| [1] |
GAO Jinsen, SHI Xiaogang, LAN Xingying, et al. A technical roadmap for China’s petrochemical industry upgrading to achieve carbon neutrality[J]. Engineering, 2023, 29: 55-58.
|
| [2] |
BAI Peng, ETIM Ubong Jerome, YAN Zifeng, et al. Fluid catalytic cracking technology: Current status and recent discoveries on catalyst contamination[J]. Catalysis Reviews, 2019, 61(3): 333-405.
|
| [3] |
靳满满, 田文德, 张俊梅. FCCU反再系统异常工况的安全分析[J]. 化工学报, 2015, 66(9): 3649-3653.
|
|
JIN Manman, TIAN Wende, ZHANG Junmei. Safety analysis of FCCU reaction-regeneration system under abnormal conditions[J]. CIESC Journal, 2015, 66(9): 3649-3653.
|
| [4] |
彭国峰, 黄富, 沈兴, 等. 催化裂化油浆系统运行分析及优化措施[J]. 炼油与化工, 2020, 31(3): 13-15.
|
|
PENG Guofeng, HUANG Fu, SHEN Xing, et al. Operation analysis and optimization measures in slurry system of catalytic cracking unit[J]. Refining and Chemical Industry, 2020, 31(3): 13-15.
|
| [5] |
蔡香丽, 杨智勇, 王菁, 等. 旋风分离器气相旋转流流场动态特性的研究进展[J]. 化工进展, 2019, 38(11): 4805-4814.
|
|
CAI Xiangli, YANG Zhiyong, WANG Jing, et al. Research progress on dynamic characteristics of swirling flow in a cyclone[J]. Chemical Industry and Engineering Progress, 2019, 38(11): 4805-4814.
|
| [6] |
彭威, 黄新俊, 詹庆丽, 等. MTO装置再生器旋风分离器操作优化模拟研究[J]. 石油炼制与化工, 2024, 55(7): 135-143.
|
|
PENG Wei, HUANG Xinjun, ZHAN Qingli, et al. Simulation on operation optimization of cyclone separator in regenerator of MTO unit[J]. China Petroleum Processing Petrochemical Technology, 2024, 55(7): 135-143.
|
| [7] |
高兴, 李速延, 黄风林. 催化裂化装置催化剂跑损分析[J]. 工业催化, 2012, 20(4): 47-51.
|
|
GAO Xing, LI Suyan, HUANG Fenglin. Reason and treatment of catalyst loss in oil FCC unit[J]. Industrial Catalysis, 2012, 20(4): 47-51.
|
| [8] |
LIU Fang, LI Caifu, ZENG Xingyang, et al. Study on the flow and collision characteristics of catalyst particles in FCC reactor[J]. Powder Technology, 2024, 438: 119642.
|
| [9] |
KUKADE Somanath, KUMAR Pramod, RAO Peddy V C, et al. Comparative study of attrition measurements of commercial FCC catalysts by ASTM fluidized bed and jet cup test methods[J]. Powder Technology, 2016, 301: 472-477.
|
| [10] |
王建禹, 白晓磊. 催化裂化装置再生器跑剂原因分析[J]. 石化技术, 2021, 28(8): 31-32.
|
|
WANG Janyu, BAI Xiaolei. Analysis of catalyst leakage in regenerators of several FCC units[J]. Petrochemical Industry Technology, 2021, 28(8): 31-32.
|
| [11] |
彭威, 徐波, 杨亮, 等. FCC装置再生器旋风分离器磨损跑剂分析[J]. 炼油技术与工程, 2023, 53(8): 37-40.
|
|
PENG Wei, XU Bo, YANG Liang, et al. Analysis of the cyclone separator wear and catalyst loss in FCC unit regenerator[J]. Petroleum Refinery Engineering, 2023, 53(8): 37-40.
|
| [12] |
夏明川, 常培廷, 王建军, 等. 催化裂化装置再生器跑剂分析与对策[J]. 炼油技术与工程, 2017, 47(4): 48-50.
|
|
XIA Mingchuan, CHAN Peiting, WANG Janjun, et al. Analyses and of catalyst loss in FCC regenerator and countermeasures[J]. Petroleum Refinery Engineering, 2017, 47(4): 48-50.
|
| [13] |
白小春. FCC再生器跑剂原因分析及对策[J]. 山东化工, 2019, 48(13): 132-133.
|
|
BAI Xiaochun. Cause analysis and countermeasures of regenerator runner in heavy oil catalytic crack device[J]. Shandong Chemical Industry, 2019, 48(13): 132-133.
|
| [14] |
文鹏, 严超宇, 魏耀东. 催化裂化装置沉降器跑剂原因分析及对策[J]. 炼油技术与工程, 2023, 53(7): 32-35.
|
|
WEN Peng, YAN Chaoyu, WEI Yaodong. Cause analysis and countermeasures for the agent runout of the disengager of FCCU[J]. Petroleum Refinery Engineering, 2023, 53(7): 32-35.
|
| [15] |
王一鸣. 催化裂化装置沉降器跑剂情况分析[J]. 化工设计通讯, 2020, 46(1): 68-69.
|
|
WANG Yiming. Analysis of running agent in FCC settler[J]. Chemical Engineering Design Communications, 2020, 46(1): 68-69.
|
| [16] |
NICCUM Phillip K, TRAGESSER Steve. Twenty questions: Identify probable cause of high FCC catalyst loss[J]. Hydrocarbon processing, 2010, 89(9): 1-17.
|
| [17] |
王迪, 孙立强, 严超宇, 等. 流化催化裂化(FCC)催化剂跑损机制及故障树分析[J]. 化工进展, 2019, 38(8): 3534-3539.
|
|
WANG Di, SUN Liqiang, YAN Chaoyu, et al. Mechanisms and fault tree analysis of catalyst loss in fluid catalytic cracking (FCC) unit[J]. Chemical Industry and Engineering Progress, 2019, 38(8): 3534-3539.
|
| [18] |
SONG Jianfei, WANG Di, HE Yanmin, et al. A stepwise diagnosis method for the catalyst loss fault of the cyclone separator in FCC units[J]. Separations, 2023, 10(1): 28.
|
| [19] |
刘英杰, 卢春喜. RFCC沉降器内流动及传热过程的数值模拟[J]. 高校化学工程学报, 2019, 33(2): 315-320.
|
|
LIU Yingjie, LU Chunxi. Numerical simulation of flow and heat transfer in RFCC disengager[J]. Journal of Chemical Engineering of Chinese Universities, 2019, 33(2): 315-320.
|
| [20] |
吕明珠, 王栋, 赵云鹏, 等. 不同结构催化裂化沉降器模拟分析[J]. 石油学报(石油加工), 2023, 39(3): 611-621.
|
|
Mingzhu LYU, WANG Dong, ZHAO Yunpeng, et al. Numerical simulation analysis on FCC disengager with different internal structures[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2023, 39(3): 611-621.
|
| [21] |
刘雅宁, 鲁波娜, 卢利强, 等. 基于EMMS模型的大型催化裂化装置再生器气固分布数值模拟[J]. 化工学报, 2015, 66(8): 2911-2919.
|
|
LIU Yaning, LU Bona, LU Liqiang, et al. EMMS-based numerical simulation on gas and solids distribution in large-scale FCC regenerators[J]. CIESC Journal, 2015, 66(8): 2911-2919.
|
| [22] |
陈娟, 卢啸风, 胡清, 等. 排气管偏置分离器分离性能的数值模拟[J]. 化工进展, 2011, 30(6): 1182-1187.
|
|
CHEN Juan, LU Xiaofeng, HU Qing, et al. Numerical simulation of separation performance in cyclone with excentric vent pipe[J]. Chemical Industry and Engineering Progress, 2011, 30(6): 1182-1187.
|
| [23] |
SONG Jianfei, HE Yanmin, MENG Fanshu, et al. Effects of gas in-leakage on separation performance and gas-phase flow field of a FCC cyclone[J]. Powder Technology, 2023, 415: 118201.
|
| [24] |
贺艳敏. 窜气故障下旋风分离器的流场模拟及性能分析[D]. 北京: 中国石油大学(北京), 2023.
|
|
HE Yanmin. Flow field simulation and performance analysis of cycloneseparator under gas in-leakage fault conditions[D]. Beijing: China University of Petroleum (Beijing), 2023.
|
| [25] |
ZHANG Mengxuan, YANG Zhe, ZHAO Yunpeng, et al. A hybrid safety monitoring framework for industrial FCC disengager coking rate based on FPM, CFD, and ML[J]. Process Safety and Environmental Protection, 2023, 175: 17-33.
|
| [26] |
YANG Ning, WANG Wei, GE Wei, et al. Choosing structure-dependent drag coefficient in modeling gas-solid two-phase flow[J]. China Particuology, 2003, 1(1): 38-41.
|
| [27] |
BAKSHI A, ALTANTZIS C, BATES Richard B, et al. Eulerian-Eulerian simulation of dense solid-gas cylindrical fluidized beds: Impact of wall boundary condition and drag model on fluidization[J]. Powder Technology, 2015, 277: 47-62.
|
| [28] |
YANG Xuliang, YANG Jintao, WANG Songbo, et al. Effects of operational and geometrical parameters on velocity distribution and micron mineral powders classification in cyclone separators[J]. Powder Technology, 2022, 407: 117609.
|
| [29] |
PANDEY Satyanand, BRAR Lakhbir Singh. On the performance of cyclone separators with different shapes of the conical section using CFD[J]. Powder Technology, 2022, 407: 117629.
|
| [30] |
李吉. 旨在减少工业用FCC再生装置内壁冲蚀的颗粒流模拟[J]. 化工进展, 2011, 30(S1): 565-567.
|
|
LI Ji. Particle flow simulation aimed at reducing the erosion of the inner wall of an industrial FCC regeneration unit[J]. Chemical Industry and Engineering Progress, 2011, 30(S1): 565-567.
|
| [31] |
GAO Jinsen, CHANG Jian, LAN Xingying, et al. CFD modeling of mass transfer and stripping efficiency in FCCU strippers[J]. AIChE Journal, 2008, 54(5): 1164-1177.
|
| [32] |
卢德庆, 辛靖, 朱元宝, 等. 流化催化裂化油浆综合利用的分析[J]. 化工进展, 2021, 40(S1): 142-149.
|
|
LU Deqing, XI Jing, ZHU Yuanbao, et al. Analysis on integrated utilization of FCC slurry oil[J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 142-149.
|
| [33] |
FLETCHER Ray. Stepwise method determines source of FCC catalyst losses[J]. Oil & Gas Journal, 1995, 28: 79-81.
|