---|---|---|
COD/mg·L-1 | NH4+-N/mg·L-1 | NO2--N/mg·L-1 | NO3--N/mg·L-1 | |
260 | 50 | 0~0.3 | 50~60 |
表2 两类模拟污水主要水质特征
模拟生活污水 | 含硝酸盐模拟废水 | |||
---|---|---|---|---|
COD/mg·L-1 | NH4+-N/mg·L-1 | NO2--N/mg·L-1 | NO3--N/mg·L-1 | |
260 | 50 | 0~0.3 | 50~60 |
1 | CHEN R, JI J Y, CHEN Y J, et al. Successful operation performance and syntrophic micro-granule in partial nitritation and anammox reactor treating low-strength ammonia wastewater[J]. Water Research, 2019, 155: 288-299. |
2 | ZHANG M, WANG S Y, JI B, et al. Towards mainstream deammonification of municipal wastewater: partial nitrification-anammox versus partial denitrification-anammox[J]. Science of the Total Environment, 2019, 692: 393-401. |
3 | DU R, CAO S B, LI X C, et al. Efficient partial-denitrification/anammox (PD/A) process through gas-mixing strategy: system evaluation and microbial analysis[J]. Bioresource Technology, 2020, 300: 122675. |
4 | LI J L, LI J W, PENG Y Z, et al. Insight into the impacts of organics on anammox and their potential linking to system performance of sewage partial nitrification-anammox (PN/A): a critical review[J]. Bioresource Technology, 2020, 300: 122655. |
5 | DU R, PENG Y Z, JI J T, et al. Partial denitrification providing nitrite: opportunities of extending application for anammox[J]. Environment International, 2019, 131: 105001. |
6 | 张星星, 张钰, 王超超, 等. 短程反硝化耦合厌氧氨氧化工艺及其应用前景研究进展[J]. 化工进展, 2020, 39(5): 1981-1991. |
ZHANG Xingxing, ZHANG Yu, WANG Chaochao, et al. Research advances in application prospect of partial denitrification coupled with anammox: a review[J]. Chemical Industry and Engineering Progress, 2020, 39(5): 1981-1991. | |
7 | CAO S B, WANG S Y, PENG Y Z, et al. Achieving partial denitrification with sludge fermentation liquid as carbon source: the effect of seeding sludge[J]. Bioresource Technology, 2013, 149: 570-574. |
8 | CAO S B, PENG Y Z, DU R, et al. Feasibility of enhancing the DEnitrifying AMmonium OXidation (DEAMOX) process for nitrogen removal by seeding partial denitrification sludge[J]. Chemosphere, 2016, 148: 403-407. |
9 | DE KREUK M K, KISHIDA N, TSUNEDA S, et al. Behavior of polymeric substrates in an aerobic granular sludge system[J]. Water Research, 2010, 44(20): 5929-5938. |
10 | CAO S B, DU R, PENG Y Z, et al. Novel two stage partial denitrification (PD)-Anammox process for tertiary nitrogen removal from low carbon/nitrogen (C/N) municipal sewage[J]. Chemical Engineering Journal, 2019, 362: 107-115. |
11 | DU R, CAO S B, PENG Y Z, et al. Combined partial denitrification (PD)-Anammox: a method for high nitrate wastewater treatment[J]. Environment International, 2019, 126: 707-716. |
12 | MA S J, MA H J, HU H D, et al. Effect of mixing intensity on hydrolysis and acidification of sewage sludge in two-stage anaerobic digestion: characteristics of dissolved organic matter and the key microorganisms[J]. Water Research, 2019, 148: 359-367. |
13 | LUO J Y, FENG L Y, CHEN Y G, et al. Alkyl polyglucose enhancing propionic acid enriched short-chain fatty acids production during anaerobic treatment of waste activated sludge and mechanisms[J]. Water Research, 2015, 73: 332-341. |
14 | SHI L L, DU R, PENG Y Z, et al. Successful establishment of partial denitrification by introducing hydrolytic acidification of slowly biodegradable organic matter[J]. Bioresource Technology, 2020, 315: 123887. |
15 | WANG D, WANG G W, YANG F L, et al. Treatment of municipal sewage with low carbon-to-nitrogen ratio via a novel integrated process[J]. Chemical Engineering Journal, 2018, 341: 58-64. |
16 | TANG C C, TIAN Y, HE Z W, et al. Performance and mechanism of a novel algal-bacterial symbiosis system based on sequencing batch suspended biofilm reactor treating domestic wastewater[J]. Bioresource Technology, 2018, 265: 422-431. |
17 | JI J, PENG Y, WANG B, et al. Synergistic partial-denitrification, anammox, and in situ fermentation (SPDAF) process for advanced nitrogen removal from domestic and nitrate-containing wastewater[J]. Environmental Science & Technology, 2020, 54(6): 3702-3713. |
18 | DU R, PENG Y Z, CAO S B, et al. Mechanisms and microbial structure of partial denitrification with high nitrite accumulation[J]. Applied Microbiology and Biotechnology, 2016, 100(4): 2011-2021. |
19 | MA B, QIAN W, YUAN C, et al. Achieving mainstream nitrogen removal through coupling anammox with denitratation[J]. Environmental Science & Technology, 2017, 51(15): 8405-8413. |
20 | HAN Y, QIAN J Z, GUO J B, et al. Feasibility of partial denitrification and anammox for removing nitrate and ammonia simultaneously in situ through synergetic interactions[J]. Bioresource Technology, 2021, 320: 124390. |
21 | CUI B, YANG Q, LIU X H, et al. Achieving partial denitrification-anammox in biofilter for advanced wastewater treatment[J]. Environment International, 2020, 138: 105612. |
22 | KAMPAS P, PARSONS S A, PEARCE P, et al. Mechanical sludge disintegration for the production of carbon source for biological nutrient removal[J]. Water Research, 2007, 41(8): 1734-1742. |
23 | XU X C, MA S Q, JIANG H B, et al. Start-up of the anaerobic hydrolysis acidification (ANHA)-simultaneous partial nitrification, anammox and denitrification (SNAD)/enhanced biological phosphorus removal (EBPR) process for simultaneous nitrogen and phosphorus removal for domestic sewage treatment[J]. Chemosphere, 2021, 275: 130094. |
24 | 王维奇, 王秀杰, 李军, 等. 部分反硝化耦合厌氧氨氧化脱氮性能研究[J]. 中国环境科学, 2019, 39(2): 641-647. |
WANG Weiqi, WANG Xiujie, LI Jun, et al. Study on the performance of partial denitrification coupled with anaerobic ammonia oxidation for nitrogen removal[J]. China Environmental Science, 2019, 39(2): 641-647. | |
25 | 张星星, 王超超, 王垚, 等. 基于不同废污泥源的短程反硝化快速启动及稳定性[J]. 环境科学, 2020, 41(8): 3715-3724. |
ZHANG Xingxing, WANG Chaochao, WANG Yao, et al. Rapid start-up and stability of partial denitrification based on different waste sludge sources[J]. Environmental Science, 2020, 41(8): 3715-3724. | |
26 | DU R, CAO S B, LI B K, et al. Synergy of partial-denitrification and anammox in continuously fed upflow sludge blanket reactor for simultaneous nitrate and ammonia removal at room temperature[J]. Bioresource Technology, 2019, 274: 386-394. |
27 | LIU X Y, YANG H, FANG X Y, et al. Performance study and population structure analysis of hydrolytic acidification immobilized fillers using municipal wastewater[J]. Process Safety and Environmental Protection, 2021, 146: 126-135. |
28 | YU H Q, FANG H H P. Acidogenesis of dairy wastewater at various pH levels[J]. Water Science and Technology, 2002, 45(10): 201-206. |
29 | WU P, ZHANG X X, WANG Y G, et al. Development of a novel denitrifying phosphorus removal and partial denitrification anammox (DPR + PDA) process for advanced nitrogen and phosphorus removal from domestic and nitrate wastewaters[J]. Bioresource Technology, 2021, 327: 124795. |
30 | QIAN W T, MA B, LI X Y, et al. Long-term effect of pH on denitrification: high pH benefits achieving partial-denitrification[J]. Bioresource Technology, 2019, 278: 444-449. |
31 | DU R, CAO S B, ZHANG H Y, et al. Formation of partial-denitrification (PD) granular sludge from low-strength nitrate wastewater: the influence of loading rates[J]. Journal of Hazardous Materials, 2020, 384: 121273. |
32 | 闫冰, 付嘉棋, 夏嵩, 等. 厌氧氨氧化启动过程细菌群落多样性及PICRUSt2功能预测分析[J]. 环境科学, 2021, 42(8): 3875-3885. . |
YAN B, FU J Q, XIA S, et al. Diversity and PICRUSt2-based predicted functional analysis of bacterial communities during the start-up of Anammox[J]. Environmental Science, 2021, 42(8): 3875-3885. | |
33 | WANG D P, ZHENG Q, HUANG K L, et al. Metagenomic and metatranscriptomic insights into the complex nitrogen metabolic pathways in a single-stage bioreactor coupling partial denitrification with anammox[J]. Chemical Engineering Journal, 2020, 398: 125653. |
[1] | 赵景超, 谭明. 表面活性剂对电渗析减量化工业含盐废水的影响[J]. 化工进展, 2023, 42(S1): 529-535. |
[2] | 王大为, 毕春梦, 秦永丽, 蒋永荣, 谢华宾, 毛宇昆, 苗雪岩. 硫酸盐还原活性污泥矿化固定酸性矿山废水中的镉[J]. 化工进展, 2023, 42(10): 5509-5519. |
[3] | 朱义浩, 赵白航, 王淳, 张雨晴, 杨海山. 改性煤矸石基沸石对水中腐殖酸的吸附性能[J]. 化工进展, 2023, 42(10): 5531-5537. |
[4] | 张会霞, 周立山, 张程蕾, 钱光磊, 谢陈鑫, 朱令之. Bi2S3/TiO2纳米锥光阳极的制备及其光电催化降解土霉素[J]. 化工进展, 2023, 42(10): 5548-5557. |
[5] | 许中硕, 周盼盼, 王宇晖, 黄威, 宋新山. 硫铁矿介导的自养反硝化研究进展[J]. 化工进展, 2023, 42(9): 4863-4871. |
[6] | 陈翔宇, 卞春林, 肖本益. 温度分级厌氧消化工艺的研究进展[J]. 化工进展, 2023, 42(9): 4872-4881. |
[7] | 王琦, 寇丽红, 王冠宇, 王吉坤, 刘敏, 李兰廷, 王昊. 焦化废水生物出水中可溶解性有机物的分子识别[J]. 化工进展, 2023, 42(9): 4984-4993. |
[8] | 龚鹏程, 严群, 陈锦富, 温俊宇, 苏晓洁. 铁酸钴复合碳纳米管活化过硫酸盐降解铬黑T的性能及机理[J]. 化工进展, 2023, 42(7): 3572-3581. |
[9] | 陈娜, 张肖静, 张楠, 马冰冰, 张涵, 杨浩洁, 张宏忠. 淬灭酶对亚硝化-混合自养脱氮系统的影响[J]. 化工进展, 2023, 42(7): 3816-3823. |
[10] | 朱雅静, 徐岩, 简美鹏, 李海燕, 王崇臣. 金属有机框架材料用于海水提铀的研究进展[J]. 化工进展, 2023, 42(6): 3029-3048. |
[11] | 李白雪, 信欣, 朱羽蒙, 刘琴, 刘鑫. SASD-A体系构建及进水不同S/N对脱氮工艺的影响机制[J]. 化工进展, 2023, 42(6): 3261-3271. |
[12] | 曾天续, 张永显, 严渊, 刘宏, 马娇, 党鸿钟, 吴新波, 李维维, 陈永志. 羟胺对硝化菌活性及其动力学参数的影响[J]. 化工进展, 2023, 42(6): 3272-3280. |
[13] | 杨自强, 李风海, 郭卫杰, 马名杰, 赵薇. 市政污泥热处理过程中磷迁移转化的研究进展[J]. 化工进展, 2023, 42(4): 2081-2090. |
[14] | 朱紫旋, 陈俊江, 张星星, 李祥, 刘文如, 吴鹏. 基于短程反硝化厌氧氨氧化新型污水生物脱氮工艺的研究进展[J]. 化工进展, 2023, 42(4): 2091-2100. |
[15] | 王玉, 余广炜, 江汝清, 黎长江, 林佳佳, 邢贞娇. 餐厨厌氧沼渣生物炭吸附盐酸环丙沙星[J]. 化工进展, 2023, 42(4): 2160-2170. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |