化工进展 ›› 2025, Vol. 44 ›› Issue (8): 4394-4407.DOI: 10.16085/j.issn.1000-6613.2025-0119
• 微介观过程与材料的模拟与仿真 • 上一篇
收稿日期:2025-01-20
修回日期:2025-03-17
出版日期:2025-08-25
发布日期:2025-09-08
通讯作者:
戴贵龙
作者简介:戴贵龙(1983—),男,博士,副教授,研究方向为多孔介质流固耦合传热、辐射传热。E-mail:daiguilong611@126.com基金资助:
DAI Guilong1,2(
), WANG Xiaoyu1(
), HUANGFU Jiangfei1, GONG Lingzhu2
Received:2025-01-20
Revised:2025-03-17
Online:2025-08-25
Published:2025-09-08
Contact:
DAI Guilong
摘要:
为提高人工设计开孔泡沫的对流传热性能,提出了一种新型泡沫多孔Laguerre Voronoi(LV)模型,该模型能够有效还原实际泡沫的周期性和随机性,避免了流动贯穿,同时还可对孔隙堵塞问题进行定量调控,具有良好的对流传热性能。基于参数式一体化建模方法,重建了一系列具有不同几何参数的LV泡沫,通过孔隙尺度数值模拟分析了入口流速、表观及孔隙结构参数(孔隙率、水力直径、元胞直径、相对肋筋直径)对LV泡沫对流传热性能的影响,结合实验测量验证数值结果可靠性,并与现有研究中提出的Lord-Kelvin(L-K)模型、传统工艺模型及X射线计算机断层成像(X-CT)扫描模型进行对比。在此基础上,基于孔隙参数及表观参数分别拟合了两类对流传热关联式,对关联式的适用性、预测精度及误差分布特性进行了详细分析。结果表明,相比L-K模型,LV泡沫具有更为真实的孔隙结构,对流传热性能更佳;容积传热系数随入口流速增大而单调增大,随相对肋筋直径增大(或孔隙率减小)成抛物线分布,其对称轴与雷诺数相关。本文提出的两类对流换热关联式适用于广泛的几何参数和雷诺数范围,最大相对误差均小于20%,具有良好的预测精度,可用于高效预测开孔泡沫的对流传热性能。
中图分类号:
戴贵龙, 王孝宇, 皇甫江飞, 龚凌诸. 孔隙尺度下Laguerre Voronoi开孔泡沫的对流传热特性[J]. 化工进展, 2025, 44(8): 4394-4407.
DAI Guilong, WANG Xiaoyu, HUANGFU Jiangfei, GONG Lingzhu. Convection heat transfer characteristics of pore-scale Laguerre Voronoi open-cell foam[J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4394-4407.
| dc/mm | ds/dc | ϕ/% | asf/m-1 | dh/mm |
|---|---|---|---|---|
| 3 | 0.11 | 96.8 | 367.12 | 10.60 |
| 0.25 | 85.3 | 708.21 | 4.80 | |
| 0.30 | 80.1 | 786.51 | 4.10 | |
| 0.32 | 78.1 | 803.64 | 3.90 | |
| 0.35 | 74.7 | 839.51 | 3.60 | |
| 0.45 | 61.8 | 901.96 | 2.70 | |
| 4 | 0.10 | 96.9 | 301.85 | 12.84 |
| 0.25 | 83.5 | 598.05 | 5.59 | |
| 0.31 | 76.2 | 673.91 | 4.52 | |
| 0.34 | 71.9 | 709.12 | 4.05 | |
| 0.38 | 67.6 | 727.36 | 3.72 | |
| 0.45 | 56.6 | 761.86 | 2.97 | |
| 5 | 0.10 | 96.8 | 245.77 | 15.76 |
| 0.24 | 84.3 | 473.60 | 7.12 | |
| 0.30 | 77.5 | 526.40 | 5.89 | |
| 0.32 | 74.4 | 551.30 | 5.40 | |
| 0.36 | 69.9 | 567.52 | 4.93 | |
| 0.45 | 56.0 | 599.60 | 3.74 |
表1 LV泡沫几何参数
| dc/mm | ds/dc | ϕ/% | asf/m-1 | dh/mm |
|---|---|---|---|---|
| 3 | 0.11 | 96.8 | 367.12 | 10.60 |
| 0.25 | 85.3 | 708.21 | 4.80 | |
| 0.30 | 80.1 | 786.51 | 4.10 | |
| 0.32 | 78.1 | 803.64 | 3.90 | |
| 0.35 | 74.7 | 839.51 | 3.60 | |
| 0.45 | 61.8 | 901.96 | 2.70 | |
| 4 | 0.10 | 96.9 | 301.85 | 12.84 |
| 0.25 | 83.5 | 598.05 | 5.59 | |
| 0.31 | 76.2 | 673.91 | 4.52 | |
| 0.34 | 71.9 | 709.12 | 4.05 | |
| 0.38 | 67.6 | 727.36 | 3.72 | |
| 0.45 | 56.6 | 761.86 | 2.97 | |
| 5 | 0.10 | 96.8 | 245.77 | 15.76 |
| 0.24 | 84.3 | 473.60 | 7.12 | |
| 0.30 | 77.5 | 526.40 | 5.89 | |
| 0.32 | 74.4 | 551.30 | 5.40 | |
| 0.36 | 69.9 | 567.52 | 4.93 | |
| 0.45 | 56.0 | 599.60 | 3.74 |
| D/mm | L/mm | ϕ | ds/dc | dc/mm | ρs/kg·m-3 | cs/J·kg-1·K-1 | λs/W·m-1·K-1 |
|---|---|---|---|---|---|---|---|
| 25 | 40 | 0.629 | 0.41 | 4.0 | 2670 | 900 | 120 |
表2 泡沫样品几何及物性参数
| D/mm | L/mm | ϕ | ds/dc | dc/mm | ρs/kg·m-3 | cs/J·kg-1·K-1 | λs/W·m-1·K-1 |
|---|---|---|---|---|---|---|---|
| 25 | 40 | 0.629 | 0.41 | 4.0 | 2670 | 900 | 120 |
| 尺度 | 结构参数 | 表达式 | 拟合评价 | |
|---|---|---|---|---|
| R2 | 平均绝对百分比误差(MAPE)/% | |||
| 孔隙(元胞) | 0.981 | 7.9 | ||
| 0.974 | 11.6 | |||
| 表观(骨架) | 0.987 | 14.3 | ||
| 0.988 | 17.7 | |||
表3 对流换热关联式及评价
| 尺度 | 结构参数 | 表达式 | 拟合评价 | |
|---|---|---|---|---|
| R2 | 平均绝对百分比误差(MAPE)/% | |||
| 孔隙(元胞) | 0.981 | 7.9 | ||
| 0.974 | 11.6 | |||
| 表观(骨架) | 0.987 | 14.3 | ||
| 0.988 | 17.7 | |||
| [1] | CAKET Ahmet Guray, WANG Chunyang, NUGROHO Marvel Alif, et al. Recent studies on 3D lattice metal frame technique for enhancement of heat transfer: Discovering trends and reasons[J]. Renewable and Sustainable Energy Reviews, 2022, 167: 112697. |
| [2] | THIELE Simon, Tobias FÜRSTENHAUPT, BANHAM Dustin, et al. Multiscale tomography of nanoporous carbon-supported noble metal catalyst layers[J]. Journal of Power Sources, 2013, 228: 185-192. |
| [3] | KONG Jiayue, ZUO Hongyang, ZENG Kuo, et al. Parameter analysis and rapid design of porosity gradient distribution for open-cell metal foam in the latent thermal energy storage unit[J]. Journal of Energy Storage, 2024, 76: 109744. |
| [4] | REN Shuwei, LIU Yiyang, SUN Wei, et al. Broadband low-frequency sound absorbing metastructures composed of impedance matching coiled-up cavity and porous materials[J]. Applied Acoustics, 2022, 200: 109061. |
| [5] | DE ANDRADE Rafaela, CASAGRANDE PAIM Thaís, BERTACO Isadora, et al. Hierarchically porous bioceramics based on geopolymer-hydroxyapatite composite as a novel biomaterial: Structure, mechanical properties and biocompatibility evaluation[J]. Applied Materials Today, 2023, 33: 101875. |
| [6] | XIONG Jiawei, SUN Jinzhou, CHEN Ye, et al. Study on the flow and heat transfer characteristics inside high-porosity open-cell copper foams: Experimental and numerical explorations[J]. International Journal of Heat and Fluid Flow, 2024, 109: 109499. |
| [7] | DIETRICH Benjamin, SCHABEL Wilhelm, KIND Matthias, et al. Pressure drop measurements of ceramic sponges-Determining the hydraulic diameter[J]. Chemical Engineering Science, 2009, 64(16): 3633-3640. |
| [8] | WU Zhiyong, CALIOT Cyril, BAI Fengwu, et al. Experimental and numerical studies of the pressure drop in ceramic foams for volumetric solar receiver applications[J]. Applied Energy, 2010, 87(2): 504-513. |
| [9] | DIETRICH B. Heat transfer coefficients for solid ceramic sponges-Experimental results and correlation[J]. International Journal of Heat and Mass Transfer, 2013, 61: 627-637. |
| [10] | XIA Xinlin, CHEN Xue, SUN Chuang, et al. Experiment on the convective heat transfer from airflow to skeleton in open-cell porous foams[J]. International Journal of Heat and Mass Transfer, 2017, 106: 83-90. |
| [11] | DENG Song, HE Kun, REN Side, et al. Effects of forced convection on pool boiling heat transfer of metal foams: Numerical analysis and experimental validation[J]. International Journal of Heat and Mass Transfer, 2024, 227: 125551. |
| [12] | GHOSH Indranil. Heat-transfer analysis of high porosity open-cell metal foam[J]. Journal of Heat Transfer, 2008, 130(3): 034501. |
| [13] | WU Zhiyong, CALIOT Cyril, FLAMANT Gilles, et al. Numerical simulation of convective heat transfer between air flow and ceramic foams to optimise volumetric solar air receiver performances[J]. International Journal of Heat and Mass Transfer, 2011, 54(7/8): 1527-1537. |
| [14] | SUN Mingrui, LI Man, HU Chengzhi, et al. Comparison of forced convective heat transfer between pillar and real foam structure under high Reynolds number[J]. Applied Thermal Engineering, 2021, 182: 116130. |
| [15] | SOLOVEV Sergei A, SOLOVEVA Olga V, AKHMETOVA Irina G, et al. Numerical simulation of heat and mass transfer in an open-cell foam catalyst on example of the acetylene hydrogenation reaction[J]. ChemEngineering, 2022, 6(1): 11. |
| [16] | PARK Sung-Ho, JEONG Ji Hwan. Analytical fin efficiency model for open-cell porous metal fins based on Kelvin cell assumption[J]. International Journal of Heat and Mass Transfer, 2022, 196: 123283. |
| [17] | CHEN Xue, Jinxin LYU, SUN Chuang, et al. Pore-scale evaluation on a volumetric solar receiver with different optical property control strategies[J]. Energy, 2023, 278: 128006. |
| [18] | DYBBS A, EDWARDS R V. A new look at porous media fluid mechanics-Darcy to turbulent[M]//Fundamentals of Transport Phenomena in Porous Media. Dordrecht: Springer, 1984: 199-256. |
| [19] | DIANI Andrea, BODLA Karthik K, ROSSETTO Luisa, et al. Numerical investigation of pressure drop and heat transfer through reconstructed metal foams and comparison against experiments[J]. International Journal of Heat and Mass Transfer, 2015, 88: 508-515. |
| [20] | BUFFEL B, DESPLENTERE F, BRACKE K, et al. Modelling open cell-foams based on the Weaire Phelan unit cell with a minimal surface energy approach[J]. International Journal of Solids and Structures, 2014, 51(19/20): 3461-3470. |
| [21] | CLARKE Daniel A, DOLAMORE Fabian, Conan J FEE, et al. Investigation of flow through triply periodic minimal surface-structured porous media using MRI and CFD[J]. Chemical Engineering Science, 2021, 231: 116264. |
| [22] | DU Shen, TONG Zixiang, ZHANG Honghu, et al. Tomography-based determination of Nusselt number correlation for the porous volumetric solar receiver with different geometrical parameters[J]. Renewable Energy, 2019, 135: 711-718. |
| [23] | HE Yaling, DU Shen, SHEN Sheng. Advances in porous volumetric solar receivers and enhancement of volumetric absorption[J]. Energy Reviews, 2023, 2(3): 100035. |
| [24] | FAN Chao, XIA Xinlin, LI Yang, et al. Tomography based pore-level structural optimization for reducing pressure drop of porous volumetric solar receiver[J]. Solar Energy Materials and Solar Cells, 2023, 251: 112117. |
| [25] | NIE Zhengwei, LIN Yuyi, TONG Qingbin. Numerical investigation of pressure drop and heat transfer through open cell foams with 3D Laguerre-Voronoi model[J]. International Journal of Heat and Mass Transfer, 2017, 113: 819-839. |
| [26] | SEPEHRI Emad, SIAVASHI Majid. Pore-scale direct numerical simulation of fluid dynamics, conduction and convection heat transfer in open-cell Voronoi porous foams[J]. International Communications in Heat and Mass Transfer, 2022, 137: 106274. |
| [27] | PAKNAHAD Reza, SIAVASHI Majid, HOSSEINI Milad. Pore-scale fluid flow and conjugate heat transfer study in high porosity Voronoi metal foams using multi-relaxation-time regularized lattice Boltzmann (MRT-RLB) method[J]. International Communications in Heat and Mass Transfer, 2023, 141: 106607. |
| [28] | XU Qian, WU Yunbing, CHEN Ye, et al. Unlocking the thermal efficiency of irregular open-cell metal foams: A computational exploration of flow dynamics and heat transfer phenomena[J]. Energies, 2024, 17(6): 1305. |
| [29] | MULJADI Bagus P, BLUNT Martin J, RAEINI Ali Q, et al. The impact of porous media heterogeneity on non-Darcy flow behaviour from pore-scale simulation[J]. Advances in Water Resources, 2016, 95: 329-340. |
| [30] | KHAIRULLIN Aidar, HAIBULLINA Aigul, SINYAVIN Alex, et al. Heat transfer in 3D Laguerre Voronoi open-cell foams under pulsating flow[J]. Energies, 2022, 15(22): 8660. |
| [31] | HAYRULLIN Aidar, HAIBULLINA Aigul, SINYAVIN Alex. Heat transport phenomena in Voronoi foam due to pulsating flow[J]. Transportation Research Procedia, 2022, 63: 1236-1243. |
| [32] | CHEN Li, HE An, ZHAO Jianlin, et al. Pore-scale modeling of complex transport phenomena in porous media[J]. Progress in Energy and Combustion Science, 2022, 88: 100968. |
| [33] | Járai-Szabó FERENC, Zoltán NÉDA. On the size distribution of Poisson Voronoi cells[J]. Physica A: Statistical Mechanics and Its Applications, 2007, 385(2): 518-526. |
| [34] | ZHANG Pan, KARIMPOUR Morad, BALINT Daniel, et al. A controlled Poisson Voronoi tessellation for grain and cohesive boundary generation applied to crystal plasticity analysis[J]. Computational Materials Science, 2012, 64: 84-89. |
| [35] | YANG C, ZHAO Y J, KANG L M, et al. High-strength silicon brass manufactured by selective laser melting[J]. Materials Letters, 2018, 210: 169-172. |
| [36] | WU Zhiyong, XU Siqi, YANG Lixin, et al. Numerical investigation of single-blow transient testing technique[J]. International Communications in Heat and Mass Transfer, 2021, 120: 105023. |
| [37] | YANG Jian, WANG Jing, BU Shanshan, et al. Experimental analysis of forced convective heat transfer in novel structured packed beds of particles[J]. Chemical Engineering Science, 2012, 71: 126-137. |
| [38] | YOUNIS L B, VISKANTA R. Experimental determination of the volumetric heat transfer coefficient between stream of air and ceramic foam[J]. International Journal of Heat and Mass Transfer, 1993, 36(6): 1425-1434. |
| [39] | J-J HWANG, G-J HWANG, YEH R-H, et al. Measurement of interstitial convective heat transfer and frictional drag for flow across metal foams[J]. Journal of Heat Transfer, 2002, 124(1): 120-129. |
| [40] | JIANG Peixue, XU Ruina, GONG Wei. Particle-to-fluid heat transfer coefficients in miniporous media[J]. Chemical Engineering Science, 2006, 61(22): 7213-7222. |
| [1] | 李卡, 夏宇轩, 吴晓琴, 易兰, 罗浩. 双层多孔介质燃烧反应器的孔隙尺度计算流体动力学模拟[J]. 化工进展, 2025, 44(8): 4381-4393. |
| [2] | 刘建红, 刘栋, 商福民, 杨凯, 郑超凡, 曹欣. 非对称结构脉动热管换热装置传热性能[J]. 化工进展, 2025, 44(7): 3727-3736. |
| [3] | 曹泷, 刘贺, 郭家驹, 胡春霞, 杨卧龙, 吴学红. 管内梯度多孔镀层强化R245fa流动沸腾传热[J]. 化工进展, 2025, 44(7): 3794-3803. |
| [4] | 杨心柳, 刘强, 曹倩, 崔岳铭, 方朝合. 储层渗流对单地热井同轴换热器取热特性的影响[J]. 化工进展, 2025, 44(7): 3860-3868. |
| [5] | 甄箫斐, 杨特勃, 董缇, 齐永豪, 刘佳. 多孔介质强化水合物储气性能研究进展[J]. 化工进展, 2025, 44(6): 3413-3431. |
| [6] | 张春华, 王国清, 张利军, 鲁波娜, 周丛, 刘俊杰. 管内扭带强化传热技术:涡流结构调控的进展与挑战[J]. 化工进展, 2025, 44(6): 3163-3174. |
| [7] | 戴贵龙, 刘益硕, 穆龙坤, 龚凌褚. 凹腔多孔介质吸热器耦合传热模型性能优化[J]. 化工进展, 2025, 44(6): 3258-3270. |
| [8] | 马梓轩, 施瑞晨, 刘明杰, 杨莹杰, 宋子瑜, 梅晓鹏, 高晓峰, 洪龙城, 姚思宇, 张治国, 任其龙. 环烷烃催化制氢反应器的设计与性能优化: 前沿进展与挑战[J]. 化工进展, 2025, 44(5): 2919-2937. |
| [9] | 孟凡志, 孙冰, 杨哲. 原料替代对化工生产过程新工艺安全的影响与风险评估[J]. 化工进展, 2025, 44(5): 2955-2971. |
| [10] | 宋祎祺, 李雪, 叶茂, 刘中民. 基于格子Boltzmann方法的吸热反应双颗粒沉降模拟[J]. 化工进展, 2025, 44(5): 2984-2996. |
| [11] | 王磊, 王艳, 甘玉凤, 罗凯, 费华, 栾俨丁. 水平流向不同小流道加热管内超临界CO2的传热特性[J]. 化工进展, 2025, 44(4): 1945-1956. |
| [12] | 王佳琪, 刘佳兴, 魏皓琦, 周昕霖, 程传晓, 葛坤. 鼠李糖脂强化CO2水合物生成[J]. 化工进展, 2025, 44(4): 1998-2007. |
| [13] | 袁梦丽, 宋云彩, 李文英, 冯杰. 光热驱动褐煤固定床气化过程热质传递规律[J]. 化工进展, 2025, 44(4): 2008-2019. |
| [14] | 王美杰, 韦刘轲, 贾保印, 蓝兴英, 高金森, 石孝刚. LNG开架式气化器传热强化的研究进展[J]. 化工进展, 2025, 44(3): 1206-1217. |
| [15] | 佘永璐, 徐强, 罗欣怡, 聂腾飞, 郭烈锦. 反应温度对光电极表面气泡动力学及传质特性的影响[J]. 化工进展, 2025, 44(3): 1243-1252. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |