化工进展 ›› 2025, Vol. 44 ›› Issue (8): 4571-4581.DOI: 10.16085/j.issn.1000-6613.2025-0560

• 反应器与过程装备的模拟与仿真 • 上一篇    

基于图卷积神经网络的乙烯氧化反应器的三维物理场快速预测

刘廷廷1(), 孟子程1, 穆丽静2, 陈锡忠1, 刘岑凡2()   

  1. 1.上海交通大学化学化工学院,化学生物协同物质创制国家重点实验室,上海 200240
    2.中国特种设备检测研究院,国家市场监管重点实验室(特种设备安全与节能),北京 100029
  • 收稿日期:2025-04-15 修回日期:2025-06-19 出版日期:2025-08-25 发布日期:2025-09-08
  • 通讯作者: 刘岑凡
  • 作者简介:刘廷廷(1998—),男,博士研究生,研究方向为反应器模拟与机器学习优化技术开发。E-mail:sjtu-ltt@sjtu.edu.cn
  • 基金资助:
    国家重点研发计划(2023YFC3008701)

Fast prediction of 3D physical fields in ethylene oxidation reactors based on graph convolutional neural networks

LIU Tingting1(), MENG Zicheng1, MU Lijing2, CHEN Xizhong1, LIU Cenfan2()   

  1. 1.State Key Laboratory of Synergistic Chem-Bio Synthesis, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
    2.Key Laboratory of Special Equipment Safety and Energy-Saving, State Administration for Market Regulation, China Special Equipment Inspection and Research Institute, Beijing 100029, China
  • Received:2025-04-15 Revised:2025-06-19 Online:2025-08-25 Published:2025-09-08
  • Contact: LIU Cenfan

摘要:

作为石化工业的关键中间体,环氧乙烷生产过程中催化剂形貌与操作参数的协同优化是提升反应器效能的核心挑战。本研究针对传统实验和模拟方法在催化剂构效关系解析中的高成本瓶颈,融合颗粒解析计算流体力学(PRCFD)与图卷积神经网络(GCN),构建了反应器多物理场的快速预测策略。基于COMSOL平台构建高保真计算流体力学(CFD)模型,研究了圆柱体、单孔及五孔结构催化剂在随机堆积体系中的流动-反应耦合过程,构建了涵盖三种典型颗粒形貌随机堆积构型及四种进气速率的综合研究场景。通过与真实乙烯转化率数据对比,验证了COMSOL模拟参数设置的有效性。模拟表明催化剂颗粒形状和进气速率对乙烯转化率和床层压降的影响呈现强非线性关系。基于有效的模拟数据,采用图卷积神经网络学习催化剂颗粒几何形状与压力、浓度之间的映射关系。训练后的模型能够快速预测不同催化剂和进气速率下的压力和浓度分布,相关系数R2大于0.9。本研究为化工反应器的智能设计提供了兼具物理可解释性与计算效率的创新技术手段。

关键词: 计算流体力学, 填充床, 乙烯氧化, 神经网络, 图卷积架构

Abstract:

As a crucial intermediate in the petrochemical industry, the collaborative optimization of catalyst morphology and operating parameters during the ethylene oxide production process represents the core challenge in enhancing reactor performance. In response to the high cost bottleneck of traditional experimental and simulation methods in analyzing the structure-activity relationship of catalysts, this study integrated particle-resolved computational fluid dynamics (PRCFD) and graph convolutional neural networks (GCN) to construct an intelligent prediction framework for reactor multi-physics fields. A high-fidelity CFD model was established based on the COMSOL platform to investigate the flow-reaction coupling process of cylindrical, single-hole, and five-hole structure catalysts in a randomly packed system. A comprehensive research scenario covering three typical particle morphologies, random packing configurations, and four inlet gas rates was constructed. Compared with real ethylene conversion data, the effectiveness of the simulation parameter settings in COMSOL was verified. The simulations revealed that the effects of catalyst particle shape and inlet gas rate on the ethylene conversion rate and the bed pressure drop exhibited a strong non-linear relationship. Based on the valid simulation data, a graph convolutional neural network was employed to learn the mapping relationships between the geometric shapes of catalyst particles and pressure and concentration. The trained model could rapidly predict the pressure and concentration distributions under different catalysts and inlet gas rates, with a correlation coefficient R2 greater than 0.9. This study provided a new paradigm which combines physical interpretability and computational efficiency for the intelligent design of chemical reactors.

Key words: computational fluid dynamics, packed bed, ethylene oxidation, neural networks, graph convolution architecture

中图分类号: 

京ICP备12046843号-2;京公网安备 11010102001994号
版权所有 © 《化工进展》编辑部
地址:北京市东城区青年湖南街13号 邮编:100011
电子信箱:hgjz@cip.com.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn