| [1] |
王英, 冉进业, 张今, 等. 基于深度时间序列特征融合的西安市2015—2020年供暖季雾霾重污染过程预警[J]. 化工进展, 2022, 41(10): 5685-5694.
|
|
WANG Ying, RAN Jinye, ZHANG Jin, et al. Prediction of heavy haze pollution episodes based on deep feature fusion of pollutant and meteorological time series in Xi’an during 2015—2020 heating season[J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5685-5694.
|
| [2] |
CAO Chen, JIANG Wenjun, WANG Buying, et al. Inhalable microorganisms in Beijing’s PM2.5 and PM10 pollutants during a severe smog event[J]. Environmental Science & Technology, 2014, 48(3): 1499-1507.
|
| [3] |
龙正伟, 冯壮波, 姚强. 静电除尘器数值模拟[J]. 化工学报, 2012, 、63(11): 3393-3401.
|
|
LONG Zhengwei, FENG Zhuangbo, YAO Qiang. Numerical modeling of electrostatic precipitator[J]. CIESC Journal, 2012, 63(11): 3393-3401.
|
| [4] |
常景彩. 柔性集尘极应用于燃煤脱硫烟气深度净化的试验研究[D]. 济南: 山东大学, 2011.
|
|
CHANG Jingcai. Experimental study on the application of flexible dust collector in deep purification of flue gas from coal-fired desulfurization[D]. Jinan: Shandong University, 2011.
|
| [5] |
徐金苗, 李伟科, 樊晓茹. 高频电源对电除尘器性能及能耗影响的试验研究[J]. 电力建设, 2013, 34(6): 73-77.
|
|
XU Jinmiao, LI Weike, FAN Xiaoru. Impact of high frequency power on performance and energy consumption of electrostatic precipitator[J]. Electric Power Construction, 2013, 34(6): 73-77.
|
| [6] |
朱法华, 李辉, 王强. 高频电源在我国电除尘器上的应用及节能减排潜力分析[J]. 环境工程技术学报, 2011, 1(1): 26-32.
|
|
ZHU Fahua, LI Hui, WANG Qiang. Application of high frequency power supply for ESP in the power industry of China and its potential for energy saving and emissions reducing[J]. Journal of Environmental Engineering Technology, 2011, 1(1): 26-32.
|
| [7] |
彭小成, 金平, 刘佳幸, 等. 基于异质凝结原理环流式旋风多目标优化研究[J]. 化学工程, 2023, 51(1): 57-62.
|
|
PENG Xiaocheng, JIN Ping, LIU Jiaxing, et al. Multi-objective optimization investigation on performance of circumfluent cyclone separator based on heterogeneous condensation[J]. Chemical Engineering (China), 2023, 51(1): 57-62.
|
| [8] |
鲍静静, 许家菱, 唐继国, 等. 水汽相变促进烟气中细颗粒物成核长大特性研究[J]. 工程科学与技术, 2017, 49(5): 171-177.
|
|
BAO Jingjing, XU Jialing, TANG Jiguo, et al. Study on the nucleation and growth of fine particles in flue gas promoted by heterogeneous condensation of water vapor[J]. Advanced Engineering Sciences, 2017, 49(5): 171-177.
|
| [9] |
贾雨彬, 王树青, 朱玉颖. 液固流化床内双组分颗粒流动数值模拟[J]. 化工机械, 2021, 48(1): 64-68, 83.
|
|
JIA Yubin, WANG Shuqing, ZHU Yuying. Numerical simulation of flow characteristics of bi-component particles in liquid-solid fluidized bed[J]. Chemical Engineering & Machinery, 2021, 48(1): 64-68, 83.
|
| [10] |
ANTONYUK Sergiy, HEINRICH Stefan, DEEN Niels, et al. Influence of liquid layers on energy absorption during particle impact[J]. Particuology, 2009, 7(4): 245-259.
|
| [11] |
KAN Hiroyuki, NAKAMURA Hideya, WATANO Satoru. Numerical simulation of particle-particle adhesion by dynamic liquid bridge[J]. Chemical Engineering Science, 2015, 138: 607-615.
|
| [12] |
DI RENZO Alberto, PICARELLI Giada, DI MAIO Francesco P. Numerical investigation of funicular liquid bridge interactions between spherical particles[J]. Chemical Engineering & Technology, 2020, 43(5): 830-837.
|
| [13] |
BARNOCKY Guy, DAVIS Robert H. Elastohydrodynamic collision and rebound of spheres: Experimental verification[J]. Physics of Fluids, 1988, 31(6): 1324-1329.
|
| [14] |
DAVIS Robert H, RAGER Dean A, GOOD Brian T. Elastohydrodynamic rebound of spheres from coated surfaces[J]. Journal of Fluid Mechanics, 2002, 468(1): 107-119.
|
| [15] |
CRÜGER B, SALIKOV V, HEINRICH S, et al. Coefficient of restitution for particles impacting on wet surfaces: An improved experimental approach[J]. Particuology, 2016, 25: 1-9.
|
| [16] |
GOLLWITZER Frank, REHBERG Ingo, KRUELLE Christof A, et al. Coefficient of restitution for wet particles[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2012, 86(1): 011303.
|
| [17] |
Thomas MÜLLER, HUANG Kai. Influence of the liquid film thickness on the coefficient of restitution for wet particles[J]. Physical Review E, 2016, 93: 042904.
|
| [18] |
MA Jiliang, LIU Daoyin, CHEN Xiaoping. Experimental study of oblique impact between dry spheres and liquid layers[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2013, 88(3): 033018.
|
| [19] |
BUCK Britta, TANG Yali, DEEN Niels G, et al. Dynamics of wet particle-wall collisions: Influence of wetting condition[J]. Chemical Engineering Research and Design, 2018, 135: 21-29.
|
| [20] |
BUCK Britta, HEINRICH Stefan. Collision dynamics of wet particles: Comparison of literature models to new experiments[J]. Advanced Powder Technology, 2019, 30(12): 3241-3252.
|
| [21] |
李雪, 东明, 张璜, 等. 潮湿环境下微尺度颗粒撞击平板的动力学研究[J]. 化工学报, 2022, 73(5): 1940-1946.
|
|
LI Xue, DONG Ming, ZHANG Huang, et al. Kinetic characteristics of micro-particle impact on a flat surface under humidity conditions[J]. CIESC Journal, 2022, 73(5): 1940-1946.
|
| [22] |
ZHANG Hao, TAN Yuanqiang, SHU Shi, et al. Numerical investigation on the role of discrete element method in combined LBM-IBM-DEM modeling[J]. Computers & Fluids, 2014, 94: 37-48.
|
| [23] |
WU Mingqiu, RADL Stefan, KHINAST Johannes G. A model to predict liquid bridge formation between wet particles based on direct numerical simulations[J]. AIChE Journal, 2016, 62(6): 1877-1897.
|
| [24] |
FAN Zhiheng, LIU Daoyin, LIANG Cai, et al. Numerical simulation of mid-air collisions between droplets and particles: An examination of particle forces and kinetic energy dissipation[J]. Powder Technology, 2024, 432: 119124.
|
| [25] |
王翱, 宋蔷, 姚强. 脱硫塔内单液滴捕集颗粒物的数值模拟[J]. 工程热物理学报, 2014, 35(9): 1889-1893.
|
|
WANG Ao, SONG Qiang, YAO Qiang. Numerical simulation of single droplet capturing particles in the WFGD[J]. Journal of Engineering Thermophysics, 2014, 35(9): 1889-1893.
|
| [26] |
WANG Ao, SONG Qiang, YAO Qiang. Behavior of hydrophobic micron particles impacting on droplet surface[J]. Atmospheric Environment, 2015, 115: 1-8.
|
| [27] |
JI Bingqiang, SONG Qiang, YAO Qiang. Numerical study of hydrophobic micron particle’s impaction on liquid surface[J]. Physics of Fluids, 2017, 29(7): 077102.
|
| [28] |
ZHU Shijie, LIU Runzhe, WANG Tian, et al. Penetration time of hydrophilic micron particles impacting into an unconfined planar gas-liquid interface[J]. Chemical Engineering Science, 2019, 193: 282-297.
|
| [29] |
仇轶, 由长福, 祁海鹰, 等. 多相流动的直接数值模拟进展[J]. 力学进展, 2003, 33(4): 507-517.
|
|
QIU Yi, YOU Changfu, QI Haiying, et al. Direct numerical simulations of multiphase flows[J]. Advances in Mechanics, 2003, 33(4): 507-517.
|
| [30] |
HIRT C W, NICHOLS B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39(1): 201-225.
|
| [31] |
BRACKBILL J U, KOTHE D B, ZEMACH C. A continuum method for modeling surface tension[J]. Journal of Computational Physics, 1992, 100(2): 335-354.
|
| [32] |
王志东, 钱进, 凌宏杰, 等. 基于重叠网格的救生艇抛落入水全过程数值预报方法研究[J]. 中国造船, 2020, 61(S2): 330-339.
|
|
WANG Zhidong, QIAN Jin, LING Hongjie, et al. Research on numerical prediction for whole launching process of sliding lifeboat based on overlapping grid[J]. Shipbuilding of China, 2020, 61(S2): 330-339.
|
| [33] |
SHAO Lili, LIU Daoyin, MA Jiliang, et al. Normal collision between partially wetted particles by using direct numerical simulation[J]. Chemical Engineering Science, 2022, 247: 117090.
|
| [34] |
冀秉强. 微米级颗粒撞击液面行为与机制研究[D]. 北京: 清华大学, 2019.
|
|
JI Bingqiang. Research on the behavior and mechanism of micron-sized particles impacting the liquid surface[D]. Beijing: Tsinghua University, 2019.
|