化工进展 ›› 2025, Vol. 44 ›› Issue (9): 5491-5502.DOI: 10.16085/j.issn.1000-6613.2025-0266
• 资源与环境化工 • 上一篇
王浩1,2(
), 李梦琪3, 王庆吉2(
), 王凌匀4, 罗臻2, 宋权威2, 李兴春2, 何绪文3
收稿日期:2025-03-10
修回日期:2025-04-19
出版日期:2025-09-25
发布日期:2025-09-30
通讯作者:
王庆吉
作者简介:王浩(1991— ),男,博士,工程师,研究方向为水污染控制工程。E-mail:hao.wang@pku.edu.cn。
基金资助:
WANG Hao1,2(
), LI Mengqi3, WANG Qingji2(
), WANG Lingyun4, LUO Zhen2, SONG Quanwei2, LI Xingchun2, HE Xuwen3
Received:2025-03-10
Revised:2025-04-19
Online:2025-09-25
Published:2025-09-30
Contact:
WANG Qingji
摘要:
石油污染场地地下水污染物成分复杂,毒性大,水质水量波动大,且具有含油含浊、高盐高有机负荷的特点,宜采用抽出-处理模式进行污染地下水异位修复。本研究采用耐油抗污染膜材料直接过滤技术耦合臭氧催化氧化技术对污染地下水进行修复,结果表明耦合工艺能有效降低水中的有机物含量。当超滤膜和纳滤膜的运行压力分别为0.2MPa和0.7MPa、臭氧投加量和催化剂投加量分别为50mg/L和300g/L时,出水化学需氧量(COD)降低至200mg/L以下,COD去除率达到96%以上,可满足污染地下水的修复要求。污染的膜材料通过热碱洗方式进行清洗,膜通量恢复率达到96%以上。膜过滤预处理优先去除油类及大分子有机物,为臭氧氧化阶段减轻了污染负荷,减少了臭氧消耗,臭氧氧化阶段深度降解膜过滤阶段残留的溶解性有机物,提高了污染物总体去除率,两种技术达到了良好的协同作用,形成了无二次污染的地下水异位修复绿色短程处理技术。
中图分类号:
王浩, 李梦琪, 王庆吉, 王凌匀, 罗臻, 宋权威, 李兴春, 何绪文. 石油污染场地地下水异位修复短程处理工艺[J]. 化工进展, 2025, 44(9): 5491-5502.
WANG Hao, LI Mengqi, WANG Qingji, WANG Lingyun, LUO Zhen, SONG Quanwei, LI Xingchun, HE Xuwen. Short-process treatment technology for ex-situ remediation of groundwater in oil-contaminated sites[J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5491-5502.
| 项目 | 数据 |
|---|---|
| pH | 7.1~8.9 |
| 浊度/NTU | 190~320 |
| 含油量/mg·L-1 | 20~200 |
| COD/mg·L-1 | 2100~4900 |
| DOC/mg·L-1 | 420~1800 |
| 电导率/mS·cm-1 | 70~90 |
表1 石油污染场地地下水水质
| 项目 | 数据 |
|---|---|
| pH | 7.1~8.9 |
| 浊度/NTU | 190~320 |
| 含油量/mg·L-1 | 20~200 |
| COD/mg·L-1 | 2100~4900 |
| DOC/mg·L-1 | 420~1800 |
| 电导率/mS·cm-1 | 70~90 |
| 项目 | Titan-UF-70 | Titan-NF-500 |
|---|---|---|
| 形状 | 平板膜 | 平板膜 |
| 截留分子量 | 70kDa | 500Da |
| 运行pH范围 | 1~13.5 | 1~13.5 |
| 最大含油浓度 | ≤10000mg/L | — |
表2 膜材料具体性能参数
| 项目 | Titan-UF-70 | Titan-NF-500 |
|---|---|---|
| 形状 | 平板膜 | 平板膜 |
| 截留分子量 | 70kDa | 500Da |
| 运行pH范围 | 1~13.5 | 1~13.5 |
| 最大含油浓度 | ≤10000mg/L | — |
| [1] | 周慧娣, 李海明, 肖瀚, 等. 石化场地污染土壤和地下水修复技术组合研究与应用进展[J]. 应用化工, 2024, 53(8): 1880-1885. |
| ZHOU Huidi, LI Haiming, XIAO Han, et al. Progress and prospect of research and application upon multi-technique collaborative remediation of contaminated soil and groundwater in petrochemical sites[J]. Applied Chemical Industry, 2024, 53(8): 1880-1885. | |
| [2] | 于靖靖, 梁田, 罗会龙, 等. 近10年来我国污染场地再利用的案例分析与环境管理意义[J]. 环境科学研究, 2022, 35(5): 1110-1119. |
| YU Jingjing, LIANG Tian, LUO Huilong, et al. Case analysis and environmental management significance of contaminated site reuse in China from 2011 to 2021[J]. Research of Environmental Sciences, 2022, 35(5): 1110-1119. | |
| [3] | 徐炳先, 彭雨欣, 付帅. 退役化工场地土壤有机污染特征及生态风险评价[J]. 环境工程, 2023, 41(S2): 742-746. |
| XU Bingxian, PENG Yuxin, FU Shuai. Characteristics and ecological risk assessment of soil organic pollution in decommissioned chemical sites[J]. Environmental Engineering, 2023, 41(S2): 742-746. | |
| [4] | 韩煦, 陈洁, 孙守钧, 等. 染料厂遗留场地中氯仿和苯并(a)芘的污染特征与健康风险评价[J]. 环境工程, 2021, 39(8): 211-216. |
| HAN Xu, CHEN Jie, SUN Shoujun, et al. Pollution analysis and spatial distribution of health risk in the residual site of dye factory[J]. Environmental Engineering, 2021, 39(8): 211-216. | |
| [5] | 罗臻, 王庆吉, 王占生, 等. 炼化污染场地抽出水强氧化短程处理工艺[J]. 化工进展, 2024, 43(7): 4155-4163. |
| LUO Zhen, WANG Qingji, WANG Zhansheng, et al. Strong oxidation coupled short range treatment of refining industry contaminated sites extraction water[J]. Chemical Industry and Engineering Progress, 2024, 43(7): 4155-4163. | |
| [6] | 杨明星, 杨悦锁, 杜新强, 等. 石油污染地下水有机污染组分特征及其环境指示效应[J]. 中国环境科学, 2013, 33(6): 1025-1032. |
| YANG Mingxing, YANG Yuesuo, DU Xinqiang, et al. Organic fractions and their environmental implications of petroleum contaminated groundwater[J]. China Environmental Science, 2013, 33(6): 1025-1032. | |
| [7] | 杨萌, 翁仕龙, 潘怡然, 等. 地下水污染修复技术研究进展[J]. 环境科学与管理, 2022, 47(4): 118-122. |
| YANG Meng, WENG Shilong, PAN Yiran, et al. Research progress on remediation technologies of groundwater pollution[J]. Environmental Science and Management, 2022, 47(4): 118-122. | |
| [8] | WEI Kunhao, MA Jie, XI Beidou, et al. Recent progress on in situ chemical oxidation for the remediation of petroleum contaminated soil and groundwater[J]. Journal of Hazardous Materials, 2022, 432: 128738. |
| [9] | ALEGBELEYE Oluwadara Oluwaseun, OPEOLU Beatrice Oluwatoyin, JACKSON Vanessa Angela. Polycyclic aromatic hydrocarbons: A critical review of environmental occurrence and bioremediation[J]. Environmental Management, 2017, 60(4): 758-783. |
| [10] | THIRUVENKATACHARI R, VIGNESWARAN S, NAIDU R. Permeable reactive barrier for groundwater remediation[J]. Journal of Industrial and Engineering Chemistry, 2008, 14(2): 145-156. |
| [11] | SONG Quanwei, XUE Zhenkun, WU Huijun, et al. The collaborative monitored natural attenuation (CMNA) of soil and groundwater pollution in large petrochemical enterprises: A case study[J]. Environmental Research, 2023, 216: 114816. |
| [12] | TRUEX Michael, JOHNSON Chris, MACBETH Tamzen, et al. Performance assessment of pump-and-treat systems[J]. Groundwater Monitoring & Remediation, 2017, 37(3): 28-44. |
| [13] | ANDREOZZI Roberto, CAPRIO Vincenzo, INSOLA Amedeo, et al. Advanced oxidation processes (AOP) for water purification and recovery[J]. Catalysis Today, 1999, 53(1): 51-59. |
| [14] | REKHATE Chhaya V, SRIVASTAVA J K. Recent advances in ozone-based advanced oxidation processes for treatment of wastewater—A review[J]. Chemical Engineering Journal Advances, 2020, 3: 100031. |
| [15] | WANG Jianlong, WANG Shizong. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants[J]. Chemical Engineering Journal, 2018, 334: 1502-1517. |
| [16] | WU Qitong. Wastewater treatment by enhanced H2O2-based advanced oxidation process (AOP) methods: A review[J]. Journal of Physics: Conference Series, 2022, 2152(1): 012011. |
| [17] | CHUANG Yi-Hsueh, CHEN Serena, CHINN Curtis J, et al. Comparing the UV/monochloramine and UV/free chlorine advanced oxidation processes (AOPs) to the UV/hydrogen peroxide AOP under scenarios relevant to potable reuse[J]. Environmental Science & Technology, 2017, 51(23): 13859-13868. |
| [18] | NIKIFOROV A Y, LEYS C. Influence of capillary geometry and applied voltage on hydrogen peroxide and OH radical formation in AC underwater electrical discharges[J]. Plasma Sources Science and Technology, 2007, 16(2): 273-280. |
| [19] | 刘青晨, 王华伟, 刘荣稳, 等. 混凝-臭氧氧化对渗滤液生化出水有机微污染物的去除效果[J]. 化工进展, 2024, 43(S1): 545-554. |
| LIU Qingchen, WANG Huawei, LIU Rongwen, et al. Removal effect of organic micro-pollutants from leachate biochemical effluent by coagulation-ozone oxidation[J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 545-554. | |
| [20] | WANG Hao, ZHANG Siyu, HE Can, et al. Effect of pre-coagulation on catalytic ozonation in the tertiary treatment of coking wastewater: Kinetic and ozone consumption analysis[J]. Journal of Water Process Engineering, 2022, 48: 102856. |
| [21] | BROZELL Adrian M, DE GROOTH Joris, HOEK Eric M V. Five journeys from nanotechnology research to successful products in the water industry[J]. Nature Water, 2024, 2: 392-396. |
| [22] | BENGANI Prity, KOU Yangming, ASATEKIN Ayse. Zwitterionic copolymer self-assembly for fouling resistant, high flux membranes with size-based small molecule selectivity[J]. Journal of Membrane Science, 2015, 493: 755-765. |
| [23] | XIAO Kang, SHEN Yuexiao, LIANG Shuai, et al. Characteristic regions of the fluorescence excitation-emission matrix (EEM) to identify hydrophobic/hydrophilic contents of organic matter in membrane bioreactors[J]. Environmental Science & Technology, 2018, 52(19): 11251-11258. |
| [24] | 何绪文,王绍州,张学伟,等. 煤矿矿井水资源化绿色短流程关键技术与装备[J]. 煤炭学报. 2024, 49(2): 958-966. |
| HE Xuwen, WANG Shaozhou, ZHANG Xuewei, et al. Key technologies and equipment for green short process of coal mine drainageresource utilization[J]. Journal of China Coal Society, 2024, 49(2): 958-966. | |
| [25] | 何绪文, 王绍州, 张学伟, 等. 煤矿矿井水资源化利用技术创新[J]. 煤炭科学技术, 2023, 51(1): 523-530. |
| HE Xuwen, WANG Shaozhou, ZHANG Xuewei, et al. Coal mine drainage resources utilization technology innovation[J]. Coal Science and Technology, 2023, 51(1): 523-530. | |
| [26] | LEE Hyung-Sool, VERMAAS Wim F J, RITTMANN Bruce E. Biological hydrogen production: Prospects and challenges[J]. Trends in Biotechnology, 2010, 28(5): 262-271. |
| [27] | JIA Weihong, REN Sili, HU Bin. Effect of water chemistry on zeta potential of air bubbles[J]. International Journal of Electrochemical Science, 2013, 8(4): 5828-5837. |
| [28] | 刘崎峰, 王琦. 关于恒流状态下膜堵塞定律与神经网络模型的比较研究[J]. 内蒙古大学学报(自然科学版), 2012, 43(5): 551-560. |
| LIU Qifeng, WANG Qi. A comparison study between membrane blocking laws and artificial neural network(ANNs)model in constant flowrate condition[J]. Journal of Inner Mongolia University (Natural Science Edition), 2012, 43(5): 551-560. | |
| [29] | LIU Ze, YANG Xuetong, DEMEESTERE Kristof, et al. Insights into a packed bubble column for removal of several ozone-persistent TrOCs by ozonation: Removal kinetics, energy efficiency and elimination prediction[J]. Separation and Purification Technology, 2021, 275: 119170. |
| [30] | DONG Jie, YAO Jiakang, TAO Jinliang, et al. Degradation of Methyl Orange by ozone microbubble process with packing in the bubble column reactor[J]. Environmental Technology, 2023, 44(17): 2512-2524. |
| [31] | 童琴, 董亚梅, 赵昆峰, 等. 负载型稀土臭氧氧化催化剂在水处理中的应用进展[J]. 化工进展, 2019, 38(S1): 226-231. |
| TONG Qin, DONG Yamei, ZHAO Kunfeng, et al. Application progress of supported rare-earth ozone oxidation catalysts in wastewater treatment[J]. Chemical Industry and Engineering Progress, 2019, 38(S1): 226-231. | |
| [32] | 张兰河, 周靖, 郭映辉, 等. CeO2/Al2O3催化剂的制备表征及在污水处理中的应用[J]. 农业工程学报, 2017, 33(1): 219-224. |
| ZHANG Lanhe, ZHOU Jing, GUO Yinghui, et al. Preparation and characterization of CeO2/Al2O3 and its application on advanced treatment of wastewater[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(1): 219-224. | |
| [33] | 王涛. 铜铈镧复合金属氧化物催化臭氧氧化橡胶废水的研究[D]. 北京: 北京化工大学, 2016. |
| WANG Tao. Study on ozone oxidation of rubber wastewater catalyzed by Cu-Ce-La composite metal oxide[D]. Beijing: Beijing University of Chemical Technology, 2016. | |
| [34] | 王吉坤, 李阳, 陈贵锋, 等. 臭氧催化氧化降解煤化工生化进水有机物的实验及机理[J]. 化工进展, 2021, 40(10): 5837-5844. |
| WANG Jikun, LI Yang, CHEN Guifeng, et al. Experimental and mechanism studies on degradation of the organics in biochemical influent of coal chemical industry by ozone catalytic oxidation[J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5837-5844. | |
| [35] | ROSAL Roberto, GONZALO María S, Antonio RODRÍGUEZ, et al. Catalytic ozonation of atrazine and linuron on MnO x /Al2O3 and MnO x /SBA-15 in a fixed bed reactor[J]. Chemical Engineering Journal, 2010, 165(3): 806-812. |
| [36] | 金鹏康, 孔茜, 金鑫. 二级出水中溶解性有机物的分级表征特性[J]. 环境化学, 2015, 34(9): 1649-1653. |
| JIN Pengkang, KONG Qian, JIN Xin. Characterization of dissolved organic matter in the secondary effluent of urban waste water treatment plant[J]. Environmental Chemistry, 2015, 34(9): 1649-1653. | |
| [37] | Tobias NÖTHE, FAHLENKAMP Hans, VON SONNTAG Clemens. Ozonation of wastewater: Rate of ozone consumption and hydroxyl radical yield[J]. Environmental Science & Technology, 2009, 43(15): 5990-5995. |
| [38] | TRUBETSKAYA Olga E, RICHARD Claire, PATSAEVA Svetlana V, et al. Evaluation of aliphatic/aromatic compounds and fluorophores in dissolved organic matter of contrasting natural waters by SEC-HPLC with multi-wavelength absorbance and fluorescence detections[J]. Spectrochimica Acta A: Molecular and Biomolecular Spectroscopy, 2020, 238: 118450. |
| [1] | 段先哲, 毕文婷, 李南, 豆佳乐, 邵冰清, 汪佳伟, 吴鹏, 黄欢, 唐振平. 数值模拟在高放废物处置中的应用:放射性核素迁移机制及其影响因素[J]. 化工进展, 2025, 44(9): 5391-5405. |
| [2] | 李书鹏, 独学渊, 李霏, 郭丽莉, 李广贺. 还原材料修复卤代溶剂污染地下水的研究进展[J]. 化工进展, 2025, 44(1): 500-512. |
| [3] | 胡君杰, 黄兴俊, 雷成, 杨敏, 兰元宵, 罗建洪. 页岩气采出水中小分子有机物的深度处理[J]. 化工进展, 2024, 43(8): 4674-4680. |
| [4] | 罗臻, 王庆吉, 王占生, 杨雪莹, 谢加才, 王浩. 炼化污染场地抽出水强氧化短程处理工艺[J]. 化工进展, 2024, 43(7): 4155-4163. |
| [5] | 何弈雪, 秦先超, 马伟芳. 过硫酸盐高级氧化原位修复地下水中卤代烃污染研究进展[J]. 化工进展, 2024, 43(7): 4072-4088. |
| [6] | 陈彦睿, 张星冉, 李方. 基于层层自组装技术的抗污染膜研究进展[J]. 化工进展, 2023, 42(11): 5956-5968. |
| [7] | 吴中杰, 谢连科, 王晶辉, 黄仁亮. 多级结构羟基硝酸铜纳米酶的制备及其对酚类污染物的降解[J]. 化工进展, 2023, 42(1): 497-505. |
| [8] | 纪冬丽, 叶际亮, 何少林, 苑宏英, 徐龙谭, 李若琳, 王帅, 宋阳, 齐志斌, 葛雁冰. 油页岩原位开采对部分地下水指标影响的分析[J]. 化工进展, 2022, 41(8): 4057-4064. |
| [9] | 李坡, 张珊珊, 施锦秋, 高航, 王明新. 活化过硫酸盐修复苯胺污染地下水及其环境风险[J]. 化工进展, 2022, 41(5): 2753-2760. |
| [10] | 王吉坤, 李阳, 陈贵锋, 刘敏, 寇丽红, 王琦, 何毅聪. 臭氧催化氧化降解煤化工高盐废水有机物的机理[J]. 化工进展, 2022, 41(1): 493-502. |
| [11] | 张永祥, 王晋昊, 井琦, 李雅君. 地下水修复中纳米零价铁材料制备及应用综述[J]. 化工进展, 2021, 40(8): 4486-4496. |
| [12] | 项军, 张平, 李治水, 聂增来, 唐娜. 丁辛醇缩合废水的处理工艺[J]. 化工进展, 2021, 40(2): 1097-1105. |
| [13] | 王吉坤, 李阳, 陈贵锋, 刘敏, 李文博, 何毅聪. 臭氧催化氧化降解煤化工生化进水有机物的实验及机理[J]. 化工进展, 2021, 40(10): 5837-5844. |
| [14] | 能子礼超, 胡金朝, 邓雪梅, 曾景江, 钟林, 余茜茹, 江道澳. 溶解氧对生物滤柱中氨氮、铁、锰去除效果的影响[J]. 化工进展, 2020, 39(7): 2900-2906. |
| [15] | 能子礼超, 陈韵竹, 王雪梅, 柯丹, 彭代芳. 温度对生物净化滤柱中氨氮、铁、锰去除效果的影响[J]. 化工进展, 2020, 39(12): 5283-5289. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |