化工进展 ›› 2025, Vol. 44 ›› Issue (8): 4381-4393.DOI: 10.16085/j.issn.1000-6613.2025-0114

• 微介观过程与材料的模拟与仿真 • 上一篇    下一篇

双层多孔介质燃烧反应器的孔隙尺度计算流体动力学模拟

李卡(), 夏宇轩, 吴晓琴, 易兰, 罗浩()   

  1. 武汉科技大学化学与化工学院,湖北 武汉 430081
  • 收稿日期:2025-01-20 修回日期:2025-03-01 出版日期:2025-08-25 发布日期:2025-09-08
  • 通讯作者: 罗浩
  • 作者简介:李卡(2000—),女,硕士研究生,研究方向为CFD孔隙尺度反应器模拟。E-mail:lkk5452@163.com
  • 基金资助:
    国家自然科学基金(22208254)

Pore scale computational fluid dynamics (CFD) simulation of a double-layer porous medium combustion reactor

LI Ka(), XIA Yuxuan, WU Xiaoqin, YI Lan, LUO Hao()   

  1. School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, Hubei, China
  • Received:2025-01-20 Revised:2025-03-01 Online:2025-08-25 Published:2025-09-08
  • Contact: LUO Hao

摘要:

双层多孔介质燃烧反应器具有燃烧效率高、燃料燃烧极限宽、污染物排放少等优点,在工业应用中具有重要应用价值,然而其内部流动-传递-反应过程复杂,难以实现双层多孔介质反应器的精准调控与优化。为此,本文基于孔隙尺度的计算流体动力学(computational fluid dynamics,CFD)方法,采用搭桥的方法模拟固体间的热传导,对双层多孔介质甲烷燃烧器进行了二维全尺寸数值模拟,研究了特定当量比下不同入口速度以及特定入口速度不同当量比对燃烧行为的影响。计算结果表明,火焰分散在孔隙中,稳定在燃烧器某一水平位置,当入口气体速度较低时(0.3m/s),火焰驻定在双层多孔介质的交界面附近,火焰位置随流速的增大向下游移动,随当量比的增大向上游移动,火焰温度随入口速度的增加而增加,温度分布局部化,局部高温出现在较小的孔隙间。燃烧在孔隙内更加剧烈,最大速度可达到入口速度的56.0~58.7倍。因此,双层多孔介质燃烧反应器的孔隙尺度CFD模拟可以揭示其内部的流动-传递-反应特性。

关键词: 多孔介质, 计算流体力学, 数值模拟, 孔隙尺度, 反应器

Abstract:

The double-layer porous media combustor offers advantages of high combustion efficiency, a wide fuel combustion limit, and low pollutant emissions, making it valuable for industrial applications. However, the complex flow-transfer-reaction behaviors inside the reactor leads to challenges of design, control, and optimization. In this work, the pore scale computational fluid dynamics (CFD) was employed to modelling a full-scale double-layer porous media methane combustor. A bridge method was utilized to simulate solid-particle heat conduction, where a porous zone connects with adjacent particles. The effects of various inlet velocities and equivalence ratios on methane combustion behaviors were investigated. The results showed that the flame was dispersed within the pores and stabilized at a certain horizontal position in the combustor. Specifically, the flame was stabilized near the interface of the two porous media layers at low flow velocity (0.3m/s). With the increase of inlet velocity, the flame position is shifted downstream. Conversely, The flame position was shifted to upstream with an increase of equivalence ratio. The flame temperature increased with an increasing of inlet velocity, resulting in a localized temperature distribution, which a high temperatures zone existed in the smaller pore regions. Additionally, the maximum velocities were found to reach 56.0—58.7 times of the inlet velocity. The results also showed that pore scale CFD simulation could reveal the flow-transfer-reaction behaviors of double-layer porous medium combustion reactors.

Key words: porous media, computational fluid dynamics (CFD), numerical simulation, pore scale, reactors

中图分类号: 

京ICP备12046843号-2;京公网安备 11010102001994号
版权所有 © 《化工进展》编辑部
地址:北京市东城区青年湖南街13号 邮编:100011
电子信箱:hgjz@cip.com.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn