化工进展 ›› 2025, Vol. 44 ›› Issue (6): 3497-3508.DOI: 10.16085/j.issn.1000-6613.2024-0704
• 工业催化 • 上一篇
收稿日期:2024-04-28
修回日期:2024-05-30
出版日期:2025-06-25
发布日期:2025-07-08
通讯作者:
段学志
作者简介:贺逸健(1999—),男,硕士研究生,研究方向为催化反应工程。E-mail:1500411090@qq.com。
基金资助:
HE Yijian(
), LIU Xiangkun, SHI Yao, DUAN Xuezhi(
)
Received:2024-04-28
Revised:2024-05-30
Online:2025-06-25
Published:2025-07-08
Contact:
DUAN Xuezhi
摘要:
“双碳”目标下,乙烷催化脱氢制乙烯作为一条低成本、环境友好型的非石油化工路径,具有广阔的发展前景。本文通过建立床层-颗粒耦合模型和颗粒分辨的反应器模型分别进行反应操作条件的优化和催化剂颗粒外形的设计。结果表明,提高入口温度、减小空速和增加入口压力都有利于提高乙烷转化率,但同时会导致床层温升的增加而降低乙烯的选择性,最优的操作条件为633K的入口温度、2000h-1的空速及1.25bar(1bar=105Pa)的入口压力。基于优化后的反应操作条件对四种不同的堆积结构(球形、圆柱、拉西环和三叶草)进行比较,发现球形和拉西环堆积结构分别有着最高和最低的反应器温升(31K和12K),最高和最低的乙烯收率(48.6%和43.6%),其中三叶草堆积结构因其能在维持较高乙烯收率的同时有效控制反应器温升,最适合乙烷氧化脱氢反应。
中图分类号:
贺逸健, 刘祥坤, 施尧, 段学志. 乙烷氧化脱氢制乙烯催化剂颗粒外形设计[J]. 化工进展, 2025, 44(6): 3497-3508.
HE Yijian, LIU Xiangkun, SHI Yao, DUAN Xuezhi. Catalyst particle shape design for ethane oxidative dehydrogenation to ethylene[J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3497-3508.
| 参数 | 数值 | 参数 | 数值 |
|---|---|---|---|
| A0/mol·s-1·g | 490.4 | E0/kJ·mol-1 | 101.6 |
| A1/mol·s-1·g | 3.59 | E1/kJ·mol-1 | 92.5 |
| A2/mol·s-1·g | 39.37 | E2/kJ·mol-1 | 138.4 |
| A3/mol·s-1·g | 17.59 | E3/kJ·mol-1 | 130.7 |
| A4/mol·s-1·g | 7.31 | E4/kJ·mol-1 | 116 |
| A5/mol·s-1·g | 3.69 | E5/kJ·mol-1 | 122.1 |
| A6/mol·s-1·g | 7.36e-5 | E6/kJ·mol-1 | 52.8 |
表2 动力学参数值
| 参数 | 数值 | 参数 | 数值 |
|---|---|---|---|
| A0/mol·s-1·g | 490.4 | E0/kJ·mol-1 | 101.6 |
| A1/mol·s-1·g | 3.59 | E1/kJ·mol-1 | 92.5 |
| A2/mol·s-1·g | 39.37 | E2/kJ·mol-1 | 138.4 |
| A3/mol·s-1·g | 17.59 | E3/kJ·mol-1 | 130.7 |
| A4/mol·s-1·g | 7.31 | E4/kJ·mol-1 | 116 |
| A5/mol·s-1·g | 3.69 | E5/kJ·mol-1 | 122.1 |
| A6/mol·s-1·g | 7.36e-5 | E6/kJ·mol-1 | 52.8 |
| 位置 | 温度条件 | 浓度条件 |
|---|---|---|
| 反应器入口(z=0) | ||
| 反应器出口(z=ht) | ||
| 反应器中心(r=0) | ||
| 反应器壁面(r=dt/2) | ||
| 颗粒中心( | ||
| 颗粒表面( |
表3 床层-颗粒耦合模型的边界条件
| 位置 | 温度条件 | 浓度条件 |
|---|---|---|
| 反应器入口(z=0) | ||
| 反应器出口(z=ht) | ||
| 反应器中心(r=0) | ||
| 反应器壁面(r=dt/2) | ||
| 颗粒中心( | ||
| 颗粒表面( |
| 参数 | 数值 |
|---|---|
| 进料温度T0/K | 633 |
| 壁面温度Tw/K | 633 |
| 体积空速GHSV/h-1 | 2000 |
| 入口压力P0/bar | 1.25 |
| 进料中C2H6摩尔分数 | 0.25 |
| 进料中O2摩尔分数 | 0.1365 |
| 进料中H2O摩尔分数 | 0.1 |
| 进料中N2摩尔分数 | 0.5135 |
| 反应器直径dt/mm | 25.4 |
| 催化剂颗粒直径dp/mm | 5 |
| 催化剂颗粒孔隙率εpe | 0.37 |
| 催化剂颗粒曲折因子τpe | 2.7 |
| 催化剂颗粒密度ρpe/kg·m-3 | 2400 |
| 催化剂颗粒热导率λpe/W·m-1·K-1 | 94.5 |
表4 固定床反应器的模拟参数
| 参数 | 数值 |
|---|---|
| 进料温度T0/K | 633 |
| 壁面温度Tw/K | 633 |
| 体积空速GHSV/h-1 | 2000 |
| 入口压力P0/bar | 1.25 |
| 进料中C2H6摩尔分数 | 0.25 |
| 进料中O2摩尔分数 | 0.1365 |
| 进料中H2O摩尔分数 | 0.1 |
| 进料中N2摩尔分数 | 0.5135 |
| 反应器直径dt/mm | 25.4 |
| 催化剂颗粒直径dp/mm | 5 |
| 催化剂颗粒孔隙率εpe | 0.37 |
| 催化剂颗粒曲折因子τpe | 2.7 |
| 催化剂颗粒密度ρpe/kg·m-3 | 2400 |
| 催化剂颗粒热导率λpe/W·m-1·K-1 | 94.5 |
| 几何结构 | 外径/mm | 内径/mm | 高度/mm | 表面积/mm2 | 体积/mm3 | 反应器高度/mm |
|---|---|---|---|---|---|---|
| 球形 | 5.00 | — | — | 78.50 | 65.42 | 50 |
| 圆柱形 | 5.00 | — | 5.00 | 117.45 | 98.13 | 50 |
| 拉西环形 | 5.00 | 3.00 | 5.00 | 150.72 | 62.80 | 50 |
| 三叶草形 | 5.00 | — | 5.00 | 120.07 | 62.80 | 50 |
表5 四种不同颗粒的几何参数
| 几何结构 | 外径/mm | 内径/mm | 高度/mm | 表面积/mm2 | 体积/mm3 | 反应器高度/mm |
|---|---|---|---|---|---|---|
| 球形 | 5.00 | — | — | 78.50 | 65.42 | 50 |
| 圆柱形 | 5.00 | — | 5.00 | 117.45 | 98.13 | 50 |
| 拉西环形 | 5.00 | 3.00 | 5.00 | 150.72 | 62.80 | 50 |
| 三叶草形 | 5.00 | — | 5.00 | 120.07 | 62.80 | 50 |
| 位置 | 温度条件 | 浓度条件 |
|---|---|---|
| 反应器入口(z=0) | ||
| 反应器出口(z=ht) | ||
| 颗粒中心( | ||
| 颗粒表面( |
表6 颗粒分辨的反应器模型的边界条件
| 位置 | 温度条件 | 浓度条件 |
|---|---|---|
| 反应器入口(z=0) | ||
| 反应器出口(z=ht) | ||
| 颗粒中心( | ||
| 颗粒表面( |
| [14] | CHEN Jiakang, BOLLINI Praveen, BALAKOTAIAH Vemuri. Shallow-bed reactor design for the autothermal oxidative dehydrogenation of ethane over MoVTeNbO x catalysts[J]. Chemical Engineering Journal, 2023, 474: 145660. |
| [15] | FAZLINEZHAD Armin, NAEIMI Ali, YASARI Elham. Theoretical investigation of ethane oxidative dehydrogenation over MoVTeNbO catalyst in fixed-bed reactors with intermediate water removal[J]. Chemical Engineering Research and Design, 2019, 146: 427-435. |
| [16] | 曹晨熙, 张辇, 储博钊, 等. 微结构反应器气固相催化过程强化的研究与工业化进展[J]. 化工学报, 2018, 69(1): 295-308. |
| CAO Chenxi, ZHANG Nian, CHU Bozhao, et al. Progress in research and industrial development of microstructured reactors for intensifying gas-solid catalytic reactions[J]. CIESC Journal, 2018, 69(1): 295-308. | |
| [17] | STEGEHAKE Carolin, RIESE Julia, Marcus GRÜNEWALD. Modeling and validating fixed-bed reactors: A state-of-the-art review[J]. Chemie Ingenieur Technik, 2018, 90(11): 1739-1758. |
| [18] | WEHINGER Gregor D, SCHARF Florian. Thermal radiation effects on heat transfer in slender packed-bed reactors: Particle-resolved CFD simulations and 2D modeling[J]. Chemical Engineering Research and Design, 2022, 184: 24-38. |
| [19] | CHEN Hao, SHI Yao, LI Zhao, et al. Structure-resolved CFD simulations to guide catalyst packing of selective NO reduction[J]. Chemical Engineering Journal, 2022, 446: 136888. |
| [20] | SHI Yao, LI Zhao, YANG Changfeng, et al. Catalyst particle shapes and pore structure engineering for hydrodesulfurization and hydrodenitrogenation reactions[J]. Frontiers of Chemical Science and Engineering, 2022, 16(6): 897-908. |
| [21] | SHI Yao, CHEN Hao, CHEN Wenyao, et al. Effects of particle shape and packing style on ethylene oxidation reaction using particle-resolved CFD simulation[J]. Particuology, 2023, 82: 87-97. |
| [22] | LI Zhao, SHI Yao, CHEN Wenyao, et al. Structure optimization and selection of catalyst particle for highly efficient gas oil hydrodenitrogenation[J]. Chemical Engineering Science, 2023, 277: 118871. |
| [23] | KARTHIK G M, BUWA Vivek V. Particle-resolved simulations of methane steam reforming in multilayered packed beds[J]. AIChE Journal, 2018, 64(11): 4162-4176. |
| [24] | MOGHADDAM E M, FOUMENY E A, STANKIEWICZ A I, et al. Multiscale modelling of wall-to-bed heat transfer in fixed beds with non-spherical pellets: From particle-resolved CFD to pseudo-homogenous models[J]. Chemical Engineering Science, 2021, 236: 116532. |
| [25] | PARTOPOUR Behnam, DIXON Anthony G. n-butane partial oxidation in a fixed bed: A resolved particle computational fluid dynamics simulation[J]. The Canadian Journal of Chemical Engineering, 2018, 96(9): 1946-1956. |
| [26] | WEHINGER Gregor D, EPPINGER Thomas, KRAUME Matthias. Evaluating catalytic fixed-bed reactors for dry reforming of methane with detailed CFD[J]. Chemie Ingenieur Technik, 2015, 87(6): 734-745. |
| [27] | PARTOPOUR Behnam, DIXON Anthony G. Effect of particle shape on methanol partial oxidation in a fixed bed using CFD reactor modeling[J]. AIChE Journal, 2020, 66(5): e16904. |
| [28] | CHEN Jiakang, SUN Zhe, BALAKOTAIAH Vemuri, et al. A global kinetic model for the oxidative dehydrogenation of ethane over mixed metal oxide catalysts at supra-ambient pressures[J]. Chemical Engineering Journal, 2022, 445: 136605. |
| [29] | PARTOPOUR Behnam, DIXON Anthony G. An integrated workflow for resolved-particle packed bed models with complex particle shapes[J]. Powder Technology, 2017, 322: 258-272. |
| [30] | WINTERBERG M, TSOTSAS E, KRISCHKE A, et al. A simple and coherent set of coefficients for modelling of heat and mass transport with and without chemical reaction in tubes filled with spheres[J]. Chemical Engineering Science, 2000, 55(5): 967-979. |
| [31] | Pablo MARÍN, DÍEZ Fernando V, Salvador ORDÓÑEZ. Fixed bed membrane reactors for WGSR-based hydrogen production: Optimisation of modelling approaches and reactor performance[J]. International Journal of Hydrogen Energy, 2012, 37(6): 4997-5010. |
| [32] | FULLER Edward N, SCHETTLER Paul D, Calvin GIDDINGS J. New method for prediction of binary gas-phase diffusion coefficients[J]. Industrial & Engineering Chemistry, 1966, 58(5): 18-27. |
| [33] | 杨维慎, 王红心, 吕建宁, 等. 用于低碳烷烃选择氧化制高值化学品的催化剂及其制备方法: CN116328805A[P]. 2023-06-27. |
| YANG Weishen, WANG Hongxin, Jianning LYU, et al. Catalysts and preparation methods for the selective oxidation of low-carbon alkanes to high-value chemicals:CN116328805A[P]. 2023-06-27. | |
| [34] | YAN Peng, CHEN Yuxin, CHENG Yi. Industrially potential MoVNbTeO x @FoamSiC structured catalyst for oxidative dehydrogenation of ethane[J]. Chemical Engineering Journal, 2022, 427: 131813. |
| [1] | NAJARI Sara, SAEIDI Samrand, CONCEPCION Patricia, et al. Oxidative dehydrogenation of ethane: Catalytic and mechanistic aspects and future trends[J]. Chemical Society Reviews, 2021, 50(7): 4564-4605. |
| [2] | CHEN Yuxin, YAN Binhang, CHENG Yi. State-of-the-art review of oxidative dehydrogenation of ethane to ethylene over MoVNbTeO x catalysts[J]. Catalysts, 2023, 13(1): 204. |
| [3] | ZHAO Zhitong, CHONG Katie, JIANG Jingyang, et al. Low-carbon roadmap of chemical production: A case study of ethylene in China[J]. Renewable and Sustainable Energy Reviews, 2018, 97: 580-591. |
| [4] | GAFFNEY Anne M, MASON Olivia M. Ethylene production via oxidative dehydrogenation of ethane using M1 catalyst[J]. Catalysis Today, 2017, 285: 159-165. |
| [5] | BOTELLA P, GARCı́A-GONZÁLEZ E, DEJOZ A, et al. Selective oxidative dehydrogenation of ethane on MoVTeNbO mixed metal oxide catalysts[J]. Journal of Catalysis, 2004, 225(2): 428-438. |
| [6] | DANG Dan, CHEN Xin, YAN Binhang, et al. Catalytic performance of phase-pure M1 MoVNbTeO x /CeO2 composite for oxidative dehydrogenation of ethane[J]. Journal of Catalysis, 2018, 365: 238-248. |
| [7] | CHU Bozhao, AN Hang, NIJHUIS T A, et al. A self-redox pure-phase M1 MoVNbTeO x /CeO2 nanocomposite as a highly active catalyst for oxidative dehydrogenation of ethane[J]. Journal of Catalysis, 2015, 329: 471-478. |
| [8] | 卜婷婷, 董炳利, 周颖, 等. MoVTeNbO x 催化剂应用于乙烷氧化脱氢制乙烯的研究进展[J]. 化工进展, 2023, 42(11): 5707-5721. |
| BU Tingting, DONG Bingli, ZHOU Ying, et al. Advances in MoVTeNbO x catalyst for oxidative dehydrogenation of ethane to ethylene[J]. Chemical Industry and Engineering Progress, 2023, 42(11): 5707-5721. | |
| [9] | 杨亮, 宋庚哲, 廖多华, 等. CO2气氛下乙烷氧化脱氢制乙烯催化剂研究进展[J]. 精细化工, 2023, 40(10): 2171-2179, 2188. |
| YANG Liang, SONG Gengzhe, LIAO Duohua, et al. Research progress on catalysts for oxidative dehydrogenation of ethane to ethylene under CO2 atmosphere[J]. Fine Chemicals, 2023, 40(10): 2171-2179, 2188. | |
| [10] | 张珊, 张焕玲, 李春义, 等. 乙烷脱氢催化剂研究进展[J]. 化工进展, 2020, 39(6): 2390-2398. |
| ZHANG Shan, ZHANG Huanling, LI Chunyi, et al. Progress in the study of ethane dehydrogenation catalyst[J]. Chemical Industry and Engineering Progress, 2020, 39(6): 2390-2398. | |
| [11] | VALENTE Jaime S, QUINTANA-SOLÓRZANO R, ARMENDÁRIZ-HERRERA H, et al. Kinetic study of oxidative dehydrogenation of ethane over MoVTeNb mixed-oxide catalyst[J]. Industrial & Engineering Chemistry Research, 2014, 53(5): 1775-1786. |
| [12] | CHEN Jiakang, BOLLINI Praveen, BALAKOTAIAH Vemuri. Oxidative dehydrogenation of ethane over mixed metal oxide catalysts: Autothermal or cooled tubular reactor design?[J]. AIChE Journal, 2021, 67(6): e17168. |
| [13] | CHEN Jiakang, SUN Zhe, BOLLINI Praveen, et al. Scale-up analysis of the oxidative dehydrogenation of ethane over MoVTeNbO x catalysts in an autothermal reactor[J]. Chemical Engineering Science, 2023, 273: 118649. |
| [1] | 周鹏辉, 曾琳, 代黎, 冯小波, 倪笛. 响应面法和熵权法对离心风机的多目标性能优化[J]. 化工进展, 2025, 44(6): 3271-3279. |
| [2] | 周鹏辉, 曾琳, 代黎, 李嘉乐, 陈建琦, 李剑平, 汪华林. 微旋流混合器的混合特性数值计算[J]. 化工进展, 2025, 44(6): 3280-3287. |
| [3] | 张磊, 张新儒, 王永洪, 李晋平, 刘春波. 二维纳米材料混合基质膜在渗透汽化有机物分离的研究进展[J]. 化工进展, 2025, 44(6): 3324-3335. |
| [4] | 陈巨辉, 张谦, 李丹, 李魏康, 陈轲, 周欢, ZHURAVKOV Michael, LAPATSIN Siarhel, 姜文锐. 基于DEM-PPM方法的非球形颗粒流动特性[J]. 化工进展, 2025, 44(6): 3382-3392. |
| [5] | 薛立新, 董永平, 陈梦瑶, 高从堦. 十二烷基硫酸钠(SDS)和强碱(NaOH)对聚酰胺复合纳滤膜的协同调控机理[J]. 化工进展, 2025, 44(4): 2225-2237. |
| [6] | 程崇律, 单聪慧, 张孟凡, WEN X Jennifer, 徐宝鹏. 氢安全建模研究进展[J]. 化工进展, 2025, 44(3): 1285-1297. |
| [7] | 张琪, 王涛, 张雪冰, 李为真, 程萌, 张魁, 吕毅军, 门卓武. 合成气/CO2转化制高级醇Fe基催化剂研究进展[J]. 化工进展, 2025, 44(3): 1323-1337. |
| [8] | 李昊阳, 李洪伟, 谭建宇. 瞬态振荡加热条件下沸腾气泡运动特性[J]. 化工进展, 2025, 44(2): 735-742. |
| [9] | 苏良健, 肖俊岩, 张春光, 赵元生, 杨旭. 固定床渣油加氢脱残炭剂的深度再生[J]. 化工进展, 2025, 44(2): 728-734. |
| [10] | 黄政锋, 王恒, 洪浩, 朱国瑞. 同心圆过渡排布管束旋涡脱落特性[J]. 化工进展, 2025, 44(2): 698-705. |
| [11] | 张琪, 王涛, 张雪冰, 李为真, 冯波, 蒋智慧, 吕毅军, 门卓武. 合成气制高级醇Co基催化剂研究进展[J]. 化工进展, 2025, 44(2): 773-787. |
| [12] | 贾亦静, 陶金泉, 黄文斌, 刘昊然, 李蓉蓉, 姚荣鹏, 白天瑜, 魏强, 周亚松. CO2加氢制低碳烯烃Fe基催化剂研究进展[J]. 化工进展, 2025, 44(2): 820-833. |
| [13] | 陈可欣, 李熙, 常福城, 武萧衣, 娄嘉诚, 李会雄. 螺旋管内水-水蒸气两相流压降及流型转变特性[J]. 化工进展, 2025, 44(2): 613-624. |
| [14] | 祁帅杰, 黄亚继, 徐鹏程, 齐景伟, 李志远, 时浩, 赵佳琪, 高嘉炜, 刘俊, 张煜尧. 废弃木质建筑模板与典型生物质热解产物分布及特性对比[J]. 化工进展, 2025, 44(2): 1120-1128. |
| [15] | 张海兵, 刘云遏, 黄志昊, 沈蓉. Ti foam-Ni-Sn/Bi电极制备及其电还原NO3--N的性能[J]. 化工进展, 2025, 44(2): 1100-1109. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |