| 1 |
SANDERSON Hans, BELANGER Scott E, FISK Peter R, et al. An overview of hazard and risk assessment of the OECD high production volume chemical category—Long chain alcohols [C6-C22](LCOH)[J]. Ecotoxicology and Environmental Safety, 2009, 72(4): 973-979.
|
| 2 |
卢鹏, 许世海, 王昊康, 等. 短链脂肪醇开环改性环氧脂肪酸甲酯制备润滑油基础油[J]. 中国油脂, 2022, 47(5): 29-34.
|
|
LU Peng, XU Shihai, WANG Haokang, et al. Lubricating oil base oil prepared by ring-opening modification of epoxy fatty acid methyl ester with short chain fatty alcohol[J]. China Oils and Fats, 2022, 47(5): 29-34.
|
| 3 |
相若函, 杜玮, 伊钟毓, 等. 脂肪醇聚氧乙烯醚衍生物在动车组外表面清洗剂的应用性能研究[J]. 高速铁路新材料, 2023, 2(6): 63-68.
|
|
XIANG Ruohan, DU Wei, YI Zhongyu, et al. Study on the application performance of fatty alcohol polyoxyethylene ether derivatives in cleaners for EMU/DMU exterior surface[J]. Advanced Materials of High Speed Railway, 2023, 2(6): 63-68.
|
| 4 |
肖娜, 曹圣悌, 高春新, 等. 不同反离子脂肪醇硫酸盐性能研究[J]. 中国洗涤用品工业, 2024(3): 62-66.
|
|
XIAO Na, CAO Shengti, GAO Chunxin, et al. Performance of fatty alcohol sulfates with different counter ions[J]. China Cleaning Industry, 2024(3): 62-66.
|
| 5 |
JIA Wenda, XU Guangyue, LIU Xiaohao, et al. Direct selective hydrogenation of fatty acids and jatropha oil to fatty alcohols over cobalt-based catalysts in water[J]. Energy & Fuels, 2018, 32(8): 8438-8446.
|
| 6 |
SÁNCHEZ Maria A, TORRES Gerardo C, MAZZIERI Vanina A, et al. Selective hydrogenation of fatty acids and methyl esters of fatty acids to obtain fatty alcohols—A review[J]. Journal of Chemical Technology & Biotechnology, 2017, 92(1): 27-42.
|
| 7 |
ZHOU Jilong, XIE Wei, SUN Song, et al. Effects of activation atmospheres on structure and activity of Mo-based catalyst for synthesis of higher alcohols[J]. Chinese Journal of Chemical Physics, 2016, 29(4): 467-473, 524.
|
| 8 |
陈德君, 张可航, 朱志荣, 等. Pt/WO3-TiO2/ZrO2-Al2O3甘油加氢体系中Al2O3的双功能作用[J]. 精细化工, 2022, 39(10): 2078-2085.
|
|
CHEN Dejun, ZHANG Kehang, Zhu Zhirong, et al. Bifunctional role of Al2O3 in Pt/WO3-TiO2/ZrO2-Al2O3 catalyst for hydrogenolysis of glycerol to 1,3-propanediol[J]. Fine Chemicals, 2022, 39(10): 2078-2085.
|
| 9 |
刘朋, 蒋剑春, 陈水根, 等. 高酸值废弃油脂制备生物柴油的预酯化[J]. 化工进展, 2015, 34(8): 3015-3018, 3064.
|
|
LIU Peng, JIANG Jianchun, CHEN Shuigen, et al. Pre-esterification in the preparation of biodiesel from waste oil with high acid value[J]. Chemical Industry and Engineering Progress, 2015, 34(8): 3015-3018, 3064.
|
| 10 |
THAKUR Deepak S, ROBERTS Brian D, WHITE Geoffrey T, et al. Fatty methyl ester hydrogenation to fatty alcohol: Reaction inhibition by glycerine and monoglyceride[J]. Journal of the American Oil Chemists’ Society, 1999, 76(8): 995-1000.
|
| 11 |
RODINA V O, D Yu ERMAKOV, SARAEV A A, et al. Influence of reaction conditions and kinetic analysis of the selective hydrogenation of oleic acid toward fatty alcohols on Ru-Sn-B/Al2O3 in the flow reactor[J]. Applied Catalysis B: Environmental, 2017, 209: 611-620.
|
| 12 |
LUO Zhicheng, BING Qiming, KONG Jiechen, et al. Mechanism of supported Ru3Sn7 nanocluster-catalyzed selective hydrogenation of coconut oil to fatty alcohols[J]. Catalysis Science & Technology, 2018, 8(5): 1322-1332.
|
| 13 |
CAO Xincheng, ZHAO Jiaping, LONG Feng, et al. Efficient low-temperature hydrogenation of fatty acids to fatty alcohols and alkanes on a Ni-Re bimetallic catalyst: The crucial role of NiRe alloys[J]. Applied Catalysis B: Environmental, 2022, 312: 121437.
|
| 14 |
LONG Feng, WU Shiyu, CHEN Yuwei, et al. Hydrogenation of fatty acids to fatty alcohols over Ni3Fe nanoparticles anchored on TiO2 crystal catalyst: Metal support interaction and mechanism investigation[J]. Chemical Engineering Journal, 2023, 464: 142773.
|
| 15 |
KANDEL Kapil, CHAUDHARY Umesh, NELSON Nicholas C, et al. Synergistic interaction between oxides of copper and iron for production of fatty alcohols from fatty acids[J]. ACS Catalysis, 2015, 5(11): 6719-6723.
|
| 16 |
SMIRNOV Andrey, WANG Wei, KIKHTYANIN Oleg, et al. Hydroconversion of sunflower oil to fatty alcohols and hydrocarbons using CuZn and CuZn-HBEA-based catalysts[J]. Catalysis Today, 2023, 424: 113841.
|
| 17 |
YUAN Peng, LIU Zhongyi, ZHANG Wanqing, et al. Cu-Zn/Al2O3 catalyst for the hydrogenation of esters to alcohols[J]. Chinese Journal of Catalysis, 2010, 31(7): 769-775.
|
| 18 |
WEN Chao, YIN Anyuan, CUI Yuanyuan, et al. Enhanced catalytic performance for SiO2-TiO2 binary oxide supported Cu-based catalyst in the hydrogenation of dimethyloxalate[J]. Applied Catalysis A: General, 2013, 458: 82-89.
|
| 19 |
YIN Anyuan, GUO Xiuying, DAI Wei-Lin, et al. The nature of active copper species in Cu-HMS catalyst for hydrogenation of dimethyl oxalate to ethylene glycol: New insights on the synergetic effect between Cu0 and Cu+ [J]. The Journal of Physical Chemistry C, 2009, 113(25): 11003-11013.
|
| 20 |
HE Zhe, LIN Haiqiang, HE Ping, et al. Effect of boric oxide doping on the stability and activity of a Cu-SiO2 catalyst for vapor-phase hydrogenation of dimethyl oxalate to ethylene glycol[J]. Journal of Catalysis, 2011, 277(1): 54-63.
|
| 21 |
LIN Haiqiang, ZHENG Xinlei, HE Zhe, et al. Cu/SiO2 hybrid catalysts containing HZSM-5 with enhanced activity and stability for selective hydrogenation of dimethyl oxalate to ethylene glycol[J]. Applied Catalysis A: General, 2012, 445: 287-296.
|
| 22 |
WANG Yue, SHEN Yongli, ZHAO Yujun, et al. Insight into the balancing effect of active Cu species for hydrogenation of carbon-oxygen bonds[J]. ACS Catalysis, 2015, 5(10): 6200-6208.
|
| 23 |
ZHENG Xiaohai, YU Panjie, LIU Yaxin, et al. Efficient hydrogenation of methyl palmitate to hexadecanol over Cu/m-ZrO2 catalysts: Synergistic effect of Cu species and oxygen vacancies[J]. ACS Catalysis, 2023: 2047-2060.
|
| 24 |
NAUMENKO Antonina P, BEREZOVSKA Natalia I, BILIY M M, et al. Vibrational analysis and Raman spectra of tetragonal Zirconia[J]. Physics and Chemistry of Solid State, 2008, 9(1): 121-125.
|
| 25 |
SIU G G, STOKES M J, LIU Yulong. Variation of fundamental and higher-order Raman spectra of ZrO2 nanograins with annealing temperature[J]. Physical Review B, 1999, 59(4): 3173-3179.
|
| 26 |
DARAMOLA Damilola A, MUTHUVEL Madhivanan, BOTTE Gerardine G. Density functional theory analysis of Raman frequency modes of monoclinic zirconium oxide using Gaussian basis sets and isotopic substitution[J]. Journal of Physical Chemistry B, 2010, 114(29): 9323-9329.
|
| 27 |
XU J F, JI W, SHEN Z X, et al. Preparation and characterization of CuO nanocrystals[J]. Journal of Solid State Chemistry, 1999, 147(2): 516-519.
|
| 28 |
ZHANG Hongwei, TAN Hui-Ru, JAENICKE Stephan, et al. Highly efficient and robust Cu catalyst for non-oxidative dehydrogenation of ethanol to acetaldehyde and hydrogen[J]. Journal of Catalysis, 2020, 389: 19-28.
|
| 29 |
ZHEN Wenlong, JIAO Wenjun, WU Yuqi, et al. The role of a metallic copper interlayer during visible photocatalytic hydrogen generation over a Cu/Cu2O/Cu/TiO2 catalyst[J]. Catalysis Science & Technology, 2017, 7(21): 5028-5037.
|
| 30 |
TOBIN John P, HIRSCHWALD W, CUNNINGHAM J. XPS and XAES studies of transient enhancement of Cu1 at CuO surfaces during vacuum outgassing[J]. Applications of Surface Science, 1983, 16(3/4): 441-452.
|
| 31 |
李晓莉, 谢方艳, 龚力, 等.氩离子刻蚀还原氧化铜的XPS研究[J]. 分析测试学报, 2013,32(5): 535-540.
|
|
LI Xiaoli, XIE Fangyan, GONG Li, et al. Effect of argon ion bombardment on copper oxide studied by X-ray photoelectron spectroscopy[J]. Journal of Instrumental Analysis, 2013, 32(5): 535-540.
|