化工进展 ›› 2022, Vol. 41 ›› Issue (5): 2332-2339.DOI: 10.16085/j.issn.1000-6613.2021-1131
收稿日期:
2021-05-29
修回日期:
2021-08-09
出版日期:
2022-05-05
发布日期:
2022-05-24
通讯作者:
蔺建民
作者简介:
夏鑫(1994—),男,硕士,助理工程师,从事燃料性能及添加剂研究开发工作。E-mail:基金资助:
XIA Xin(), LIN Jianmin(), LI Yan, TAO Zhiping
Received:
2021-05-29
Revised:
2021-08-09
Online:
2022-05-05
Published:
2022-05-24
Contact:
LIN Jianmin
摘要:
氨不仅是一种成本低廉的化工原料,而且由于具有较高的能量密度、易于储运、燃烧不产生CO2等优点被认为是一种有广泛应用前景的清洁燃料。氨燃料具有替代汽油、柴油等化石燃料的应用潜力,为解决环境污染和化石能源短缺等问题提供了新的途径。本文概述了氨燃料的理化特性、燃烧特性以及与多种材料的相容性,介绍了氨作为调合燃料的性能及应用研究进展,尤其对氨-汽油燃料、氨-柴油燃料、氨-正庚烷燃料等燃料体系的研究成果进行了总结。文章集中分析了氨作为发动机燃料的机遇和挑战,尤其指出了氨燃料的生产高能耗、毒性及腐蚀性、氨的燃烧缺陷等问题,并探讨了对应的解决方案。在碳达峰、碳中和的大背景下,氨燃料在我国的发展具有后发优势。
中图分类号:
夏鑫, 蔺建民, 李妍, 陶志平. 氨混合燃料体系的性能研究现状[J]. 化工进展, 2022, 41(5): 2332-2339.
XIA Xin, LIN Jianmin, LI Yan, TAO Zhiping. Research progress on performance and application of ammonia fuel on engines[J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2332-2339.
1 | 国家统计局. 2000—2019年汽车拥有量[EB/OL]. . |
National Bureau of Statistics. Car ownership from 2000 to 2019[EB/OL]. . | |
2 | 洪鸳肖. 我国碳排放交易市场与欧盟市场的对比研究[J]. 科技经济导刊, 2020, 28(6): 20-21. |
HONG Yuanxiao. The comparative study of carbon emissions trading market between China and European Union[J]. Technology and Economic Guide, 2020, 28(6): 20-21. | |
3 | 张凡, 王树众, 李艳辉, 等. 中国制造业碳排放问题分析与减排对策建议[J]. 化工进展, 2022, 41(3): 1645-1653. |
ZHANG Fan, WANG Shuzhong, LI Yanhui, et al. Analysis of CO2 emission and countermeasures and suggestions for emission reduction in Chinese manufacturing[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1645-1653. | |
4 | CHAI W S, BAO Y L, JIN P F, et al. A review on ammonia, ammonia-hydrogen and ammonia-methane fuels[J]. Renewable and Sustainable Energy Reviews, 2021, 147: 111254. |
5 | BARBER J. Hydrogen derived from water as a sustainable solar fuel: learning from biology[J]. Sustainable Energy & Fuels, 2018, 2(5): 927-935. |
6 | ABE J O, POPOOLA A P I, AJENIFUJA E, et al. Hydrogen energy, economy and storage: review and recommendation[J]. International Journal of Hydrogen Energy, 2019, 44(29): 15072-15086. |
7 | WANG M J, WANG G Z, SUN Z X, et al. Review of renewable energy-based hydrogen production processes for sustainable energy innovation[J]. Global Energy Interconnection, 2019, 2(5): 436-443. |
8 | YAPICIOGLU A, DINCER I. A review on clean ammonia as a potential fuel for power generators[J]. Renewable and Sustainable Energy Reviews, 2019, 103: 96-108. |
9 | DIMITRIOU P, JAVAID R. A review of ammonia as a compression ignition engine fuel[J]. International Journal of Hydrogen Energy, 2020, 45(11): 7098-7118. |
10 | VALERA-MEDINA A, XIAO H, OWEN-JONES M, et al. Ammonia for power[J]. Progress in Energy and Combustion Science, 2018, 69: 63-102. |
11 | 温倩. 合成氨行业发展情况及未来走势分析[J]. 肥料与健康, 2020, 47(2): 6-13. |
WEN Qian. Analysis of the development situation and future trend of the synthetic ammonia industry[J]. Fertilizer & Health, 2020, 47(2): 6-13. | |
12 | PAN C G, LI Y, JIANG W, et al. Effects of reaction conditions on performance of Ru catalyst and iron catalyst for ammonia synthesis[J]. Chinese Journal of Chemical Engineering, 2011, 19(2): 273-277. |
13 | WANG Q R, GUO J P, CHEN P. Recent progress towards mild-condition ammonia synthesis[J]. Journal of Energy Chemistry, 2019, 36: 25-36. |
14 | 王月姑, 吴崇君, 郑淞生, 等. 氨燃料缓解能源安全及替代天然气的可行性分析[J]. 可再生能源, 2019, 37(7): 949-954. |
WANG Yuegu, WU Chongjun, ZHENG Songsheng, et al. Feasibility analysis of ammonia energy to relieve energy security and replace natural gas[J]. Renewable Energy Resources, 2019, 37(7): 949-954. | |
15 | LI X F, LI Q K, CHENG J, et al. Conversion of dinitrogen to ammonia by FeN3-embedded graphene[J]. Journal of the American Chemical Society, 2016, 138(28): 8706-8709. |
16 | 任晓玲, 严孝清, 龚湘姣, 等. 光(电)催化氮气还原合成氨研究进展[J]. 化工进展, 2020, 39(12): 4856-4876. |
REN Xiaoling, YAN Xiaoqing, GONG Xiangjiao, et al. Overview on photo(electro) catalytic nitrogen fixation for ammonia synthesis[J]. Chemical Industry and Engineering Progress,2020, 39(12): 4856-4876. | |
17 | 范文龙, 李林哲, 薛志伟, 等. 电催化合成氨研究进展[J]. 化工进展, 2021, 40(6): 3005-3019. |
FAN Wenlong, LI Linzhe, XUE Zhiwei, et al. Research progress of electrocatalytic ammonia synthesis[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3005-3019. | |
18 | ZHANG S, ZHAO Y X, SHI R, et al. Photocatalytic ammonia synthesis: recent progress and future[J]. EnergyChem, 2019, 1(2): 100013. |
19 | 刘洋, 张海宝, 陈强. 低温等离子体合成氨研究进展[J]. 应用化学, 2021, 38(6): 622-636. |
LIU Yang, ZHANG Haibao, CHEN Qiang. Research progress on ammonia synthesis using low temperature plasma[J]. Chinese Journal of Applied Chemistry, 2021, 38(6): 622-636. | |
20 | PENG P, CHEN P, SCHIAPPACASSE C, et al. A review on the non-thermal plasma-assisted ammonia synthesis technologies[J]. Journal of Cleaner Production, 2018, 177: 597-609. |
21 | 冯圣, 高文波, 曹湖军, 等. 化学链合成氨研究进展[J]. 化学学报, 2020, 78(9): 916-927. |
FENG Sheng, GAO Wenbo, CAO Hujun, et al. Advances in the chemical looping ammonia synthesis[J]. Acta Chimica Sinica, 2020, 78(9): 916-927. | |
22 | SWEARER D F, KNOWLES N R, EVERITT H O, et al. Light-driven chemical looping for ammonia synthesis[J]. ACS Energy Letters, 2019, 4(7): 1505-1512. |
23 | KOJIMA Y, YAMAGUCHI M. Ammonia storage materials for nitrogen recycling hydrogen and energy carriers[J]. International Journal of Hydrogen Energy, 2020, 45(16): 10233-10246. |
24 | 郭朋彦, 申方, 王丽君, 等. 氨燃料发动机研究现状及发展趋势[J]. 车用发动机, 2016(3): 1-5, 13. |
GUO Pengyan, SHEN Fang, WANG Lijun, et al. Research status and development trend for ammonia-fueled engines[J]. Vehicle Engine, 2016(3): 1-5, 13. | |
25 | REITER A J, KONG S C. Demonstration of compression-ignition engine combustion using ammonia in reducing greenhouse gas emissions[J]. Energy & Fuels, 2008, 22(5): 2963-2971. |
26 | GROSS C W, KONG S C. Performance characteristics of a compression-ignition engine using direct-injection ammonia-DME mixtures[J]. Fuel, 2013, 103: 1069-1079. |
27 | 钟绍华, 万桂芹, 严利群. 氨燃料燃烧性能数值模拟与分析[J]. 内燃机工程, 2014, 35(3): 46-51. |
ZHONG Shaohua, WAN Guiqin, YAN Liqun. Numerical simulation and analysis of ammonia fuel combustion characteristics[J]. Chinese Internal Combustion Engine Engineering, 2014, 35(3): 46-51. | |
28 | 王存磊, 朱磊, 袁银南, 等. 氢气在内燃机上的应用及特点[J]. 拖拉机与农用运输车, 2007, 34(3): 1-3, 6. |
WANG Cunlei, ZHU Lei, YUAN Yinnan, et al. Application of hydrogen in internal combustion engines[J]. Tractor & Farm Transporter, 2007, 34(3): 1-3, 6. | |
29 | GILL S S, CHATHA G S, TSOLAKIS A, et al. Assessing the effects of partially decarbonising a diesel engine by co-fuelling with dissociated ammonia[J]. International Journal of Hydrogen Energy, 2012, 37(7): 6074-6083. |
30 | LIU R, TING D S K, CHECKEL M D. Ammonia as a fuel for SI engine[C]//SAE Powertrain & Fluid Systems Conference & Exhibition, Warrendale, PA, United States, 2003. |
31 | RAVISHANKARA A R, DANIEL J S, PORTMANN R W. Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century[J]. Science, 2009, 326(5949): 123-125. |
32 | 李跟宝, 周龙保, 柳泉冰, 等. 二甲醚发动机中燃料与橡胶密封件的相容性研究[J]. 西安交通大学学报, 2005, 39(3): 317-320. |
LI Genbao, ZHOU Longbao, LIU Quanbing, et al. Investigation on compatibility of rubber sealing parts with fuel in dimethyl ether engine[J]. Journal of Xi’an Jiaotong University, 2005, 39(3): 317-320. | |
33 | Instrument Cole-Parmer Company. Chemical compatibility database, ammonia, anhydrous [EB/OL]. [2021.1.17]. . |
34 | GRANNELL S M, ASSANIS D N, GILLESPIE D E, et al. Exhaust emissions from a stoichiometric, ammonia and gasoline dual fueled spark ignition engine[C]//Proceedings of ASME 2009 Internal Combustion Engine Division Spring Technical Conference, Milwaukee, Wisconsin, USA, 2009. |
35 | RYU K, ZACHARAKIS-JUTZ G E, KONG S C. Effects of gaseous ammonia direct injection on performance characteristics of a spark-ignition engine[J]. Applied Energy, 2014, 116: 206-215. |
36 | GRANNELL S M, ASSANIS D N, BOHAC S V, et al. The fuel mix limits and efficiency of a stoichiometric, ammonia, and gasoline dual fueled spark ignition engine[J]. Journal of Engineering for Gas Turbines and Power, 2008, 130(4): 042802. |
37 | HAPUTHANTHRI S O. Ammonia gasoline fuel blends: feasibility study of commercially available emulsifiers and effects on stability and engine performance[C]//SAE 2014 International Powertrain, Fuels & Lubricants Meeting, Warrendale, PA, United States, 2014. |
38 | HAPUTHANTHRI S O, MAXWELL T T, FLEMING J, et al. Ammonia and gasoline fuel blends for spark ignited internal combustion engines[J]. Journal of Energy Resources Technology, 2015, 137(6): 062201. |
39 | GRIMES P G. Energy depot fuel production and utilization[C]//1965 International Automotive Engineering Congress and Exposition, Warrendale, PA, United States, 1965. |
40 | ROSENTHAL A B. Energy depot - A concept for reducing the military supply burden[C]//1965 International Automotive Engineering Congress and Exposition, Warrendale, PA, United States, 1965. |
41 | STARKMAN E S, JAMES G E, NEWHALL H K. Ammonia as a diesel engine fuel: theory and application[C]//National Fuels and Lubricants, Powerplants, Transportation Meetings, Warrendale, PA, United States, 1967. |
42 | REITER A J, KONG S C. Combustion and emissions characteristics of compression-ignition engine using dual ammonia-diesel fuel[J]. Fuel, 2011, 90(1): 87-97. |
43 | LUBRANO L M, HAN X L, KONNOV A A. Comparative effect of ammonia addition on the laminar burning velocities of methane, n-heptane, and iso-octane[J]. Energy & Fuels, 2021, 35(9): 7156-7168. |
44 | ICHIKAWA A, HAYAKAWA A, KITAGAWA Y, et al. Laminar burning velocity and Markstein length of ammonia/hydrogen/air premixed flames at elevated pressures[J]. International Journal of Hydrogen Energy, 2015, 40(30): 9570-9578. |
45 | 毛晨林, 王平, PRASHANT Shrotriya, 等. 含氨燃料预混火焰的层流火焰速度及NO排放特性[J]. 化工学报, 2021, 72 (10): 5330-5343. |
MAO Chenlin, WANG Ping, PRASHANT Shrotriya, et al. Laminar flame speed and NO emission characteristics of premixed flames with different ammonia-containing fuels[J]. CIESC Journal, 2021, 72 (10): 5330-5343. | |
46 | XIAO H, LAI S N, VALERA-MEDINA A, et al. Study on counterflow premixed flames using high concentration ammonia mixed with methane[J]. Fuel, 2020, 275: 117902. |
47 | XIAO H, HOWARD M, VALERA-MEDINA A, et al. Study on reduced chemical mechanisms of ammonia/methane combustion under gas turbine conditions[J]. Energy & Fuels, 2016, 30(10): 8701-8710. |
48 | OKAFOR E C, NAITO Y, COLSON S, et al. Measurement and modelling of the laminar burning velocity of methane-ammonia-air flames at high pressures using a reduced reaction mechanism[J]. Combustion and Flame, 2019, 204: 162-175. |
49 | VALERA-MEDINA A, MORRIS S, RUNYON J, et al. Ammonia, methane and hydrogen for gas turbines[J]. Energy Procedia, 2015, 75: 118-123. |
50 | AYAZ S K, ALTUNTAS O, CALISKAN H. Effect of ammonia fuel fraction on the exergetic performance of a gas turbine[J]. Energy Procedia, 2018, 144: 150-156. |
51 | OKAFOR E C, SOMARATHNE K D A, RATTHANAN R, et al. Control of NO x and other emissions in micro gas turbine combustors fuelled with mixtures of methane and ammonia[J]. Combustion and Flame, 2020, 211: 406-416. |
52 | VALERA-MEDINA A, MARSH R, RUNYON J, et al. Ammonia-methane combustion in tangential swirl burners for gas turbine power generation[J]. Applied Energy, 2017, 185: 1362-1371. |
53 | ITO Shintaro, UCHIDA Masahiro, SUDA Toshiyuki, et al. Development of ammonia gas turbine co-generation technology[J]. IHI Engineering Review, 2020, 53(1): 1-6. |
54 | MISTUBISHI Power. Mitsubishi power commences development of world’s first ammonia-fired 40MW class gas turbine system [EB/OL]. . |
55 | RYU K, ZACHARAKIS-JUTZ G E, KONG S C. Performance characteristics of compression-ignition engine using high concentration of ammonia mixed with dimethyl ether[J]. Applied Energy, 2014, 113: 488-499. |
56 | ISSAYEV G, GIRI B R, ELBAZ A M, et al. Combustion behavior of ammonia blended with diethyl ether[J]. Proceedings of the Combustion Institute, 2021, 38(1): 499-506. |
57 | ELBAZ A M, GIRI B R, ISSAYEV G, et al. Experimental and kinetic modeling study of laminar flame speed of dimethoxymethane and ammonia blends[J]. Energy & Fuels, 2020, 34(11): 14726-14740. |
58 | LIU Q M, CHEN X, HUANG J X, et al. The characteristics of flame propagation in ammonia/oxygen mixtures[J]. Journal of Hazardous Materials, 2019, 363: 187-196. |
59 | WANG S X, WANG Z H, ELBAZ A M, et al. Experimental study and kinetic analysis of the laminar burning velocity of NH3/syngas/air, NH3/CO/air and NH3/H2/air premixed flames at elevated pressures[J]. Combustion and Flame, 2020, 221: 270-287. |
60 | HAN X L, WANG Z H, HE Y, et al. Experimental and kinetic modeling study of laminar burning velocities of NH3/syngas/air premixed flames[J]. Combustion and Flame, 2020, 213: 1-13. |
61 | LI J, HUANG H Y, KOBAYASHI N, et al. Study on using hydrogen and ammonia as fuels: combustion characteristics and NO x formation[J]. International Journal of Energy Research, 2014, 38(9): 1214-1223. |
62 | Commission European. Large volume inorganic chemicals—Ammonia, acids and fertilisers[EB/OL]. [2021-05-20]. . |
63 | KARABEYOGLU A, EVANS B. Fuel conditioning system for ammonia-fired power plants [EB/OL]. [2021-01-17]. . |
64 | NOZARI H, KARABEYOĞLU A. Numerical study of combustion characteristics of ammonia as a renewable fuel and establishment of reduced reaction mechanisms[J]. Fuel, 2015, 159: 223-233. |
65 | OTOMO J, KOSHI M, MITSUMORI T, et al. Chemical kinetic modeling of ammonia oxidation with improved reaction mechanism for ammonia/air and ammonia/hydrogen/air combustion[J]. International Journal of Hydrogen Energy, 2018, 43(5): 3004-3014. |
66 | 陈达南, 李军, 黄宏宇, 等. 氨燃烧及反应机理研究进展[J]. 化学通报, 2020, 83(6): 508-515. |
CHEN Danan, LI Jun, HUANG Hongyu, et al. Progress in ammonia combustion and reaction mechanism[J]. Chemistry, 2020, 83(6): 508-515. | |
67 | LAMAS M I, RODRIGUEZ C G. Numerical model to analyze NO x reduction by ammonia injection in diesel-hydrogen engines[J]. International Journal of Hydrogen Energy, 2017, 42(41): 26132-26141. |
68 | ROLLINSON A N, JONES J, DUPONT V, et al. Urea as a hydrogen carrier: a perspective on its potential for safe, sustainable and long-term energy supply[J]. Energy & Environmental Science, 2011, 4(4): 1216-1224. |
69 | ELMØE T D, SØRENSEN R Z, QUAADE U, et al. A high-density ammonia storage/delivery system based on Mg(NH3)6Cl2 for SCR-DeNO x in vehicles[J]. Chemical Engineering Science, 2006, 61(8): 2618-2625. |
70 | HUMMELSHØJ J S, SØRENSEN R Z, KUSTOVA M Y, et al. Generation of nanopores during desorption of NH3 from Mg(NH3)6Cl2 [J]. Journal of the American Chemical Society, 2006, 128(1): 16-17. |
[1] | 许家珩, 李永胜, 罗春欢, 苏庆泉. 甲醇水蒸气重整工艺的优化[J]. 化工进展, 2023, 42(S1): 41-46. |
[2] | 陈匡胤, 李蕊兰, 童杨, 沈建华. 质子交换膜燃料电池气体扩散层结构与设计研究进展[J]. 化工进展, 2023, 42(S1): 246-259. |
[3] | 刘炫麟, 王驿凯, 戴苏洲, 殷勇高. 热泵中氨基甲酸铵分解反应特性及反应器结构优化[J]. 化工进展, 2023, 42(9): 4522-4530. |
[4] | 赖诗妮, 江丽霞, 李军, 黄宏宇, 小林敬幸. 含碳掺氨燃料的研究进展[J]. 化工进展, 2023, 42(9): 4603-4615. |
[5] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[6] | 史天茜, 石永辉, 武新颖, 张益豪, 秦哲, 赵春霞, 路达. Fe2+对厌氧氨氧化EGSB反应器运行性能的影响[J]. 化工进展, 2023, 42(9): 5003-5010. |
[7] | 杨鹏威, 于琳竹, 王放放, 蒋昊轩, 赵光金, 李琦, 杜铭哲, 马双忱. 氨储能在新型电力系统的应用前景、挑战及发展[J]. 化工进展, 2023, 42(8): 4432-4446. |
[8] | 马哲杰, 张文励, 赵炫凯, 李平. PEMFC阴极催化层氧传质阻力影响的研究进展[J]. 化工进展, 2023, 42(6): 2860-2873. |
[9] | 李栋先, 王佳, 蒋剑春. 皂脚热解-催化气态加氢制备生物燃料[J]. 化工进展, 2023, 42(6): 2874-2883. |
[10] | 蒋博龙, 崔艳艳, 史顺杰, 常嘉城, 姜楠, 谭伟强. 过渡金属Co3O4/ZnO-ZIF氧还原催化剂Co/Zn-ZIF模板法制备及其产电性能[J]. 化工进展, 2023, 42(6): 3066-3076. |
[11] | 冯琬淇, 哈尼夏·巴合提null, 葛雨璇, 赵俭波. 磁性PASP/PAM半互穿水凝胶的制备及性能[J]. 化工进展, 2023, 42(6): 3130-3137. |
[12] | 李白雪, 信欣, 朱羽蒙, 刘琴, 刘鑫. SASD-A体系构建及进水不同S/N对脱氮工艺的影响机制[J]. 化工进展, 2023, 42(6): 3261-3271. |
[13] | 曾天续, 张永显, 严渊, 刘宏, 马娇, 党鸿钟, 吴新波, 李维维, 陈永志. 羟胺对硝化菌活性及其动力学参数的影响[J]. 化工进展, 2023, 42(6): 3272-3280. |
[14] | 李华华, 李逸航, 金北辰, 李隆昕, 成少安. 厌氧氨氧化-生物电化学耦合废水处理系统的研究进展[J]. 化工进展, 2023, 42(5): 2678-2690. |
[15] | 朱紫旋, 陈俊江, 张星星, 李祥, 刘文如, 吴鹏. 基于短程反硝化厌氧氨氧化新型污水生物脱氮工艺的研究进展[J]. 化工进展, 2023, 42(4): 2091-2100. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |