| [1] |
缪雪龙, 黄震. 内燃机燃烧技术综述[J]. 现代车用动力, 2006(2): 6-11, 27.
|
|
MIAO Xuelong, HUANG Zhen. Review of combustion technology in internal combustion engine[J]. Modern Vehicle Power, 2006(2): 6-11, 27.
|
| [2] |
李苏辉, 张归华, 吴玉新. 面向未来燃气轮机的先进燃烧技术综述[J]. 清华大学学报(自然科学版), 2021, 61(12): 1423-1437.
|
|
LI Suhui, ZHANG Guihua, WU Yuxin. Advanced combustion technologies for future gas turbines[J]. Journal of Tsinghua University (Science and Technology), 2021, 61(12): 1423-1437.
|
| [3] |
凌忠钱, 周昊, 孔俊俊. 多孔介质燃烧波传播中的“超焓” 特性[J]. 浙江大学学报(工学版), 2014, 48(4): 660-665.
|
|
LING Zhongqian, ZHOU Hao, KONG Junjun. Super-adiabatic characteristic of porous media combustion at different wave propagation direction[J]. Journal of Zhejiang University (Engineering Science), 2014, 48(4): 660-665.
|
| [4] |
汪健生, 张辉鹏, 刘雪玲, 等. 多孔介质结构对储层内流动和换热特性的影响[J]. 化工进展, 2023, 42(8): 4212-4220.
|
|
WANG Jiansheng, ZHANG Huipeng, LIU Xueling, et al. Analysis of flow and heat transfer characteristics in porous media reservoir[J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4212-4220.
|
| [5] |
Abdul MUJEEBU M, ABDULLAH M Z, BAKAR M Z ABU, et al. Applications of porous media combustion technology—A review[J]. Applied Energy, 2009, 86(9): 1365-1375.
|
| [6] |
WOOD Susie, HARRIS Andrew T. Porous burners for lean-burn applications[J]. Progress in Energy and Combustion Science, 2008, 34(5): 667-684.
|
| [7] |
黄冉思思, 程乐鸣, 邱坤赞, 等. 中、低热值预混气体在双层多孔介质中的贫燃特性[J]. 浙江大学学报(工学版), 2015, 49(9): 1783-1789.
|
|
HUANG Ransisi, CHENG Leming, QIU Kunzan, et al. Lean combustion of moderate/low calorific premixed gases in two-layer porous burner[J]. Journal of Zhejiang University (Engineering Science), 2015, 49(9): 1783-1789.
|
| [8] |
BUBNOVICH V, HENRÍQUEZ L, GNESDILOV N. Numerical study of the effect of the diameter of alumina balls on flame stabilization in a porous-medium burner[J]. Numerical Heat Transfer, Part A: Applications, 2007, 52(3): 275-295.
|
| [9] |
LIANG Xiong, LI Yawei, HE Zhu, et al. Design of three-layered struts in SiC reticulated porous ceramics for porous burner[J]. Ceramics International, 2019, 45(7): 8571-8576.
|
| [10] |
SAMOILENKO Mykhailo, SEERS Patrice, TERRIAULT Patrick, et al. Design, manufacture and testing of porous materials with ordered and random porosity: Application to porous medium burners[J]. Applied Thermal Engineering, 2019, 158: 113724.
|
| [11] |
WANG Guanqing, TANG Pengbo, LI Yuan, et al. Flame front stability of low calorific fuel gas combustion with preheated air in a porous burner[J]. Energy, 2019, 170: 1279-1288.
|
| [12] |
LIU Yang, DENG Yangbo, SHI Junrui, et al. Experimental investigation on flame stability and emissions of lean premixed methane-air combustion in a developed divergent porous burner[J]. Journal of Cleaner Production, 2023, 405: 137070.
|
| [13] |
李宁, 李金科, 董金善. 乙烯裂解炉多孔介质燃烧器的研究与开发[J]. 化工进展, 2023, 42(S1): 73-83.
|
|
LI Ning, LI Jinke, DONG Jinshan. Research and development of porous medium burner in ethylene cracking furnace[J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 73-83.
|
| [14] |
SHI Junrui, CHEN Zhongshan, LI Houping, et al. Pore-scale study of thermal nonequilibrium in a two-layer burner formed by staggered arrangement of particles[J]. Applied Thermal Engineering, 2020, 176: 115376.
|
| [15] |
SHI Junrui, Jinsheng LYU, HE Fang, et al. 3D numerical study on syngas production in a structured packed bed with connected pellets[J]. International Journal of Hydrogen Energy, 2020, 45(56): 32579-32588.
|
| [16] |
Jinsheng LYU, SHI Junrui, MAO Mingming, et al. Three-dimensional pore-scale simulation of flow and thermal non-equilibrium for premixed gas combustion in a random packed bed burner[J]. Energies, 2021, 14(21): 6939.
|
| [17] |
LI Qingqing, LI Jun, SHI Junrui. Fully-resolved 3D premixed H2/air flames in a micro-combustor partially filled with porous media: Effects of detailed pore structures[J]. Proceedings of the Combustion Institute, 2023, 39(4): 5571-5580.
|
| [18] |
LIU Yang, DENG Yangbo, SHI Junrui, et al. Pore-level numerical simulation of methane-air combustion in a simplified two-layer porous burner[J]. Chinese Journal of Chemical Engineering, 2021, 34: 87-96.
|
| [19] |
GAO Huaibin, QU Zhiguo, HE Yaling, et al. Experimental study of combustion in a double-layer burner packed with alumina pellets of different diameters[J]. Applied Energy, 2012, 100: 295-302.
|
| [20] |
SHI Junrui, MAO Mingming, LI Houping, et al. A pore level study of syngas production in two-layer burner formed by staggered arrangement of particles[J]. International Journal of Hydrogen Energy, 2020, 45(3): 2331-2340.
|
| [21] |
SHI Junrui, KONG Xiangjin, Jinsheng LYU, et al. The stability limit of extremely low calorific gas combustion in a cone-shape two-section burner with the preheaters[J]. International Communications in Heat and Mass Transfer, 2023, 140: 106524.
|
| [22] |
Morgan Thermal Ceramics. Kaowool® Blanket: Datasheet Code US 5-14-205[J/OL]. Morgan Advanced Materials, (2018-07) [2024-12-06]. .
|
| [23] |
DIXON Anthony G, NIJEMEISLAND Michiel, STITT E Hugh. Systematic mesh development for 3D CFD simulation of fixed beds: Contact points study[J]. Computers & Chemical Engineering, 2013, 48: 135-153.
|
| [24] |
ZEIDAN D, BÄHR P, FARBER P, et al. Numerical investigation of a mixture two-phase flow model in two-dimensional space[J]. Computers & Fluids, 2019, 181: 90-106.
|
| [25] |
MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605.
|
| [26] |
HEADLEY Alexander J, HILEMAN Michael B, ROBBINS Aron S, et al. Thermal conductivity measurements and modeling of ceramic fiber insulation materials[J]. International Journal of Heat and Mass Transfer, 2019, 129: 1287-1294.
|
| [27] |
ERGUN Sabri, ORNING A A. Fluid flow through randomly packed columns and fluidized beds[J]. Industrial & Engineering Chemistry, 1949, 41(6): 1179-1184.
|