化工进展 ›› 2025, Vol. 44 ›› Issue (7): 3757-3769.DOI: 10.16085/j.issn.1000-6613.2024-0731
孙金磊1,2(
), 廖丹葵1,2(
), 陈小鹏1,2, 童张法1,2
收稿日期:2024-05-06
修回日期:2024-07-03
出版日期:2025-07-25
发布日期:2025-08-04
通讯作者:
廖丹葵
作者简介:孙金磊(1996—),男,硕士研究生,研究方向为无机材料。E-mail:1251029055@qq.com。
基金资助:
SUN Jinlei1,2(
), LIAO Dankui1,2(
), CHEN Xiaopeng1,2, TONG Zhangfa1,2
Received:2024-05-06
Revised:2024-07-03
Online:2025-07-25
Published:2025-08-04
Contact:
LIAO Dankui
摘要:
以聚乙烯亚胺(PEI)为晶型控制剂、甲醇为分散剂、氢氧化钙溶液和CO2为原料,采用超重力-微界面法进行类球形纳米碳酸钙制备研究。利用高速摄像机对反应器中气泡粒径进行分析;考察反应温度、CO2流量、氢氧化钙溶液质量分数、甲醇体积分数、PEI添加量对碳酸钙产物形貌的影响;应用正交实验方法优化氢氧化钙碳化反应条件;利用扫描电子显微镜、X射线衍射和傅里叶变换红外光谱分析方法对反应产物的形貌进行表征。结果表明,超重力-微界面碳化反应器可以将CO2气泡由毫米级高效转化为微米级,增大了气液相界面积,提高了气液传质;氢氧化钙与CO2碳化反应最佳反应条件是氢氧化钙质量分数为8%、PEI添加量为氢氧化钙质量的4%、甲醇体积分数为20%、CO2流量为2.5L/min、反应温度为12℃,所制备的类球形纳米碳酸钙粒径为40~60nm。
中图分类号:
孙金磊, 廖丹葵, 陈小鹏, 童张法. 超重力-微界面法制备类球形纳米碳酸钙[J]. 化工进展, 2025, 44(7): 3757-3769.
SUN Jinlei, LIAO Dankui, CHEN Xiaopeng, TONG Zhangfa. Preparation of spheroidal nano-calcium carbonate via high gravity-microinterface method[J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3757-3769.
| 反应器类型 | 反应时间/min | CO2气体流量/m3·h-1 | CO2利用率/% |
|---|---|---|---|
| 鼓泡碳化塔 | 50 | 1.4 | 10.39 |
| 超重力-微界面碳化反应装置 | 50 | 0.5 | 58.06 |
表1 不同反应器对比
| 反应器类型 | 反应时间/min | CO2气体流量/m3·h-1 | CO2利用率/% |
|---|---|---|---|
| 鼓泡碳化塔 | 50 | 1.4 | 10.39 |
| 超重力-微界面碳化反应装置 | 50 | 0.5 | 58.06 |
| 序号 | 温度/℃ | PEI添加量/% | 甲醇体积分数/% | CO2流量/L·min-1 | 氢氧化钙质量分数/% | 球形度 | |||
|---|---|---|---|---|---|---|---|---|---|
| 1 | 2 | 3 | 均值 | ||||||
| a | 12 | 4 | 25 | 2 | 6 | 0.91 | 0.912 | 0.902 | 0.908 |
| b | 12 | 5 | 15 | 2.5 | 7 | 0.929 | 0.914 | 0.923 | 0.922 |
| c | 12 | 6 | 20 | 3 | 8 | 0.947 | 0.944 | 0.947 | 0.946 |
| d | 12 | 7 | 30 | 3.5 | 9 | 0.847 | 0.858 | 0.851 | 0.852 |
| e | 15 | 4 | 15 | 3 | 9 | 0.916 | 0.925 | 0.922 | 0.921 |
| f | 15 | 5 | 25 | 3.5 | 8 | 0.888 | 0.883 | 0.887 | 0.886 |
| g | 15 | 6 | 30 | 2 | 7 | 0.882 | 0.885 | 0.882 | 0.883 |
| h | 15 | 7 | 20 | 2.5 | 6 | 0.918 | 0.911 | 0.916 | 0.915 |
| i | 18 | 4 | 20 | 3.5 | 7 | 0.888 | 0.889 | 0.884 | 0.887 |
| j | 18 | 5 | 30 | 3 | 6 | 0.93 | 0.929 | 0.925 | 0.928 |
| k | 18 | 6 | 25 | 2.5 | 9 | 0.916 | 0.919 | 0.916 | 0.917 |
| l | 18 | 7 | 15 | 2 | 8 | 0.869 | 0.864 | 0.868 | 0.867 |
| m | 21 | 4 | 30 | 2.5 | 8 | 0.879 | 0.872 | 0.871 | 0.874 |
| n | 21 | 5 | 20 | 2 | 9 | 0.848 | 0.853 | 0.855 | 0.852 |
| o | 21 | 6 | 15 | 3.5 | 6 | 0.814 | 0.821 | 0.816 | 0.817 |
| p | 21 | 7 | 25 | 3 | 7 | 0.802 | 0.809 | 0.807 | 0.806 |
| K1 | 3.628 | 3.59 | 3.517 | 3.51 | 3.568 | ||||
| K2 | 3.605 | 3.588 | 3.527 | 3.628 | 3.498 | ||||
| K3 | 3.599 | 3.563 | 3.6 | 3.601 | 3.573 | ||||
| K4 | 3.349 | 3.44 | 3.537 | 3.442 | 3.542 | ||||
| k1 | 1.209 | 1.197 | 1.172 | 1.170 | 1.189 | ||||
| k2 | 1.207 | 1.196 | 1.176 | 1.209 | 1.166 | ||||
| k3 | 1.200 | 1.188 | 1.200 | 1.200 | 1.191 | ||||
| k4 | 1.116 | 1.147 | 1.179 | 1.147 | 1.181 | ||||
| R | 0.093 | 0.050 | 0.028 | 0.062 | 0.025 | ||||
表2 正交实验结果
| 序号 | 温度/℃ | PEI添加量/% | 甲醇体积分数/% | CO2流量/L·min-1 | 氢氧化钙质量分数/% | 球形度 | |||
|---|---|---|---|---|---|---|---|---|---|
| 1 | 2 | 3 | 均值 | ||||||
| a | 12 | 4 | 25 | 2 | 6 | 0.91 | 0.912 | 0.902 | 0.908 |
| b | 12 | 5 | 15 | 2.5 | 7 | 0.929 | 0.914 | 0.923 | 0.922 |
| c | 12 | 6 | 20 | 3 | 8 | 0.947 | 0.944 | 0.947 | 0.946 |
| d | 12 | 7 | 30 | 3.5 | 9 | 0.847 | 0.858 | 0.851 | 0.852 |
| e | 15 | 4 | 15 | 3 | 9 | 0.916 | 0.925 | 0.922 | 0.921 |
| f | 15 | 5 | 25 | 3.5 | 8 | 0.888 | 0.883 | 0.887 | 0.886 |
| g | 15 | 6 | 30 | 2 | 7 | 0.882 | 0.885 | 0.882 | 0.883 |
| h | 15 | 7 | 20 | 2.5 | 6 | 0.918 | 0.911 | 0.916 | 0.915 |
| i | 18 | 4 | 20 | 3.5 | 7 | 0.888 | 0.889 | 0.884 | 0.887 |
| j | 18 | 5 | 30 | 3 | 6 | 0.93 | 0.929 | 0.925 | 0.928 |
| k | 18 | 6 | 25 | 2.5 | 9 | 0.916 | 0.919 | 0.916 | 0.917 |
| l | 18 | 7 | 15 | 2 | 8 | 0.869 | 0.864 | 0.868 | 0.867 |
| m | 21 | 4 | 30 | 2.5 | 8 | 0.879 | 0.872 | 0.871 | 0.874 |
| n | 21 | 5 | 20 | 2 | 9 | 0.848 | 0.853 | 0.855 | 0.852 |
| o | 21 | 6 | 15 | 3.5 | 6 | 0.814 | 0.821 | 0.816 | 0.817 |
| p | 21 | 7 | 25 | 3 | 7 | 0.802 | 0.809 | 0.807 | 0.806 |
| K1 | 3.628 | 3.59 | 3.517 | 3.51 | 3.568 | ||||
| K2 | 3.605 | 3.588 | 3.527 | 3.628 | 3.498 | ||||
| K3 | 3.599 | 3.563 | 3.6 | 3.601 | 3.573 | ||||
| K4 | 3.349 | 3.44 | 3.537 | 3.442 | 3.542 | ||||
| k1 | 1.209 | 1.197 | 1.172 | 1.170 | 1.189 | ||||
| k2 | 1.207 | 1.196 | 1.176 | 1.209 | 1.166 | ||||
| k3 | 1.200 | 1.188 | 1.200 | 1.200 | 1.191 | ||||
| k4 | 1.116 | 1.147 | 1.179 | 1.147 | 1.181 | ||||
| R | 0.093 | 0.050 | 0.028 | 0.062 | 0.025 | ||||
| 因素 | 离差平方和 | 自由度 | 均方 | F值 | 显著性 |
|---|---|---|---|---|---|
| 温度 | 0.039 | 3 | 0.013 | 846.053 | ** |
| PEI | 0.011 | 3 | 0.004 | 248.535 | ** |
| 甲醇体积分数 | 0.003 | 3 | 0.001 | 68.518 | ** |
| CO2流量 | 0.016 | 3 | 0.005 | 356.878 | ** |
| 氢氧化钙浓度 | 0.003 | 3 | 0.001 | 57.635 | ** |
| 误差 | 0 | 32 | 0 | — | — |
表3 正交实验F检验分析
| 因素 | 离差平方和 | 自由度 | 均方 | F值 | 显著性 |
|---|---|---|---|---|---|
| 温度 | 0.039 | 3 | 0.013 | 846.053 | ** |
| PEI | 0.011 | 3 | 0.004 | 248.535 | ** |
| 甲醇体积分数 | 0.003 | 3 | 0.001 | 68.518 | ** |
| CO2流量 | 0.016 | 3 | 0.005 | 356.878 | ** |
| 氢氧化钙浓度 | 0.003 | 3 | 0.001 | 57.635 | ** |
| 误差 | 0 | 32 | 0 | — | — |
| [1] | KEZUKA Yuki, KUMA Yoshiki, NAKAI Shinsuke, et al. Calcium carbonate chain-like nanoparticles: Synthesis, structural characterization, and dewaterability[J]. Powder Technology, 2018, 335: 195-203. |
| [2] | SANTOS Samuel S M, MARCONDES Michel L, JUSTO João F, et al. Calcium carbonate at high pressures and high temperatures: A first-principles investigation[J]. Physics of the Earth and Planetary Interiors, 2020, 299: 106327. |
| [3] | WANG Yang, SHENG Jie, CHENG Zheng, et al. Effective improvement of the Chinese ink diffusion properties of Xuan paper by cellulose microfibrils-precipitated calcium carbonate composite filler[J]. Cellulose, 2020, 27(3): 1695-1704. |
| [4] | 周绿山, 赖川, 王芬, 等. 多孔碳酸钙的制备及应用研究进展[J]. 化工进展, 2018, 37(1): 159-167. |
| ZHOU Lüshan, LAI Chuan, WANG Fen, et al. Progress in fabrication and applications of porous calcium carbonate[J]. Chemical Industry and Engineering Progress, 2018, 37(1): 159-167. | |
| [5] | BAHROM Hani, GONCHARENKO Alexander A, FATKHUTDINOVA Landysh I, et al. Controllable synthesis of calcium carbonate with different geometry: Comprehensive analysis of particle formation, cellular uptake, and biocompatibility[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(23): 19142-19156. |
| [6] | MA Liang, ZHAO Long, LI Yun, et al. Controllable crystallization of pure vaterite using CO2-storage material and different Ca2+ sources[J]. Journal of CO2 Utilization, 2021, 48: 101520. |
| [7] | SHEN Yuke, HAO Shuang, SUONAN Angqian, et al. Controllable synthesis of nano-micro calcium carbonate mediated by additive engineering[J]. Crystals, 2023, 13(10) : 1432. |
| [8] | 谭婷婷,仲剑初.球形碳酸钙的控制合成研究[J].无机盐工业,2019, 51(12): 30-34. |
| TAN Tingting, ZHONG Jianchu. Study on controllable synthesis of spherical calcium carbonate[J]. Inorganic Chemicals Industry, 2019, 51(12): 30-34. | |
| [9] | 刘晨民, 刘曦曦, 陈小鹏, 等. 超重力反应结晶碳化法制备球形碳酸钙[J]. 化工进展, 2021, 40(11): 6323-6331. |
| LIU Chenmin, LIU Xixi, CHEN Xiaopeng, et al. Preparation of spherical calcium carbonate by high-gravity reaction crystallization carbonization[J]. Chemical Industry and Engineering Progress, 2021, 40(11): 6323-6331. | |
| [10] | 黄富宁, 王彩霞, 高健强, 等. 碳酸钙的形貌可控制备和性能研究[J]. 化学工程, 2020, 48(8): 7-11. |
| HUANG Funing, WANG Caixia, GAO Jianqiang, et al. Study on preparation and properties of calcium carbonate with controlled morphologies[J]. Chemical Engineering (China), 2020, 48(8): 7-11. | |
| [11] | XU Shengjie, WU Peiyi. Monodisperse spherical CaCO3 superstructure self-assembled by vaterite lamella under control of regenerated silk fibroin via compressed CO2 [J]. CrystEngComm, 2013, 15(25): 5179-5188. |
| [12] | 刁润丽. 纳米碳酸钙的制备研究进展[J]. 现代盐化工, 2020, 47(2): 19-20. |
| DIAO Runli. Research progress of preparation of nanometer calcium carbonate[J]. Modern Salt and Chemical Industry, 2020, 47(2): 19-20. | |
| [13] | 向乐凯, 李枫, 赵宁, 等. 二氧化碳鼓泡碳化法制备碳酸钙的研究[J]. 无机盐工业, 2016, 48(8): 46-51. |
| XIANG Lekai, LI Feng, ZHAO Ning, et al. Study on preparation of calcium carbonate by carbon dioxide bubbling carbonation[J]. Inorganic Chemicals Industry, 2016, 48(8): 46-51. | |
| [14] | MA Jianping, JI Junrong, YASEEN Muhammad, et al. A promising strategy for the large-scale preparation of spherical calcium carbonate by efficiently using carbon dioxide[J]. Journal of CO2 Utilization, 2022, 63: 102136. |
| [15] | GUO Yanling, WEI Yan, CHANG Miao, et al. A universal strategy for efficient synthesis of Zr-based MOF nanoparticles for enhanced water adsorption[J]. AIChE Journal, 2023, 69(9): e18181. |
| [16] | LIAO Hailong, WANG Baoju, LIU Yazhao, et al. Preparation of Pd/γ- Al2O3/nickel foam monolithic catalyst and its performance for selective hydrogenation in a rotating packed bed reactor[J]. Chinese Journal of Chemical Engineering, 2022, 41: 311-319. |
| [17] | LIN Chia-Chang, LIN Junhong, WU Kuanyi. Preparation of nanostructured goethite by chemical precipitation in a rotating packed bed[J]. Ceramics International, 2023, 49(2): 1874-1879. |
| [18] | 王淼, 曾晓飞, 王洁欣, 等. 超重力法纳米材料的可控制备与应用[J]. 新材料产业, 2015(8): 52-57. |
| WANG Miao, ZENG Xiaofei, WANG Jiexin, et al. Controllable preparation and application of nano-materials by high gravity method[J]. Advanced Materials Industry, 2015(8): 52-57. | |
| [19] | 张志炳, 田洪舟, 张锋, 等. 多相反应体系的微界面强化简述[J]. 化工学报, 2018, 69(1): 44-49. |
| ZHANG Zhibing, TIAN Hongzhou, ZHANG Feng, et al. Overview of microinterface intensification in multiphase reaction systems[J]. CIESC Journal, 2018, 69(1): 44-49. | |
| [20] | 陆小华, 陈义峰, 董依慧, 等. 纳微界面增强CO2吸收及机理分析[J]. 化工学报, 2020, 71(1): 34-42. |
| LU Xiaohua, CHEN Yifeng, DONG Yihui, et al. Nano-interface enhanced CO2 absorption and mechanism analysis[J]. CIESC Journal, 2020, 71(1): 34-42. | |
| [21] | ZENG Wei, JIA Chao, LUO Huaxun, et al. Microbubble-dominated mass transfer intensification in the process of ammonia-based flue gas desulfurization[J]. Industrial & Engineering Chemistry Research, 2020, 59(44): 19781-19792. |
| [22] | WANG Su, PATEHEBIEKE Yeersen, ZHOU Zheng, et al. Catalyst-free biphasic oxidation of Thiophenes in continuous-flow[J]. Journal of Flow Chemistry, 2020, 10(4): 597-603. |
| [23] | QIAN Hongliang, TIAN Hongzhou, YANG Guoqiang, et al. Microinterface intensification in hydrogenation and air oxidation processes[J]. Chinese Journal of Chemical Engineering, 2022, 50: 292-300. |
| [24] | 邱金锋, 王建. 消化工艺参数对氢氧化钙粒径的影响[J]. 中国造纸学报, 2014, 29(4): 35-39. |
| QIU Jinfeng, WANG Jian. Effects of slaking parameters on the particle size of calcium hydroxide[J]. Transactions of China Pulp and Paper, 2014, 29(4): 35-39. | |
| [25] | SARKAR Arpita, DUTTA Kingshuk, MAHAPATRA Samiran. Polymorph control of calcium carbonate using Insoluble layered double hydroxide[J]. Crystal Growth and Design, 2013, 13(1): 204-211. |
| [26] | 张志炳, 田洪舟, 王丹亮, 等. 气液反应体系相界面传质强化研究[J]. 化学工程, 2016, 44(3): 1-8. |
| ZHANG Zhibing, TIAN Hongzhou, WANG Danliang, et al. Intensification of interfacial mass transfer in gas-liquid reaction systems[J]. Chemical Engineering(China), 2016, 44(3): 1-8. | |
| [27] | 张同旺, 靳海波, 何广湘, 等. 加压大型鼓泡床反应器内大小气泡气含率研究[J]. 化学工程, 2004, 32(5): 29-33, 49. |
| ZHANG Tongwang, JIN Haibo, HE Guangxiang, et al. Large bubble and small bubble holdups in large-scale pressurized bubble column reactor[J]. Chemical Engineering(China), 2004, 32(5): 29-33, 49. | |
| [28] | GIRSHICK Steven L. Theory of nucleation from the gas phase by a sequence of reversible chemical reactions[J]. The Journal of Chemical Physics, 1997, 107(6): 1948-1952. |
| [29] | 王立恒, 管小平, 杨宁, 等. CO2微气泡强化纳米碳酸钙的制备及传递-反应分析[J]. 过程工程学报, 2023, 23(9): 1313-1324. |
| WANG Liheng, GUAN Xiaoping, YANG Ning, et al. Preparation of nano-calcium carbonate intensified by CO2 micro bubble and transfer-reaction analysis[J]. The Chinese Journal of Process Engineering, 2023, 23(9): 1313-1324. | |
| [30] | ZHANG Zhi, YANG Baojun, TANG Huawei, et al. High-yield synthesis of vaterite CaCO3 microspheres in ethanol/water: Structural characterization and formation mechanisms[J]. Journal of Materials Science, 2015, 50(16): 5540-5548. |
| [31] | MA Liang, YANG Tingyu, WU Yu, et al. CO2 capture and preparation of spindle-like CaCO3 crystals for papermaking using calcium carbide residue waste via an atomizing approach[J]. Korean Journal of Chemical Engineering, 2019, 36(9): 1432-1440. |
| [32] | 脱文刚, 洪瑞金, 张大伟, 等. Al、Sn掺杂对于ZnO薄膜微结构及光学特性的影响[J]. 光学仪器, 2015, 37(3): 278-282. |
| Wengang TUO, HONG Ruijin, ZHANG Dawei, et al. The microstrcuture and optical properties of Al, Sn doped ZnO thin film[J]. Optical Instruments, 2015, 37(3): 278-282. | |
| [33] | Adaris LÓPEZ-MARZO, PONS Josefina, Arben MERKOÇI. Controlled formation of nanostructured CaCO3-PEI microparticles with high biofunctionalizing capacity[J]. Journal of Materials Chemistry, 2012, 22(30): 15326-15335. |
| [34] | CHEN Youming, YANG Shengrong, ZHANG Junyan. The chemical composition and bonding structure of B-C-N-H thin films deposited by reactive magnetron sputtering[J]. Surface and Interface Analysis, 2009, 41(11): 865-871. |
| [35] | THRIVENI Thenepalli, Ji Whan AHN, RAMAKRISHNA Chilakala, et al. Synthesis of nano precipitated calcium carbonate by using a carbonation process through a closed loop reactor[J]. Journal of the Korean Physical Society, 2016, 68(1): 131-137. |
| [36] | SUN Yidi, ZOU Haifeng, ZHANG Bowen, et al. Luminescent properties and energy transfer of Gd3+/Eu3+ co-doped cubic CaCO3 [J]. Journal of Luminescence, 2016, 178: 307-313. |
| [37] | YANG Bo, Zhaodong NAN. Abnormal polymorph conversion of calcium carbonate from calcite to vaterite[J]. Materials Research Bulletin, 2012, 47(3): 521-526. |
| [38] | 李娜, 柴春鹏, 甘志勇, 等. 含能离子化合物的分子设计与性能研究进展[J]. 含能材料, 2010, 18(4): 467-475. |
| LI Na, CHAI Chunpeng, GAN Zhiyong, et al. Review on molecular design and performance of energetic ionic compounds[J]. Chinese Journal of Energetic Materials, 2010, 18(4): 467-475. | |
| [39] | DALAS E, KOKLAS S N. The overgrowth of vaterite on functionalized styrene-butadiene copolymer[J]. Journal of Crystal Growth, 2003, 256(3/4): 401-406. |
| [1] | 段五华, 孙涛祥, 郑强. 工业规模核用离心萃取器的水力学和传质性能[J]. 化工进展, 2025, 44(7): 3709-3717. |
| [2] | 郑慧哲, 王浩泽, 蒋杰, 赵玲, 奚桢浩. 反应与传质耦合的PCTG共聚酯圆盘反应器建模与模拟[J]. 化工进展, 2025, 44(6): 3372-3381. |
| [3] | 马梓轩, 施瑞晨, 刘明杰, 杨莹杰, 宋子瑜, 梅晓鹏, 高晓峰, 洪龙城, 姚思宇, 张治国, 任其龙. 环烷烃催化制氢反应器的设计与性能优化: 前沿进展与挑战[J]. 化工进展, 2025, 44(5): 2919-2937. |
| [4] | 陈奥辉, 宋艳芳, 陈为, 魏伟. 多孔自支撑电极电催化还原二氧化碳[J]. 化工进展, 2025, 44(5): 2806-2810. |
| [5] | 丁红兵, 柴旭天, 王世伟, 宋鑫宇, 孙宏军. 单液滴与多液滴撞击流动液膜的实验探究[J]. 化工进展, 2025, 44(4): 1888-1897. |
| [6] | 王佳琪, 刘佳兴, 魏皓琦, 周昕霖, 程传晓, 葛坤. 鼠李糖脂强化CO2水合物生成[J]. 化工进展, 2025, 44(4): 1998-2007. |
| [7] | 佘永璐, 徐强, 罗欣怡, 聂腾飞, 郭烈锦. 反应温度对光电极表面气泡动力学及传质特性的影响[J]. 化工进展, 2025, 44(3): 1243-1252. |
| [8] | 罗小平, 贾梦帆, 李世珍. 电场和改性PVDF膜相分离结构协同作用下逆流微细通道压降特性[J]. 化工进展, 2025, 44(2): 646-659. |
| [9] | 白依冉, 翟玉玲, 戴晶慧, 李舟航. 微纳尺度池沸腾表面润湿性的气泡成核及强化传热机制[J]. 化工进展, 2025, 44(2): 743-751. |
| [10] | 李昊阳, 李洪伟, 谭建宇. 瞬态振荡加热条件下沸腾气泡运动特性[J]. 化工进展, 2025, 44(2): 735-742. |
| [11] | 郑庆雨, 金光远, 冯文凯, 朱正山, 周逸凡, 滕厚场, 李臻峰, 宋春芳, 宋飞虎, 李静. 一种混沌C型几何流动混合耦合电磁热特性数值分析[J]. 化工进展, 2024, 43(8): 4262-4272. |
| [12] | 宋占龙, 汤涛, 潘蔚, 赵希强, 孙静, 毛岩鹏, 王文龙. 微纳米气泡强化臭氧氧化降解含酚废水[J]. 化工进展, 2024, 43(8): 4614-4623. |
| [13] | 武西宁, 张宁, 秦佳敏, 徐龙, 魏朝阳, 马晓迅. 低冷量下强化CO2吸收的甲醇基纳米流体性能[J]. 化工进展, 2024, 43(5): 2811-2822. |
| [14] | 赵伟, 江雨寒, 李振, 李毅红, 周安宁, 王宏. 煤岩显微组分电浮选分离与制氢过程中氢/氧气泡的影响机制[J]. 化工进展, 2024, 43(5): 2428-2435. |
| [15] | 谢小金, 张晓雪, 刘晓玲, 崇明本, 程党国, 陈丰秋. 单晶多级孔ZSM-5分子筛酸性质对正庚烷催化裂解反应传质性能的影响[J]. 化工进展, 2024, 43(5): 2661-2672. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |