化工进展 ›› 2022, Vol. 41 ›› Issue (7): 3877-3889.DOI: 10.16085/j.issn.1000-6613.2021-1910
收稿日期:
2021-09-07
修回日期:
2021-11-19
出版日期:
2022-07-25
发布日期:
2022-07-23
通讯作者:
赵芸
作者简介:
杨超(1996―),男,硕士研究生,研究方向为工业催化。E-mail:YANG Chao1(), JIAO Qingze1,2, FENG Caihong1, ZHAO Yun1()
Received:
2021-09-07
Revised:
2021-11-19
Online:
2022-07-25
Published:
2022-07-23
Contact:
ZHAO Yun
摘要:
废旧轮胎因产量高、难降解、污染环境,被称为最难处理的“黑色垃圾”之一。催化裂解是一种处理废旧轮胎的重要手段,可以实现其高效转化与资源化利用,同时得到高附加值的化学产品,如单环芳烃、低碳烯烃与柠檬烯等。本文基于轮胎的物理结构与化学组成、催化裂解过程与裂解产物特征、反应器类型与特征、催化剂类型与作用原理、工艺条件等问题综述了废旧轮胎的催化裂解产物分布规律。通过对比反应器、催化剂与工艺条件对产物分布的影响,进一步分析了当前实现废旧轮胎催化裂解工业化的问题,并基于当前废旧轮胎催化裂解的研究现状,提出应集中设计适应于大规模处理的反应器与配套工艺,同时开发高稳定性与对特定产物高选择性的催化剂,从而实现对废旧轮胎以低能耗、高转化、高价值为特点的资源化利用。
中图分类号:
杨超, 矫庆泽, 冯彩虹, 赵芸. 废旧轮胎催化裂解研究进展[J]. 化工进展, 2022, 41(7): 3877-3889.
YANG Chao, JIAO Qingze, FENG Caihong, ZHAO Yun. Research progress on catalytic cracking of waste tires[J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3877-3889.
方法 | 主要内容 | 特点 |
---|---|---|
燃烧 | 热值与天然气相当,约为36MJ/kg,可作为燃料使用 | 尾气含有二??英、酚类等致癌物质 |
热解 | 产物分布宽、操作温度高 | |
常规热解 | 在缺氧或惰性气体中高温(500~600℃)降解,可产生气、油及固体残渣 | |
熔融盐热解 | 在氯化锂/氯化钾共熔混合物中分解 | |
微波解聚 | 在氮气和微波条件下,炭黑吸收微波,促进橡胶裂解 | |
共热解 | 与导热剂(如生物质等)共混热解,可降低热解温度,减少积炭和结焦 | |
气化 | 在一定温度下与气化剂共混降解,目标产物是合成气 | 气化剂昂贵、成本高、气体产率低 |
炭化 | 在高温(>1000℃)下,降解形成高品质炭和其他产物 | 实现高温难度大、对工艺设备要求高 |
超临界水氧化 | 在水的超临界(Tc=374.3℃, pc=22.05MPa)和亚临界状态下,以过氧化氢为氧化剂对废旧轮胎颗粒降解,产物以燃料油和固体炭黑为主 | 操作条件要求高、装置复杂 |
催化裂解 | 在隔氧和催化剂的作用下,可降解形成气、液、固体残渣 | 产物分布窄、资源化利用率高 |
表1 轮胎的化学处理方式
方法 | 主要内容 | 特点 |
---|---|---|
燃烧 | 热值与天然气相当,约为36MJ/kg,可作为燃料使用 | 尾气含有二??英、酚类等致癌物质 |
热解 | 产物分布宽、操作温度高 | |
常规热解 | 在缺氧或惰性气体中高温(500~600℃)降解,可产生气、油及固体残渣 | |
熔融盐热解 | 在氯化锂/氯化钾共熔混合物中分解 | |
微波解聚 | 在氮气和微波条件下,炭黑吸收微波,促进橡胶裂解 | |
共热解 | 与导热剂(如生物质等)共混热解,可降低热解温度,减少积炭和结焦 | |
气化 | 在一定温度下与气化剂共混降解,目标产物是合成气 | 气化剂昂贵、成本高、气体产率低 |
炭化 | 在高温(>1000℃)下,降解形成高品质炭和其他产物 | 实现高温难度大、对工艺设备要求高 |
超临界水氧化 | 在水的超临界(Tc=374.3℃, pc=22.05MPa)和亚临界状态下,以过氧化氢为氧化剂对废旧轮胎颗粒降解,产物以燃料油和固体炭黑为主 | 操作条件要求高、装置复杂 |
催化裂解 | 在隔氧和催化剂的作用下,可降解形成气、液、固体残渣 | 产物分布窄、资源化利用率高 |
结构 | 组成及功能 |
---|---|
胎面 (tread) | 成分为天然或合成橡胶,具有优良的耐摩擦性和热稳定性 |
带层 (belts) | 包括冠带层与带束层等,一般由橡胶、钢和帘子布等多种材料制成,为外层提供结构支撑 |
胎侧 (sidewalls) | 由橡胶制成,主要用来缓冲来自路面的颠簸,同时保证轮胎结构的完整性 |
胎体层 (carcass) | 由涂有天然橡胶的金属制成,支撑轮胎的内部结构 |
内衬层 (inner line) | 成分为低透气性的(卤)丁基橡胶,具有存气、稳压等作用 |
胎圈 (beads) | 主要由钢丝与橡胶制成,具有高的拉伸强度,确保轮胎和轮辋之间的连接 |
胎圈填料 (beads filler) | 保证了胎圈线的刚性部分和内衬之间的过渡连接 |
表2 轮胎的结构及组成[14]
结构 | 组成及功能 |
---|---|
胎面 (tread) | 成分为天然或合成橡胶,具有优良的耐摩擦性和热稳定性 |
带层 (belts) | 包括冠带层与带束层等,一般由橡胶、钢和帘子布等多种材料制成,为外层提供结构支撑 |
胎侧 (sidewalls) | 由橡胶制成,主要用来缓冲来自路面的颠簸,同时保证轮胎结构的完整性 |
胎体层 (carcass) | 由涂有天然橡胶的金属制成,支撑轮胎的内部结构 |
内衬层 (inner line) | 成分为低透气性的(卤)丁基橡胶,具有存气、稳压等作用 |
胎圈 (beads) | 主要由钢丝与橡胶制成,具有高的拉伸强度,确保轮胎和轮辋之间的连接 |
胎圈填料 (beads filler) | 保证了胎圈线的刚性部分和内衬之间的过渡连接 |
类型 | 反应器 | 操作温度/℃ | 传热速率/℃·min-1 | 气体停留时间/s | 特点 |
---|---|---|---|---|---|
慢速裂化反应器 | 固定床 | 350~600 | 5~40 | 10~40 | 间歇操作,处理量小 |
回转窑 | 400~600 | 约100 | 约30 | 固体停留时间可控 | |
微波反应器 | 400~700 | 1~150 | 20~60 | 气体停留时间较长,不易工业化放大 | |
螺旋窑 | 400~550 | 100~1000 | 5~30 | 传热速率范围大 | |
快速裂化反应器 | 流化床 | 350~800 | >10000 | 1~5 | 连续操作,易于工业放大 |
喷泉床 | 400~600 | >10000 | 0.03~0.5 | 气体停留时间短,裂解油产率高 |
表3 常见废旧轮胎的裂解反应器及其特点
类型 | 反应器 | 操作温度/℃ | 传热速率/℃·min-1 | 气体停留时间/s | 特点 |
---|---|---|---|---|---|
慢速裂化反应器 | 固定床 | 350~600 | 5~40 | 10~40 | 间歇操作,处理量小 |
回转窑 | 400~600 | 约100 | 约30 | 固体停留时间可控 | |
微波反应器 | 400~700 | 1~150 | 20~60 | 气体停留时间较长,不易工业化放大 | |
螺旋窑 | 400~550 | 100~1000 | 5~30 | 传热速率范围大 | |
快速裂化反应器 | 流化床 | 350~800 | >10000 | 1~5 | 连续操作,易于工业放大 |
喷泉床 | 400~600 | >10000 | 0.03~0.5 | 气体停留时间短,裂解油产率高 |
催化剂 | 催化方式 | 催料比 | 反应器 | 轮胎粉粒径 | (热解/催化温度)/℃ | 裂解产物组成(质量分数)/% | 参考 文献 | |||
---|---|---|---|---|---|---|---|---|---|---|
气体 | 液体 | 固体 | 其他 | |||||||
ZSM-5 | 先热解,再催化 | 0.5 | 常压固定床 | 1cm | 500/400 | 44.66 | 烷基苯系物:24.99 | [ | ||
USY | 先热解,再催化 | 0.5 | 常压固定床 | 1cm | 500/400 | 32.66 | 烷基苯系物:46.10 | |||
热解 | ― | ― | 常压固定床 | 1cm | 500 | 51.98 | 烷基苯系物:83.28 | |||
ZSM-5 | 共同催化热解 | 2g/min | 流化床 | ― | 500 | 19.32 | 约46.68 | 约34 | 芳香族(<C10):13.00 | [ |
HY | 共同催化热解 | 2g/min | 流化床 | ― | 500 | 2.49 | 约62.51 | 约35 | 芳香族(<C10):22.67 | |
热解 | ― | ― | 流化床 | ― | 500 | 3.25 | 约38.25 | 约35 | 芳香族(<C10):7.77 | |
HBeta | 先热解,再催化 | 0.25 | 常压固定床 | 20~40目 | 500/350 | 8 | 51 | 41.5 | 气体中硫:22 | [ |
HY | 先热解,再催化 | 0.25 | 常压固定床 | 20~40目 | 500/350 | 10 | 51.5 | 41.5 | 气体中硫:29 | |
HMOR | 先热解,再催化 | 0.25 | 常压固定床 | 20~40目 | 500/350 | 11 | 48 | 41 | 气体中硫:27 | |
Cu/Hβ | 先热解,再催化 | 0.25 | 常压固定床 | 20~40目 | 500/350 | 11.5 | 47.5 | 41 | 气体中硫:20 | |
Cu/HY | 先热解,再催化 | 0.25 | 常压固定床 | 20~40目 | 500/350 | 12 | 47 | 41 | 气体中硫:22 | |
Cu/HMOR | 先热解,再催化 | 0.25 | 常压固定床 | 20~40目 | 500/350 | 11 | 47.5 | 41.5 | 气体中硫:18 | |
热解 | ― | ― | 常压固定床 | 20~40目 | 500/350 | 11.5 | 46.5 | 42 | 气体中硫:20 | |
Ni/Hβ | 先热解,再催化 | 0.25 | 常压固定床 | ― | 500/350 | 8 | 49 | 43 | 气体中硫:20 | [ |
Ni/HMOR | 先热解,再催化 | 0.25 | 常压固定床 | ― | 500/350 | 10 | 46 | 44 | 气体中硫:18 | |
Ni/HY | 先热解,再催化 | 0.25 | 常压固定床 | ― | 500/350 | 7 | 51 | 42 | 气体中硫:12 | |
Ni/HZSM-5 | 先热解,再催化 | 0.25 | 常压固定床 | ― | 500/350 | 12 | 44 | 44 | 气体中硫:15 | |
热解 | ― | ― | 常压固定床 | ― | 500/350 | 12 | 47.5 | 40.5 | 气体中硫:29 | |
Fe/KL | 先热解,再催化 | 0.25 | 常压固定床 | ― | 500/350 | 12.1 | 42.9 | 42.5 | BTEX:58 | [ |
Fe/HMOR | 先热解,再催化 | 0.25 | 常压固定床 | ― | 500/350 | 13.3 | 42 | 42.4 | BTEX:52 | |
Fe/Hβ | 先热解,再催化 | 0.25 | 常压固定床 | ― | 500/350 | 11.4 | 43.6 | 41.7 | BTEX:13 | |
Fe/HZSM-5 | 先热解,再催化 | 0.25 | 常压固定床 | ― | 500/350 | 16.2 | 39 | 41.8 | BTEX:23 | |
热解 | ― | ― | 常压固定床 | ― | 500 | 11.6 | 46.0 | 42.4 | BTEX:20 | |
Ru/MCM-41 | 先热解,再催化 | 0.25 | 常压固定床 | ― | 500/350 | 30 | 25.5 | 44.5 | C1~C4:29.1 | [ |
MCM-41 | 先热解,再催化 | 0.25 | 常压固定床 | ― | 500/350 | 15 | 38 | 47 | C1~C4:11.8 | |
热解 | ― | ― | 常压固定床 | ― | 500 | 11 | 47 | 42 | C1~C4:8 | |
Cu/ZSM-5 | 先热解,再催化 | 0.25 | 常压固定床 | 1~3mm | 430/500 | 30 | 65 | 5 | 气体中硫:66 | [ |
Zn/ZSM-5 | 先热解,再催化 | 0.25 | 常压固定床 | 1~3mm | 430/500 | 28.5 | 66 | 5.5 | 气体中硫:65 | |
Cu/MCM-41 | 先热解,再催化 | 0.25 | 常压固定床 | 1~3mm | 430/500 | 27 | 67.5 | 5.5 | 气体中硫:62 | |
Zn/MCM-41 | 先热解,再催化 | 0.25 | 常压固定床 | 1~3mm | 430/500 | 27.5 | 68 | 4.5 | 气体中硫:75 | |
热解 | ― | ― | 常压固定床 | 1~3mm | 430/500 | 25 | 71 | 4 | 气体中硫:67 | |
Hβ | 共同催化热解 | 0.3 | 常压固定床 | 3~5mm | 550 | 32.5 | 34 | 33.5 | ― | [ |
HUSY | 共同催化热解 | 0.3 | 常压固定床 | 3~5mm | 550 | 32 | 33 | 35 | ― | |
TiO2 | 共同催化热解 | 0.3 | 常压固定床 | 3~5mm | 550 | 30.5 | 26.5 | 43 | ― | |
热解 | ― | ― | 常压固定床 | 3~5mm | 550 | 28.5 | 28.5 | 43 | ― |
表4 轮胎裂解常用固体酸催化剂对裂解产物分布的影响
催化剂 | 催化方式 | 催料比 | 反应器 | 轮胎粉粒径 | (热解/催化温度)/℃ | 裂解产物组成(质量分数)/% | 参考 文献 | |||
---|---|---|---|---|---|---|---|---|---|---|
气体 | 液体 | 固体 | 其他 | |||||||
ZSM-5 | 先热解,再催化 | 0.5 | 常压固定床 | 1cm | 500/400 | 44.66 | 烷基苯系物:24.99 | [ | ||
USY | 先热解,再催化 | 0.5 | 常压固定床 | 1cm | 500/400 | 32.66 | 烷基苯系物:46.10 | |||
热解 | ― | ― | 常压固定床 | 1cm | 500 | 51.98 | 烷基苯系物:83.28 | |||
ZSM-5 | 共同催化热解 | 2g/min | 流化床 | ― | 500 | 19.32 | 约46.68 | 约34 | 芳香族(<C10):13.00 | [ |
HY | 共同催化热解 | 2g/min | 流化床 | ― | 500 | 2.49 | 约62.51 | 约35 | 芳香族(<C10):22.67 | |
热解 | ― | ― | 流化床 | ― | 500 | 3.25 | 约38.25 | 约35 | 芳香族(<C10):7.77 | |
HBeta | 先热解,再催化 | 0.25 | 常压固定床 | 20~40目 | 500/350 | 8 | 51 | 41.5 | 气体中硫:22 | [ |
HY | 先热解,再催化 | 0.25 | 常压固定床 | 20~40目 | 500/350 | 10 | 51.5 | 41.5 | 气体中硫:29 | |
HMOR | 先热解,再催化 | 0.25 | 常压固定床 | 20~40目 | 500/350 | 11 | 48 | 41 | 气体中硫:27 | |
Cu/Hβ | 先热解,再催化 | 0.25 | 常压固定床 | 20~40目 | 500/350 | 11.5 | 47.5 | 41 | 气体中硫:20 | |
Cu/HY | 先热解,再催化 | 0.25 | 常压固定床 | 20~40目 | 500/350 | 12 | 47 | 41 | 气体中硫:22 | |
Cu/HMOR | 先热解,再催化 | 0.25 | 常压固定床 | 20~40目 | 500/350 | 11 | 47.5 | 41.5 | 气体中硫:18 | |
热解 | ― | ― | 常压固定床 | 20~40目 | 500/350 | 11.5 | 46.5 | 42 | 气体中硫:20 | |
Ni/Hβ | 先热解,再催化 | 0.25 | 常压固定床 | ― | 500/350 | 8 | 49 | 43 | 气体中硫:20 | [ |
Ni/HMOR | 先热解,再催化 | 0.25 | 常压固定床 | ― | 500/350 | 10 | 46 | 44 | 气体中硫:18 | |
Ni/HY | 先热解,再催化 | 0.25 | 常压固定床 | ― | 500/350 | 7 | 51 | 42 | 气体中硫:12 | |
Ni/HZSM-5 | 先热解,再催化 | 0.25 | 常压固定床 | ― | 500/350 | 12 | 44 | 44 | 气体中硫:15 | |
热解 | ― | ― | 常压固定床 | ― | 500/350 | 12 | 47.5 | 40.5 | 气体中硫:29 | |
Fe/KL | 先热解,再催化 | 0.25 | 常压固定床 | ― | 500/350 | 12.1 | 42.9 | 42.5 | BTEX:58 | [ |
Fe/HMOR | 先热解,再催化 | 0.25 | 常压固定床 | ― | 500/350 | 13.3 | 42 | 42.4 | BTEX:52 | |
Fe/Hβ | 先热解,再催化 | 0.25 | 常压固定床 | ― | 500/350 | 11.4 | 43.6 | 41.7 | BTEX:13 | |
Fe/HZSM-5 | 先热解,再催化 | 0.25 | 常压固定床 | ― | 500/350 | 16.2 | 39 | 41.8 | BTEX:23 | |
热解 | ― | ― | 常压固定床 | ― | 500 | 11.6 | 46.0 | 42.4 | BTEX:20 | |
Ru/MCM-41 | 先热解,再催化 | 0.25 | 常压固定床 | ― | 500/350 | 30 | 25.5 | 44.5 | C1~C4:29.1 | [ |
MCM-41 | 先热解,再催化 | 0.25 | 常压固定床 | ― | 500/350 | 15 | 38 | 47 | C1~C4:11.8 | |
热解 | ― | ― | 常压固定床 | ― | 500 | 11 | 47 | 42 | C1~C4:8 | |
Cu/ZSM-5 | 先热解,再催化 | 0.25 | 常压固定床 | 1~3mm | 430/500 | 30 | 65 | 5 | 气体中硫:66 | [ |
Zn/ZSM-5 | 先热解,再催化 | 0.25 | 常压固定床 | 1~3mm | 430/500 | 28.5 | 66 | 5.5 | 气体中硫:65 | |
Cu/MCM-41 | 先热解,再催化 | 0.25 | 常压固定床 | 1~3mm | 430/500 | 27 | 67.5 | 5.5 | 气体中硫:62 | |
Zn/MCM-41 | 先热解,再催化 | 0.25 | 常压固定床 | 1~3mm | 430/500 | 27.5 | 68 | 4.5 | 气体中硫:75 | |
热解 | ― | ― | 常压固定床 | 1~3mm | 430/500 | 25 | 71 | 4 | 气体中硫:67 | |
Hβ | 共同催化热解 | 0.3 | 常压固定床 | 3~5mm | 550 | 32.5 | 34 | 33.5 | ― | [ |
HUSY | 共同催化热解 | 0.3 | 常压固定床 | 3~5mm | 550 | 32 | 33 | 35 | ― | |
TiO2 | 共同催化热解 | 0.3 | 常压固定床 | 3~5mm | 550 | 30.5 | 26.5 | 43 | ― | |
热解 | ― | ― | 常压固定床 | 3~5mm | 550 | 28.5 | 28.5 | 43 | ― |
催化剂 | 催化方式 | 催料比 | 反应器 | 轮胎粉粒径 | (热解/催化 温度)/℃ | 裂解产物组成(质量分数)/% | 参考文献 | |||
---|---|---|---|---|---|---|---|---|---|---|
气体 | 液体 | 固体 | 其他 | |||||||
MgO | 先热解,再催化 | 0.03 | 常压固定床 | 2~3mm | 550/550 | 20 | 38 | 42 | 固体中S元素的残余:2.68 | [ |
Al2O3 | 先热解,再催化 | 0.03 | 常压固定床 | 2~3mm | 550/550 | 33 | 26 | 41 | 固体中S元素的残余:2.63 | |
CaCO3 | 先热解,再催化 | 0.03 | 常压固定床 | 2~3mm | 550/550 | 37 | 23 | 40 | 固体中S元素的残余:2.00 | |
ZSM-5 | 先热解,再催化 | 0.03 | 常压固定床 | 2~3mm | 550/550 | 25 | 35 | 40 | 固体中S元素的残余:2.59 | |
热解 | ― | ― | 常压固定床 | 2~3mm | 550/550 | 19 | 36 | 45 | 固体中S元素的残余:2.70 | |
CaO | 共同催化热解 | ― | 真空固定床 | 20~60目 | 520 | 14.9 | 48.84 | 36.26 | H2S:60 | [ |
ZnO | 共同催化热解 | ― | 真空固定床 | 20~60目 | 520 | 12.16 | 47.49 | 36.56 | H2S:25 | |
CaO/TiO2 | 共同催化热解 | ― | 真空固定床 | 20~60目 | 520 | 18.46 | 45.24 | 36.30 | H2S:55 | |
ZnO/TiO2 | 共同催化热解 | ― | 真空固定床 | 20~60目 | 520 | 24.82 | 39.98 | 35.20 | H2S:35 | |
热解 | ― | ― | 真空固定床 | 20~60目 | 520 | 16.72 | 45.96 | 37.32 | H2S:195 | |
Al2O3 | 共同催化热解 | ― | 常压固定床 | 5~10mm | 400 | 21 | 23.2 | 55.8 | 轻质油的相对密度:0.8288 | [ |
SiO2 | 共同催化热解 | ― | 常压固定床 | 5~10mm | 400 | 15.5 | 28.2 | 56.3 | 轻质油的相对密度:0.799 | |
Al2O3+SiO2 | 共同催化热解 | ― | 常压固定床 | 5~10mm | 400 | 5 | 14.8 | 80.2 | 轻质油的相对密度:0.7575 | |
CaC2 | 共同催化裂解 | 0.2 | 常压固定床 | 5~10mm | 400 | 29.6 | 38.4 | 32 | ― | [ |
热解 | ― | ― | 常压固定床 | 5~10mm | 400 | 37 | 22.8 | 40.2 | ― | |
Na2CO3 | 共同催化裂解 | 0.03 | 真空固定床 | 20~60目 | 500 | 14.6 | 47.8 | 37.6 | 低热值:18.1 | [ |
NaOH | 共同催化裂解 | 0.03 | 真空固定床 | 20~60目 | 500 | 13.3 | 48.1 | 38.6 | 低热值:16.9 | |
热解 | ― | ― | 真空固定床 | 20~60目 | 500 | 21.8 | 42.1 | 26.1 | 低热值:20.7 |
表5 轮胎裂解常用固体碱催化剂对裂解产物分布的影响
催化剂 | 催化方式 | 催料比 | 反应器 | 轮胎粉粒径 | (热解/催化 温度)/℃ | 裂解产物组成(质量分数)/% | 参考文献 | |||
---|---|---|---|---|---|---|---|---|---|---|
气体 | 液体 | 固体 | 其他 | |||||||
MgO | 先热解,再催化 | 0.03 | 常压固定床 | 2~3mm | 550/550 | 20 | 38 | 42 | 固体中S元素的残余:2.68 | [ |
Al2O3 | 先热解,再催化 | 0.03 | 常压固定床 | 2~3mm | 550/550 | 33 | 26 | 41 | 固体中S元素的残余:2.63 | |
CaCO3 | 先热解,再催化 | 0.03 | 常压固定床 | 2~3mm | 550/550 | 37 | 23 | 40 | 固体中S元素的残余:2.00 | |
ZSM-5 | 先热解,再催化 | 0.03 | 常压固定床 | 2~3mm | 550/550 | 25 | 35 | 40 | 固体中S元素的残余:2.59 | |
热解 | ― | ― | 常压固定床 | 2~3mm | 550/550 | 19 | 36 | 45 | 固体中S元素的残余:2.70 | |
CaO | 共同催化热解 | ― | 真空固定床 | 20~60目 | 520 | 14.9 | 48.84 | 36.26 | H2S:60 | [ |
ZnO | 共同催化热解 | ― | 真空固定床 | 20~60目 | 520 | 12.16 | 47.49 | 36.56 | H2S:25 | |
CaO/TiO2 | 共同催化热解 | ― | 真空固定床 | 20~60目 | 520 | 18.46 | 45.24 | 36.30 | H2S:55 | |
ZnO/TiO2 | 共同催化热解 | ― | 真空固定床 | 20~60目 | 520 | 24.82 | 39.98 | 35.20 | H2S:35 | |
热解 | ― | ― | 真空固定床 | 20~60目 | 520 | 16.72 | 45.96 | 37.32 | H2S:195 | |
Al2O3 | 共同催化热解 | ― | 常压固定床 | 5~10mm | 400 | 21 | 23.2 | 55.8 | 轻质油的相对密度:0.8288 | [ |
SiO2 | 共同催化热解 | ― | 常压固定床 | 5~10mm | 400 | 15.5 | 28.2 | 56.3 | 轻质油的相对密度:0.799 | |
Al2O3+SiO2 | 共同催化热解 | ― | 常压固定床 | 5~10mm | 400 | 5 | 14.8 | 80.2 | 轻质油的相对密度:0.7575 | |
CaC2 | 共同催化裂解 | 0.2 | 常压固定床 | 5~10mm | 400 | 29.6 | 38.4 | 32 | ― | [ |
热解 | ― | ― | 常压固定床 | 5~10mm | 400 | 37 | 22.8 | 40.2 | ― | |
Na2CO3 | 共同催化裂解 | 0.03 | 真空固定床 | 20~60目 | 500 | 14.6 | 47.8 | 37.6 | 低热值:18.1 | [ |
NaOH | 共同催化裂解 | 0.03 | 真空固定床 | 20~60目 | 500 | 13.3 | 48.1 | 38.6 | 低热值:16.9 | |
热解 | ― | ― | 真空固定床 | 20~60目 | 500 | 21.8 | 42.1 | 26.1 | 低热值:20.7 |
1 | 解读《废旧轮胎综合利用行业规范条件》[J]. 中国信息化, 2020(6): 20-21. |
Interpretation of “Standard conditions for comprehensive utilization of waste tires”[J]. China’s informationization, 2020(6): 20-21. | |
2 | 曹婷雨, 黄烨, 左明波, 等. “黑色污染”及其防治对策探析[J]. 环保科技, 2020, 26(3): 61-64. |
CAO Tingyu, HUANG Ye, ZUO Mingbo, et al. Analysis on “black pollution” and its control countermeasures[J]. Environmental Protection and Technology, 2020, 26(3): 61-64. | |
3 | 强金凤, 黎广, 李涛, 等. 废旧橡胶回收再利用方法概述[J]. 橡胶科技, 2020, 18(12): 675-677. |
QIANG Jinfeng, LI Guang, LI Tao, et al. Overview of recycling methods of waste rubber[J]. Rubber Science and Technology, 2020, 18(12): 675-677. | |
4 | 邱敬贤, 何曦, 戴欣, 等. 废旧轮胎处理技术的研究进展[J]. 中国环保产业, 2020(12): 18-22. |
QIU Jingxian, HE Xi, DAI Xin, et al. Research progress on waste tire treatment technologies[J]. China Environmental Protection Industry, 2020(12): 18-22. | |
5 | 王俊芝. 废轮胎与机油共裂解实验研究[D]. 青岛: 青岛理工大学, 2018. |
WANG Junzhi. Experimental study on copyrolysis of waste tires and engine oils[D]. Qingdao: Qingdao Tehcnology University, 2018. | |
6 | 康永. 废橡胶热裂解技术现状及发展方向[J]. 橡塑技术与装备, 2021, 47(1): 30-37. |
KANG Yong. Current status and development direction of waste rubber pyrolysis technology[J]. China Rubber/Plastics Technology and Equipment, 2021, 47(1): 30-37. | |
7 | 葛晓冬. 超临界水氧化法处理废旧轮胎的实验研究[D]. 大连: 大连理工大学, 2005. |
GE Xiaodong. An experimental study on the treatment of wast tire by supercritical water oxidation[D]. Dalian: Dalian University of Technology, 2005. | |
8 | WANG C, LI D, ZHAI T Y, et al. Direct conversion of waste tires into three-dimensional graphene[J]. Energy Storage Materials, 2019, 23: 499-507. |
9 | LEUNG D Y C, WANG C L. Kinetic study of scrap tyre pyrolysis and combustion[J]. Journal of Analytical and Applied Pyrolysis, 1998, 45(2): 153-169. |
10 | MASTRAL A M, MURILLO R, CALLÉN M S, et al. Influence of process variables on oils from tire pyrolysis and hydropyrolysis in a swept fixed bed reactor[J]. Energy & Fuels, 2000, 14(4): 739-744. |
11 | PARTHASARATHY P, CHOI H S, PARK H C, et al. Influence of process conditions on product yield of waste tyre pyrolysis: a review[J]. Korean Journal of Chemical Engineering, 2016, 33(8): 2268-2286. |
12 | 王梦雅. 废轮胎胎面和胎侧热解碳特性探究[D]. 大连: 大连理工大学, 2018. |
WANG Mengya. Characterization of pyrolysis chars prepared from waste tire tread and side wall[D]. Dalian: Dalian University of Technology, 2018. | |
13 | 蒋智慧, 刘洋, 宋永猛, 等. 废旧轮胎热解及热解产物研究展望[J]. 化工进展, 2021, 40(1): 515-525. |
JIANG Zhihui, LIU Yang, SONG Yongmeng, et al. Review of pyrolysis for waste tires and research prospects of pyrolysis products[J]. Chemical Industry and Engineering Progress, 2021, 40(1): 515-525. | |
14 | BOCKSTAL L, BERCHEM T, SCHMETZ Q, et al. Devulcanisation and reclaiming of tires and rubber by physical and chemical processes: a review[J]. Journal of Cleaner Production, 2019, 236: 117574. |
15 | OBOIRIEN B O, NORTH B C. A review of waste tyre gasification[J]. Journal of Environmental Chemical Engineering, 2017, 5(5): 5169-5178. |
16 | ZHANG X H, WANG T J, MA L L, et al. Vacuum pyrolysis of waste tires with basic additives[J]. Waste Management, 2008, 28(11): 2301-2310. |
17 | KAMINSKY W, MENNERICH C, ZHANG Z E. Feedstock recycling of synthetic and natural rubber by pyrolysis in a fluidized bed[J]. Journal of Analytical and Applied Pyrolysis, 2009, 85(1/2): 334-337. |
18 | HU H Y, FANG Y, LIU H, et al. The fate of sulfur during rapid pyrolysis of scrap tires[J]. Chemosphere, 2014, 97: 102-107. |
19 | BENALLAL B, ROY C, PAKDEL H, et al. Characterization of pyrolytic light naphtha from vacuum pyrolysis of used tyres comparison with petroleum naphtha[J]. Fuel, 1995, 74(11): 1589-1594. |
20 | YAZDANI E, HASHEMABADI S H, TAGHIZADEH A. Study of waste tire pyrolysis in a rotary kiln reactor in a wide range of pyrolysis temperature[J]. Waste Management, 2019, 85: 195-201. |
21 | AYANOĞLU A, YUMRUTAŞ R. Production of gasoline and diesel like fuels from waste tire oil by using catalytic pyrolysis[J]. Energy, 2016, 103: 456-468. |
22 | 严建华, 高雅丽, 张志霄, 等. 废轮胎回转窑中试热解油的理化性质[J]. 燃料化学学报, 2003, 31(6): 589-594. |
YAN Jianhua, GAO Yali, ZHANG Zhixiao, et al. Characteristics of pyrolytic oil derived from pilot-scale pyrolysis of scrap tires[J]. Journal of Fuel Chemistry and Technology, 2003, 31(6): 589-594. | |
23 | CUNLIFFE A M, WILLIAMS P T. Influence of process conditions on the rate of activation of chars derived from pyrolysis of used tires[J]. Energy & Fuels, 1999, 13(1): 166-175. |
24 | LUONG D X, BETS K V, ALGOZEEB W A, et al. Gram-scale bottom-up flash graphene synthesis[J]. Nature, 2020, 577(7792): 647-651. |
25 | ADVINCULA P A, LUONG D X, CHEN W Y, et al. Flash graphene from rubber waste[J]. Carbon, 2021, 178: 649-656. |
26 | 刘民凯. 电磁感应加热轮胎热解碳化装置: CN209584119U[P]. 2019-11-05. |
LIU Minkai. Electromagnetic induction heating tire pyrolysis carbonization device: CN209584119U[P]. 2019-11-05. | |
27 | ROY C, DARMSTADT H, BENALLAL B, et al. Characterization of naphtha and carbon black obtained by vacuum pyrolysis of polyisoprene rubber[J]. Fuel Processing Technology, 1997, 50(1): 87-103. |
28 | WILLIAMS P T. Pyrolysis of waste tyres: a review[J]. Waste Management, 2013, 33(8): 1714-1728. |
29 | LI S Q, YAO Q, CHI Y, et al. Pilot-scale pyrolysis of scrap tires in a continuous rotary kiln reactor[J]. Industrial & Engineering Chemistry Research, 2004, 43(17): 5133-5145. |
30 | MOLINER C, MARCHELLI F, BOSIO B, et al. Modelling of spouted and spout-fluid beds: key for their successful scale up[J]. Energies, 2017, 10(11): 1729. |
31 | LOPEZ G, ALVAREZ J, AMUTIO M, et al. Waste truck-tyre processing by flash pyrolysis in a conical spouted bed reactor[J]. Energy Conversion and Management, 2017, 142: 523-532. |
32 | ARABIOURRUTIA M, LOPEZ G, ARTETXE M, et al. Waste tyre valorization by catalytic pyrolysis: a review[J]. Renewable and Sustainable Energy Reviews, 2020, 129: 109932. |
33 | THOMAS C L. Chemistry of cracking catalysts[J]. Industrial & Engineering Chemistry, 1949, 41(11): 2564-2573. |
34 | HONG Z, FOGASH K B, WATWE R M, et al. Experimental and DFT studies of initiation processes for butane isomerization over sulfated-zirconia catalysts[J]. Journal of Catalysis, 1998, 178(2): 489-498. |
35 | MARCZEWSKI M. Mechanism of n-alkane transformations over a solid superacid of Lewis character, Al2O3/AlCl3 [J]. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1986, 82(6): 1687. |
36 | CORMA A. Formation of products responsible for motor and research octane of gasolines produced by cracking: the implication of framework Si/Al ratio and operation variables[J]. Journal of Catalysis, 1989, 115(2): 551-566. |
37 | CORMA A, MENGUAL J, MIGUEL P J. Catalytic cracking of n-alkane naphtha: the impact of olefin addition and active sites differentiation[J]. Journal of Catalysis, 2015, 330: 520-532. |
38 | 贺方, 谢朝钢. ZRP分子筛改性对催化热裂解乙烯产率影响的机理研究[J]. 石油炼制与化工, 2003, 34(12): 12-16. |
HE Fang, XIE Chaogang. Mechanism of the effect of metal modified zeolites on ethylene yield in CPP technology[J]. Petroleum Processing and Petrochemicals, 2003, 34(12): 12-16. | |
39 | LI W, HUANG C F, LI D P, et al. Derived oil production by catalytic pyrolysis of scrap tires[J]. Chinese Journal of Catalysis, 2016, 37(4): 526-532. |
40 | SADEGHPOUR P, HAGHIGHI M. High-temperature and short-time hydrothermal fabrication of nanostructured ZSM-5 catalyst with suitable pore geometry and strong intrinsic acidity used in methanol to light olefins conversion[J]. Advanced Powder Technology, 2018, 29(5): 1175-1188. |
41 | XIA W, WANG F F, MU X C, et al. Catalytic performance of H-ZSM-5 zeolites for conversion of ethanol or ethylene to propylene: effect of reaction pressure and SiO2/Al2O3 ratio[J]. Catalysis Communications, 2017, 91: 62-66. |
42 | SONG W, JUSTICE R E, JONES C A, et al. Synthesis, characterization, and adsorption properties of nanocrystalline ZSM-5[J]. Langmuir, 2004, 20(19): 8301-8306. |
43 | ARABIOURRUTIA M, OLAZAR M, AGUADO R, et al. HZSM-5 and HY zeolite catalyst performance in the pyrolysis of tires in a conical spouted bed reactor[J]. Industrial & Engineering Chemistry Research, 2008, 47(20): 7600-7609. |
44 | 梁筱敏. Y型分子筛改性的研究[D]. 上海: 华东师范大学, 2015. |
LIANG Xiaomin. A study on the modification of zeolite Y[D]. Shanghai: East China Normal University, 2015. | |
45 | OLAZAR M, ARABIOURRUTIA M, LÓPEZ G, et al. Effect of acid catalysts on scrap tyre pyrolysis under fast heating conditions[J]. Journal of Analytical and Applied Pyrolysis, 2008, 82(2): 199-204. |
46 | 沈伯雄, 吴春飞, 史展亮, 等. 废旧轮胎催化热解油品分析[J]. 化工进展, 2007, 26(1): 82-85. |
SHEN Boxiong, WU Chunfei, SHI Zhanliang, et al. Analysis of oil from waste tyre pyrolysis[J]. Chemical Industry and Engineering Progress, 2007, 26(1): 82-85. | |
47 | WANG J, JIANG J C, WANG X B, et al. Enhanced BTEX formation via catalytic fast pyrolysis of styrene-butadiene rubber: comparison of different catalysts[J]. Fuel, 2020, 278: 118322. |
48 | DŨNG N A, WONGKASEMJIT S, JITKARNKA S. Effects of pyrolysis temperature and Pt-loaded catalysts on polar-aromatic content in tire-derived oil[J]. Applied Catalysis B: Environmental, 2009, 91(1/2): 300-307. |
49 | MUENPOL S, JITKARNKA S. Impact of zeolite channel structure on structure of hydrocarbon compounds and petrochemicals in waste tyre-derived oils[J]. Chemical Engineering Transactions, 2014, 39: 685-690. |
50 | YUWAPORNPANIT R, JITKARNKA S. Cu-doped catalysts and their impacts on tire-derived oil and sulfur removal[J]. Journal of Analytical and Applied Pyrolysis, 2015, 111: 200-208. |
51 | HAN Y, YU J, CHEN T, et al. Study on catalytic pyrolysis mechanism of natural rubber (NR) over Zn-modified ZSM5 catalysts[J]. Journal of the Energy Institute, 2021, 94: 210-221. |
52 | MUENPOL S, JITKARNKA S. Effects of Fe supported on zeolites on structures of hydrocarbon compounds and petrochemicals in waste tire-derived pyrolysis oils[J]. Journal of Analytical and Applied Pyrolysis, 2016, 117: 147-156. |
53 | NAMCHOT W, JITKARNKA S. Impacts of nickel supported on different zeolites on waste tire-derived oil and formation of some petrochemicals[J]. Journal of Analytical and Applied Pyrolysis, 2016, 118: 86-97. |
54 | DŨNG N A, KLAEWKLA R, WONGKASEMJIT S, et al. Light olefins and light oil production from catalytic pyrolysis of waste tire[J]. Journal of Analytical and Applied Pyrolysis, 2009, 86(2): 281-286. |
55 | DŨNG N A, TANGLUMLERT W, WONGKASEMJIT S, et al. Roles of ruthenium on catalytic pyrolysis of waste tire and the changes of its activity upon the rate of calcination[J]. Journal of Analytical and Applied Pyrolysis, 2010, 87(2): 256-262. |
56 | YU J, LIU S, CARDOSO A, et al. Catalytic pyrolysis of rubbers and vulcanized rubbers using modified zeolites and mesoporous catalysts with Zn and Cu[J]. Energy, 2019, 188: 116117. |
57 | MUHAMMAD R, ALI Y, MESSADDEQ Y, et al. Conditions optimization and physiochemical analysis of oil obtained by catalytic pyrolysis of scrap tube rubber using MgO as catalyst[J]. Catalysts, 2021, 11(3): 357. |
58 | KORDOGHLI S, PARASCHIV M, KUNCSER R, et al. Catalysts’ influence on thermochemical decomposition of waste tires[J]. Environmental Progress & Sustainable Energy, 2017, 36(5): 1560-1567. |
59 | KORDOGHLI S, PARASCHIV M, KHIARI B, et al. Using oxides of alkaline-earth metals as catalysts in used tyres pyrolysis[J]. International Journal of ChemTech Research, 2016, 9(8): 359-365. |
60 | KORDOGHLI S, KHIARI B, PARASCHIV M, et al. Impact of different catalysis supported by oyster shells on the pyrolysis of tyre wastes in a single and a double fixed bed reactor[J]. Waste Management, 2017, 67: 288-297. |
61 | ZANDI-ATASHBAR N, ENSAFI A A, AHOOR A H. Magnetic Fe2CuO4/rGO nanocomposite as an efficient recyclable catalyst to convert discard tire into diesel fuel and as an effective mercury adsorbent from wastewater[J]. Journal of Cleaner Production, 2018, 172: 68-80. |
62 | 张兴华, 常杰, 王铁军, 等. 真空条件下金属氧化物催化废轮胎热解研究[J]. 能源工程, 2006(1): 41-45. |
ZHANG Xinghua, CHANG Jie, WANG Tiejun, et al. A study on metal-oxide catalyzed pyrolysis of waste tires under vacuum conditions[J]. Energy Engineering, 2006(1): 41-45. | |
63 | WANG J, ZHONG Z P, DING K, et al. Co-pyrolysis of bamboo residual with waste tire over dual catalytic stage of CaO and co-modified HZSM-5[J]. Energy, 2017, 133: 90-98. |
64 | OSORIO-VARGAS P, LICK I D, SOBREVÍA F, et al. Thermal behavior, reaction pathways and kinetic implications of using a Ni/SiO2 catalyst for waste tire pyrolysis[J]. Waste and Biomass Valorization, 2021, 12(12): 6465-6479. |
65 | 刘翔宇. 固定床渣油加氢催化剂失活原因及对策分析[J]. 云南化工, 2018, 45(2): 37. |
LIU Xiangyu. Analysis on causes and countermeasures of deactivation of fixed bed residue hydrogenation catalyst[J]. Yunnan Chemical Technology, 2018, 45(2): 37. | |
66 | CHRISTOU S Y, GARCÍA-RODRÍGUEZ S, FIERRO J L G, et al. Deactivation of Pd/Ce0.5Zr0.5O2 model three-way catalyst by P, Ca and Zn deposition[J]. Applied Catalysis B: Environmental, 2012, 111/112: 233-245. |
67 | GIANNAKEAS N, LEA-LANGTON A, DUPONT V, et al. Hydrogen from scrap tyre oil via steam reforming and chemical looping in a packed bed reactor[J]. Applied Catalysis B: Environmental, 2012, 126: 249-257. |
68 | ZEAITER J, AHMAD M N, ROONEY D, et al. Design of an automated solar concentrator for the pyrolysis of scrap rubber[J]. Energy Conversion and Management, 2015, 101: 118-125. |
69 | SHAH J, JAN M R, MABOOD F. Recovery of value-added products from the catalytic pyrolysis of waste tyre[J]. Energy Conversion and Management, 2009, 50(4): 991-994. |
70 | SHAH J, JAN M R, MABOOD F. Catalytic conversion of waste tyres into valuable hydrocarbons[J]. Journal of Polymers and the Environment, 2007, 15(3): 207-211. |
71 | RASUL JAN M, JABEEN F, SHAH J, et al. Thermal catalytic conversion of the used isobutyl isoprene rubber into valuable hydrocarbons[J]. Journal of Thermal Analysis and Calorimetry, 2010, 101(1): 303-308. |
72 | SHEN B X, WU C F, GUO B B, et al. Pyrolysis of waste tyres with zeolite USY and ZSM-5 catalysts[J]. Applied Catalysis B: Environmental, 2007, 73(1/2): 150-157. |
73 | DING K, ZHONG Z P, ZHANG B, et al. Pyrolysis characteristics of waste tire in an analytical pyrolyzer coupled with gas chromatography/mass spectrometry[J]. Energy & Fuels, 2015, 29(5): 3181-3187. |
74 | MKHIZE N M, VAN DER GRYP P, DANON B, et al. Effect of temperature and heating rate on limonene production from waste tyre pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2016, 120: 314-320. |
75 | WANG H, HU H Y, YANG Y H, et al. Effect of high heating rates on products distribution and sulfur transformation during the pyrolysis of waste tires[J]. Waste Management, 2020, 118: 9-17. |
76 | 张兴华, 常杰, 王铁军, 等. 碱性条件下废轮胎真空热裂解研究[J]. 燃料化学学报, 2005, 33(6): 713-716. |
ZHANG Xinghua, CHANG Jie, WANG Tiejun, et al. Vacuum pyrolysis of waste tires with basic additives[J]. Journal of Fuel Chemistry and Technology, 2005, 33(6): 713-716. | |
77 | HOANG A T, NGUYEN T H, NGUYEN H P. Scrap tire pyrolysis as a potential strategy for waste management pathway: a review[J]. Energy Sources A: Recovery, Utilization, and Environmental Effects, 2020: 1-18. |
78 | 董根全, 杨建丽, 刘振宇. 废轮胎热解油品的组成与硫含量研究[J]. 燃料化学学报, 2000, 28(6): 537-541. |
DONG Genquan, YANG Jianli, LIU Zhenyu. Composition and sulfur content of oil derived from tire pyrolysis[J]. Journal of Fuel Chemistry and Technology, 2000, 28(6): 537-541. | |
79 | ATTAR A. Chemistry, thermodynamics and kinetics of reactions of sulphur in coal-gas reactions: a review[J]. Fuel, 1978, 57(4): 201-212. |
80 | TALEB D A, HAMID H A, DERIS R R R, et al. Insights into pyrolysis of waste tire in fixed bed reactor: thermal behavior[J]. Materials Today: Proceedings, 2020, 31: 178-186. |
81 | BETANCUR M, MARTÍNEZ J D, MURILLO R. Production of activated carbon by waste tire thermochemical degradation with CO2 [J]. Journal of Hazardous Materials, 2009, 168(2/3): 882-887. |
82 | BEAUMONT O, SCHWOB Y. Influence of physical and chemical parameters on wood pyrolysis[J]. Industrial & Engineering Chemistry Process Design and Development, 1984, 23(4): 637-641. |
83 | DAI X W, YIN X L, WU C Z, et al. Pyrolysis of waste tires in a circulating fluidized-bed reactor[J]. Energy, 2001, 26(4): 385-399. |
84 | WILLIAMS P T, BRINDLE A J. Fluidised bed catalytic pyrolysis of scrap tyres: influence of catalyst: tyre ratio and catalyst temperature[J]. Waste Management & Research, 2002, 20(6): 546-555. |
85 | SHEN B X, WU C F, LIANG C, et al. Pyrolysis of waste tyres: the influence of USY catalyst/tyre ratio on products[J]. Journal of Analytical and Applied Pyrolysis, 2007, 78(2): 243-249. |
86 | 潘洋. 固定床反应器催化剂装填方案的优化[J]. 中外能源, 2007, 12(6): 76-79. |
PAN Yang. Optimization for catalyst loading for fixed bed reactors[J]. Sino-Global Energy, 2007, 12(6): 76-79. | |
87 | CAMPUZANO F, BROWN R C, MARTÍNEZ J D. Auger reactors for pyrolysis of biomass and wastes[J]. Renewable and Sustainable Energy Reviews, 2019, 102: 372-409. |
88 | LI Y P, LI B S, ZHANG X H, et al. Continuous pyrolysis and catalytic upgrading of corncob hydrolysis residue in the combined system of auger reactor and downstream fixed-bed reactor[J]. Energy Conversion and Management, 2016, 122: 1-9. |
89 | KHALIL U, VONGSVIVUT J, SHAHABUDDIN M, et al. A study on the performance of coke resistive cerium modified zeolite Y catalyst for the pyrolysis of scrap tyres in a two-stage fixed bed reactor[J]. Waste Management, 2020, 102: 139-148. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 张杰, 王放放, 夏忠林, 赵光金, 马双忱. “双碳”目标下SF6排放现状、减排手段分析及未来展望[J]. 化工进展, 2023, 42(S1): 447-460. |
[6] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[7] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[8] | 李梦圆, 郭凡, 李群生. 聚乙烯醇生产中回收工段第三、第四精馏塔的模拟与优化[J]. 化工进展, 2023, 42(S1): 113-123. |
[9] | 马伊, 曹世伟, 王家骏, 林立群, 邢延, 曹腾良, 卢峰, 赵振伦, 张志军. 低共熔溶剂回收废旧锂离子电池正极材料的研究进展[J]. 化工进展, 2023, 42(S1): 219-232. |
[10] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[11] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[12] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[13] | 王伟涛, 鲍婷玉, 姜旭禄, 何珍红, 王宽, 杨阳, 刘昭铁. 醛酮树脂基非金属催化剂催化氧气氧化苯制备苯酚[J]. 化工进展, 2023, 42(9): 4706-4715. |
[14] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[15] | 钱思甜, 彭文俊, 张先明. PET熔融缩聚与溶液解聚形成环状低聚物的对比分析[J]. 化工进展, 2023, 42(9): 4808-4816. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |