化工进展 ›› 2022, Vol. 41 ›› Issue (5): 2322-2331.DOI: 10.16085/j.issn.1000-6613.2021-1009
收稿日期:
2021-05-12
修回日期:
2021-06-16
出版日期:
2022-05-05
发布日期:
2022-05-24
通讯作者:
聂凡
作者简介:
聂凡(1990—),男,博士,工程师,研究方向为能源化工与环保。E-mail:基金资助:
NIE Fan(), TONG Kun, SHAO Zhiguo, LIU Guangquan, LI Shusen, LI Xingchun
Received:
2021-05-12
Revised:
2021-06-16
Online:
2022-05-05
Published:
2022-05-24
Contact:
NIE Fan
摘要:
煤、重质油、生物质等重质有机质富含碳氢共价结构,其轻质化和定向化学品转化是加工利用的主要目标。热解是重质有机质加工过程中最直接、最基础的反应过程,挥发物作为重要的热解产物,其组成分布及在热解过程的演变规律解析是研究的关键和热点问题。本文综述了重质有机质热解过程中挥发物的生成过程,总结了反应类型及产物组成随温度升高的阶段性变化,并以煤、油砂、油页岩、生物质、含油污泥、市政污泥以及废橡胶为例,对比了不同种类的重质有机质热解挥发物产出的异同。针对重质有机质挥发物逸出特性分析方法,本文重点介绍了质谱、傅里叶变换红外光谱逸出气体分析技术,举例说明了各方法在重质有机质有机结构解析、热解工艺条件优化、污染物控制、催化剂设计等研究上的应用,并且就现阶段热解过程逸出气体的定量分析方法和应用进行了概述。最后,本文还就重质有机质热解逸出气体分析技术提出了建议和展望,以期为重质有机质的热解研究提供参考和借鉴。
中图分类号:
聂凡, 仝坤, 邵志国, 刘光全, 李树森, 李兴春. 重质有机质热解过程中挥发物的产出与逸出气体分析研究进展[J]. 化工进展, 2022, 41(5): 2322-2331.
NIE Fan, TONG Kun, SHAO Zhiguo, LIU Guangquan, LI Shusen, LI Xingchun. Volatile generation during pyrolysis of heavy organic matters and the development of the evolution gas analysis[J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2322-2331.
50 | YU Jian, YAO Changbin, ZENG Xi, et al. Biomass pyrolysis in a micro-fluidized bed reactor: characterization and kinetics[J]. Chemical Engineering Journal, 2011, 168(2): 839-847. |
51 | YU Jian, YUE Junrong, LIU Zhou'en, et al. Kinetics and mechanism of solid reactions in a micro fluidized bed reactor[J]. AIChE Journal, 2010, 56(11): 2905-2912. |
1 | 刘振宇. 重质有机资源热解过程中的自由基化学[J]. 北京化工大学学报(自然科学版), 2018, 45(5): 8-24. |
LIU Zhenyu. Radical chemistry in the pyrolysis of heavy organics[J]. Journal of Beijing University of Chemical Technology (Natural Science Edition), 2018, 45(5): 8-24. | |
52 | LI Ye, LI Zhenshan, CAI Ningsheng. Microfluidized bed thermogravimetry combined with mass spectrometry (MFB-TG-MS) for redox kinetic study of oxygen carrier[J]. Energy & Fuels, 2020, 34(9): 11186-11193. |
53 | ZHANG Y M, ZHAO M X, LINGHU R X, et al. Comparative kinetics of coal and oil shale pyrolysis in a micro fluidized bed reaction analyzer[J]. Carbon Resources Conversion, 2019, 2(3): 217-224. |
2 | 黄静, 刘建坤, 蒋廷学, 等. 含油污泥热解技术研究进展[J]. 化工进展, 2019, 38(S1): 232-239. |
HUANG Jing, LIU Jiankun, JIANG Tingxue, et al. Research progress on pyrolysis of oily sludge[J]. Chemical Industry and Engineering Progress, 2019, 38(S1): 232-239. | |
54 | ABDUHANI H, TURSUN Y, ABULIZI A, et al. Characteristics and kinetics of the gas releasing during oil shale pyrolysis in a micro fluidized bed reactor[J]. Journal of Analytical and Applied Pyrolysis, 2021, 157: 105187. |
55 | GUO Feiqiang, DONG Yuping, Zhaochuan LYU, et al. Pyrolysis kinetics of biomass (herb residue) under isothermal condition in a micro fluidized bed[J]. Energy Conversion and Management, 2015, 93: 367-376. |
3 | 刘振宇. 煤化学的前沿与挑战: 结构与反应[J]. 中国科学: 化学, 2014, 44(9): 1431-1439. |
LIU Zhenyu. Advancement in coal chemistry: structure and reactivity[J]. Scientia Sinica Chimica, 2014, 44(9): 1431-1439. | |
4 | 张冰, 付琦, 梁畅. 废轮胎橡胶热解技术研究进展[J]. 橡塑技术与装备, 2018, 44(15): 19-23. |
56 | GUO Xiaoguang, FANG Guangzong, LI Gang, et al. Direct, nonoxidative conversion of methane to ethylene, aromatics, and hydrogen[J]. Science, 2014, 344(6184): 616-619. |
57 | LI Gang, ZHANG Shiyu, JIN Lijun, et al. In-situ analysis of volatile products from lignite pyrolysis with pyrolysis-vacuum ultraviolet photoionization and electron impact mass spectrometry[J]. Fuel Processing Technology, 2015, 133: 232-236. |
58 | SHI Z W, JIN L J, ZHOU Y, et al. Online analysis of initial volatile products of Shenhua coal and its macerals with pyrolysis vacuum ultraviolet photoionization mass spectrometry[J]. Fuel Processing Technology, 2017, 163: 67-74. |
59 | ZHOU Y, LI G, JIN L J, et al. In situ analysis of catalytic effect of calcium nitrate on Shenmu coal pyrolysis with pyrolysis vacuum ultraviolet photoionization mass spectrometry[J]. Energy & Fuels, 2018, 32(2):1061-1069. |
60 | SHI Zhiwei, JIN Lijun, ZHOU Yang, et al. In-situ analysis of catalytic pyrolysis of Baiyinhua coal with pyrolysis time-of-flight mass spectrometry[J]. Fuel, 2018, 227: 386-393. |
61 | JIANG Yuan, ZONG Peijie, TIAN Bin, et al. Pyrolysis behaviors and product distribution of Shenmu coal at high heating rate: a study using TG-FTIR and Py-GC/MS[J]. Energy Conversion and Management, 2019, 179: 72-80. |
62 | BASSILAKIS R. TG-FTIR analysis of biomass pyrolysis[J]. Fuel and Energy Abstracts, 2002, 43(4): 280. |
63 | SINGH R K, RUJ B, SADHUKHAN A K, et al. A TG-FTIR investigation on the co-pyrolysis of the waste HDPE, PP, PS and PET under high heating conditions[J]. Journal of the Energy Institute, 2020, 93(3): 1020-1035. |
64 | YOUSEF S, EIMONTAS J, STRIŪGAS N, et al. Pyrolysis kinetic behavior and TG-FTIR-GC-MS analysis of metallised food packaging plastics[J]. Fuel, 2020, 282: 118737. |
65 | YANG BIN, CHEN MING. Py-FTIR-GC/MS analysis of volatile products of automobile shredder residue pyrolysis[J]. Polymers, 2020, 12(11): 2734. |
66 | 陈玲红, 陈祥, 吴建, 等. 基于热重-红外-质谱联用技术定量分析燃煤气体产物[J]. 浙江大学学报(工学版), 2016, 50(5): 961-969. |
CHEN Linghong, CHEN Xiang, WU Jian, et al. Quantitative analysis of gaseous products evolved by coal combustion using TG-FTIR-MS technique[J]. Journal of Zhejiang University (Engineering Science), 2016, 50(5): 961-969. | |
67 | XIA H D, WEI K. Equivalent characteristic spectrum analysis in TG-MS system[J]. Thermochimica Acta, 2015, 602: 15-21. |
68 | LI Rongbin, HUANG Qian, WEI Kai, et al. Quantitative analysis by thermogravimetry-mass spectrum analysis for reactions with evolved gases[J]. Journal of Visualized Experiments, 2018(140): 58233. |
69 | XIAO Y, SONG G L, LYU Q G. Experimental study on the effect of pyrolysis temperature on the NO emission and conversion during combustion[J]. Journal of Thermal Analysis and Calorimetry, 2021, 146: 1245-1253. |
70 | ZHANG Haixia, XIAN Shengxian, ZHU Zhiping, et al. Release behaviors of sulfur-containing pollutants during combustion and gasification of coals by TG-MS[J]. Journal of Thermal Analysis and Calorimetry, 2021, 143(1): 377-386. |
4 | ZHANG Bing, FU Qi, LIANG Chang. Research progress on waste tire rubber pyrolysis technology[J]. China Rubber/Plastics Technology and Equipment, 2018, 44(15): 19-23. |
5 | 郑化安. 中低温煤热解技术研究进展及产业化方向[J]. 洁净煤技术, 2018, 24(1): 13-18. |
ZHENG Hua’an. Research status and industrial direction of middle and low temperature coal pyrolysis technology[J]. Clean Coal Technology, 2018, 24(1): 13-18. | |
6 | WANG Shurong, DAI Gongxin, YANG Haiping, et al. Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review[J]. Progress in Energy and Combustion Science, 2017, 62: 33-86. |
7 | NIE Fan, HE Demin, GUAN Jun, et al. Oil sand pyrolysis: evolution of volatiles and contributions from mineral, bitumen, maltene, and SARA fractions[J]. Fuel, 2018, 224: 726-739. |
8 | LU Zhenghua, FENG Min, LIU Zhenyu, et al. Structure and pyrolysis behavior of the organic matter in two fractions of Yilan oil shale[J]. Journal of Analytical and Applied Pyrolysis, 2017, 127: 203-210. |
9 | SHI Lei, LIU Qingya, GUO Xiaojin, et al. Pyrolysis behavior and bonding information of coal—a TGA study[J]. Fuel Processing Technology, 2013, 108: 125-132. |
10 | 郭啸晋, 刘振宇, 刘清雅, 等. 基于共价键结构BMCP热解模型的建立和发展[J]. 中国基础科学, 2018, 20(4): 21-26. |
GUO Xiaojin, LIU Zhenyu, LIU Qingya, et al. The establishment and development of BMCP model on pyrolysis from covalent bond perspective[J]. China Basic Science, 2018, 20(4): 21-26. | |
11 | 刘振宇. 煤快速热解制油技术问题的化学反应工程根源: 逆向传热与传质[J]. 化工学报, 2016, 67(1): 1-5. |
LIU Zhenyu. Origin of common problems in fast coal pyrolysis technologies for tar: the countercurrent flow of heat and volatiles[J]. CIESC Journal, 2016, 67(1): 1-5. | |
12 | NIE Fan, HE Demin, GUAN Jun, et al. Influence of temperature on the product distribution during the fast pyrolysis of Indonesian oil sands and the relationships of the products to the oil sand organic structure[J]. Energy & Fuels, 2017, 31(2): 1318-1328. |
13 | XIAO Ruirui, YANG Wei. Influence of temperature on organic structure of biomass pyrolysis products[J]. Renewable Energy, 2013, 50: 136-141. |
14 | NISAR J, ALI G, ULLAH N, et al. Pyrolysis of waste tire rubber: influence of temperature on pyrolysates yield[J]. Journal of Environmental Chemical Engineering, 2018, 6(2): 3469-3473. |
15 | 马小龙, 张自生, 高鑫, 等. 油砂热解特性及工艺与装置研究开发现状与评述[J]. 化工进展, 2016, 35(11): 3484-3490. |
MA Xiaolong, ZHANG Zisheng, GAO Xin, et al. Status and commentary of research and development on oil sand pyrolysis characteristics with technology and equipment[J]. Chemical Industry and Engineering Progress, 2016, 35(11): 3484-3490. | |
16 | NIE Fan, LI Yuguo, TONG Kun, et al. Volatile evolution during thermal treatment of oily sludge from a petroleum refinery wastewater treatment plant: TGA-MS, Py-GC(EGA)/MS and kinetics study[J]. Fuel, 2020, 278: 118332. |
17 | CHEN Dengyu, ZHENG Yan, ZHU Xifeng. In-depth investigation on the pyrolysis kinetics of raw biomass. Part I: Kinetic analysis for the drying and devolatilization stages[J]. Bioresource Technology, 2013, 131: 40-46. |
18 | 张良平. 典型低阶煤有机分子结构表征和热解机理研究[D]. 武汉: 华中科技大学, 2017. |
ZHANG L P. Study on the organic molecular structure of low-rank coal and its pyrolysis mechanism[D]. Wuhan: Huazhong University of Science and Technology, 2017. | |
19 | 聂凡. 油砂热解油气生成行为研究[D]. 大连: 大连理工大学, 2018. |
NIE Fan. Formation behaviors of tar and gas in oil sand pyrolysis[D]. Dalian: Dalian University of Technology, 2018. | |
20 | XUE Y, JOHNSTON P, BAI X L. Effect of catalyst contact mode and gas atmosphere during catalytic pyrolysis of waste plastics[J]. Energy Conversion and Management, 2017, 142: 441-451. |
21 | MARATHE P S, WESTERHOF R J M, KERSTEN S R A. Effect of pressure and hot vapor residence time on the fast pyrolysis of biomass: experiments and modeling[J]. Energy & Fuels, 2020, 34(2): 1773-1780. |
22 | 张喻, 高宁博, 全翠, 等. 低阶煤热解高温油气除尘技术进展[J]. 化工进展, 2022, 41(4): 1814-1824. |
ZHANG Yu, GAO Ningbo, QUAN Cui, et al. Research progress on high temperature oil-gas dust removal technology during pyrolysis of low-rank coal[J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1814-1824. | |
23 | ZHOU Yang, LI Lu, JIN Lijun, et al. Effect of functional groups on volatile evolution in coal pyrolysis process with in situ pyrolysis photoionization time-of-flight mass spectrometry[J]. Fuel, 2020, 260: 116322. |
24 | HE Qiongqiong, WAN Keji, HOADLEY A, et al. TG-GC-MS study of volatile products from Shengli lignite pyrolysis[J]. Fuel, 2015, 156: 121-128. |
25 | HAN Feng, MENG Aihong, LI Qinghai, et al. Thermal decomposition and evolved gas analysis (TG-MS) of lignite coals from Southwest China[J]. Journal of the Energy Institute, 2016, 89(1): 94-100. |
26 | XIONG Guang, LI Yunsheng, JIN Lijun, et al. In situ FT-IR spectroscopic studies on thermal decomposition of the weak covalent bonds of brown coal[J]. Journal of Analytical and Applied Pyrolysis, 2015, 115: 262-267. |
27 | 贾春霞, 于皓, 巩时尚, 等. 印尼油砂热重红外及基于AKTS动力学分析[J]. 化工进展, 2018, 37(10): 3806-3817. |
JIA Chunxia, YU Hao, GONG Shishang, et al. Thermogravimetric Fourier infrared and kinetic analysis of Indonesian oil sands based on AKTS[J]. Chemical Industry and Engineering Progress, 2018, 37(10): 3806-3817. | |
28 | XU Xin, HUANG Haiping, ZHANG Shuichang, et al. Gas generation potential and processes of Athabasca oil sand bitumen from gold tube pyrolysis experiments[J]. Fuel, 2019, 239: 804-813. |
29 | 赵晓胜. 油页岩有机质的结构与热解断键研究[D]. 北京: 北京化工大学, 2019. |
ZHAO Xiaosheng. Studys on structure of oil shale organic matter and bond cleavage during pyrolysis[D]. Beijing: Beijing University of Chemical Technology, 2019. | |
30 | GUO Wei, YANG Qinchuan, SUN Youhong, et al. Characteristics of low temperature co-current oxidizing pyrolysis of Huadian oil shale[J]. Journal of Analytical and Applied Pyrolysis, 2020, 146: 104759. |
31 | 李梦雅. 油页岩热解中间体的生成及反应特性[D]. 北京: 中国科学院大学(中国科学院过程工程研究所), 2017. |
LI Mengya. Reaction and evolution characteristics of intermediate during the pyrolysis of oil shale[D]. Beijing: Institute of Process Engineering, Chinese Academy of Sciences, 2017. | |
32 | YOU Yulong, HAN Xiangxin, WANG Xiaoye, et al. Evolution of gas and shale oil during oil shale kerogen pyrolysis based on structural characteristics[J]. Journal of Analytical and Applied Pyrolysis, 2019, 138: 203-210. |
33 | 谭洪. 生物质热裂解机理试验研究[D]. 杭州: 浙江大学, 2005. |
TAN Hong. Mechanism study of biomass pyrolysis[D]. Hangzhou: Zhejiang University, 2005. | |
34 | GUO Xiujuan, WANG Shurong, WANG Kaige, et al. Influence of extractives on mechanism of biomass pyrolysis[J]. Journal of Fuel Chemistry and Technology, 2010, 38(1): 42-46. |
35 | LIU Muxin, YANG Jianli, LIU Zhenyu, et al. Cleavage of covalent bonds in the pyrolysis of lignin, cellulose, and hemicellulose[J]. Energy & Fuels, 2015, 29(9): 5773-5780. |
36 | WANG S R, RU B, DAI G X, et al. Pyrolysis mechanism study of minimally damaged hemi cellulose polymers isolated from agricultural waste strawsamples[J]. Bioresource Technology, 2015, 190: 211-218. |
37 | CHEN Guanyi, LI Jiantao, LI Kai, et al. Nitrogen, sulfur, chlorine containing pollutants releasing characteristics during pyrolysis and combustion of oily sludge[J]. Fuel, 2020, 273: 117772. |
38 | GAO Ningbo, LI Juanjuan, QI Benyu, et al. Thermal analysis and products distribution of dried sewage sludge pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2014, 105: 43-48. |
39 | SÁNCHEZ M E, MENÉNDEZ J A, DOMÍNGUEZ A, et al. Effect of pyrolysis temperature on the composition of the oils obtained from sewage sludge[J]. Biomass and Bioenergy, 2009, 33(6): 933-940. |
40 | FOLGUERAS M B, ALONSO M, DÍAZ R M.Influence of sewage sludge treatment on pyrolysis and combustion of dry sludge[J]. Energy, 2013, 55: 426-435. |
41 | XU Fanfan, WANG Bo, YANG Dan, et al. TG-FTIR and Py-GC/MS study on pyrolysis mechanism and products distribution of waste bicycle tire[J]. Energy Conversion and Management, 2018, 175: 288-297. |
42 | WANG Hao, HU Hongyun, YANG Yuhan, et al. Effect of high heating rates on products distribution and sulfur transformation during the pyrolysis of waste tires[J]. Waste Management, 2020, 118: 9-17. |
43 | DING Kuan, ZHONG Zhaoping, ZHANG Bo, et al. Pyrolysis characteristics of waste tire in an analytical pyrolyzer coupled with gas chromatography/mass spectrometry[J]. Energy & Fuels, 2015, 29(5): 3181-3187. |
44 | PAN Yuhan, YANG Diancai, SUN Kai, et al. Pyrolytic transformation behavior of hydrocarbons and heteroatom compounds of scrap tire volatiles[J]. Fuel, 2020, 276: 118095. |
45 | 张胜飞, 孙丽丽, 徐俊波, 等. 重质油胶体聚集结构的耗散粒子动力学模拟[J]. 物理化学学报, 2010, 26(1): 57-65. |
ZHANG Shengfei, SUN Lili, XU Junbo, et al. Dissipative particle dynamics simulations on the structure of heavy oil aggregates[J]. Acta Physico-Chimica Sinica, 2010, 26(1): 57-65. | |
46 | 蔡新恒, 龙军, 任强, 等. 沥青质分子聚集体的解离对策[J]. 石油学报(石油加工), 2020, 36(5): 889-898. |
CAI Xinheng, LONG Jun, REN Qiang, et al. Theoretical study on disaggregation strategies for asphaltene aggregates[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2020, 36(5): 889-898. | |
47 | ZOU Chong, MA Cheng, ZHAO Junxue, et al. Characterization and non-isothermal kinetics of Shenmu bituminous coal devolatilization by TG-MS[J]. Journal of Analytical and Applied Pyrolysis, 2017, 127: 309-320. |
48 | SHIONO A, HOSAKA A, WATANABE C, et al. Thermoanalytical characterization of polymers: a comparative study between thermogravimetry and evolved gas analysis using a temperature-programmable pyrolyzer[J]. Polymer Testing, 2015, 42: 54-61. |
49 | ZHAO Houyin, CAO Yan, SIT S P, et al. Thermal characteristics of bitumen pyrolysis[J]. Journal of Thermal Analysis and Calorimetry, 2012, 107(2): 541-547. |
71 | XIAN S X, ZHANG H X, CHAI Z, et al. Release characteristics of gaseous products during CO2 gasification of char[J]. Journal of Thermal Analysis and Calorimetry, 2019, 140(2): 177-187. |
[1] | 邵志国, 任雯, 许世佩, 聂凡, 许毓, 刘龙杰, 谢水祥, 李兴春, 王庆吉, 谢加才. 终温对油基钻屑热解产物分布和特性影响[J]. 化工进展, 2023, 42(9): 4929-4938. |
[2] | 李志远, 黄亚继, 赵佳琪, 于梦竹, 朱志成, 程好强, 时浩, 王圣. 污泥与聚氯乙烯共热解重金属特性[J]. 化工进展, 2023, 42(9): 4947-4956. |
[3] | 李海东, 杨远坤, 郭姝姝, 汪本金, 岳婷婷, 傅开彬, 王哲, 何守琴, 姚俊, 谌书. 炭化与焙烧温度对植物基铁碳微电解材料去除As(Ⅲ)性能的影响[J]. 化工进展, 2023, 42(7): 3652-3663. |
[4] | 姚丽铭, 王亚琢, 范洪刚, 顾菁, 袁浩然, 陈勇. 餐厨垃圾处理现状及其热解技术研究进展[J]. 化工进展, 2023, 42(7): 3791-3801. |
[5] | 张杉, 仲兆平, 杨宇轩, 杜浩然, 李骞. 磷酸盐改性高岭土对生活垃圾热解过程中重金属的富集[J]. 化工进展, 2023, 42(7): 3893-3903. |
[6] | 庄捷, 薛锦辉, 赵斌成, 张文艺. 猪粪厌氧消化进程中重金属与腐殖质的有机结合机制[J]. 化工进展, 2023, 42(6): 3281-3291. |
[7] | 李若琳, 何少林, 苑宏英, 刘伯约, 纪冬丽, 宋阳, 刘博, 余绩庆, 徐英俊. 原位热解对油页岩物性及地下水水质影响探索[J]. 化工进展, 2023, 42(6): 3309-3318. |
[8] | 李栋先, 王佳, 蒋剑春. 皂脚热解-催化气态加氢制备生物燃料[J]. 化工进展, 2023, 42(6): 2874-2883. |
[9] | 王志伟, 郭帅华, 吴梦鸽, 陈颜, 赵俊廷, 李辉, 雷廷宙. 生物质与塑料催化共热解技术研究进展[J]. 化工进展, 2023, 42(5): 2655-2665. |
[10] | 梁贻景, 马岩, 卢展烽, 秦福生, 万骏杰, 王志远. La1-x Sr x MnO3钙钛矿涂层的抗结焦性能[J]. 化工进展, 2023, 42(4): 1769-1778. |
[11] | 刘静, 林琳, 张健, 赵峰. 生物质基炭材料孔径调控及电化学性能研究进展[J]. 化工进展, 2023, 42(4): 1907-1916. |
[12] | 杨自强, 李风海, 郭卫杰, 马名杰, 赵薇. 市政污泥热处理过程中磷迁移转化的研究进展[J]. 化工进展, 2023, 42(4): 2081-2090. |
[13] | 赵佳琪, 黄亚继, 李志远, 丁雪宇, 祁帅杰, 张煜尧, 刘俊, 高嘉炜. 污泥和聚氯乙烯共热解三相产物特性[J]. 化工进展, 2023, 42(4): 2122-2129. |
[14] | 潘宇涵, 徐俊, 赵光杰, 林诚乾, 金亮, 薛志亮, 周永刚, 黄群星. 废轮胎梯级热解中试装置开发与产物特性分析[J]. 化工进展, 2023, 42(3): 1240-1247. |
[15] | 何阳东, 常宏岗, 王丹, 陈昌介, 李雅欣. 熔融金属法甲烷裂解制氢和碳材料研究进展[J]. 化工进展, 2023, 42(3): 1270-1280. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |