化工进展 ›› 2025, Vol. 44 ›› Issue (2): 867-878.DOI: 10.16085/j.issn.1000-6613.2024-0160
李晓倩(), 任申勇(
), 刘璐, 杨驰, 申宝剑, 徐春明
收稿日期:
2024-01-19
修回日期:
2024-04-01
出版日期:
2025-02-25
发布日期:
2025-03-10
通讯作者:
任申勇
作者简介:
李晓倩(1996—),女,博士研究生,研究方向为新材料与催化剂工程。E-mail:2020086928@qq.com。
基金资助:
LI Xiaoqian(), REN Shenyong(
), LIU Lu, YANG Chi, SHEN Baojian, XU Chunming
Received:
2024-01-19
Revised:
2024-04-01
Online:
2025-02-25
Published:
2025-03-10
Contact:
REN Shenyong
摘要:
以不同浓度的硝酸铁溶液处理的Y分子筛作为载体,以硝酸镍和钼酸铵为活性金属前体,采用等体积浸渍法制备催化剂。利用X射线衍射(XRD)、低温氮气吸附(BET)、扫描电子显微镜(SEM)、氨气程序升温脱附(NH3-TPD)、氢气程序升温还原(H2-TPR)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)等分析方法对Y分子筛及催化剂进行了物化性质表征。以二苯并噻吩为探针在固定床反应器上评价催化剂的加氢脱硫(HDS)性能。结果表明,Fe物种的引入提高了Y分子筛比表面积和孔体积,改善了Y分子筛的酸性,减弱了NiMo金属和载体间的相互作用,调变了NiMo的电子结构,从而使硫化态催化剂具有更短的MoS2平均片晶长度和更高的平均堆垛层数、更高的金属Ni和Mo硫化度及NiMoS活性相比例,显著提高了催化剂的加氢脱硫活性。NiMo/0.12MFe-Y催化剂在260℃时的加氢脱硫转化率达81%,比NiMo/USY催化剂提高了18百分点,并且具有更高的直接脱硫路径选择性。
中图分类号:
李晓倩, 任申勇, 刘璐, 杨驰, 申宝剑, 徐春明. Fe物种对NiMo基催化剂的调控及加氢脱硫性能的影响[J]. 化工进展, 2025, 44(2): 867-878.
LI Xiaoqian, REN Shenyong, LIU Lu, YANG Chi, SHEN Baojian, XU Chunming. Modulation of NiMo-based catalysts by Fe species and its effect on catalytic hydrodesulfurization performance[J]. Chemical Industry and Engineering Progress, 2025, 44(2): 867-878.
样品 | 相对 结晶度/% | Fe2O3质量 分数/% | BET比表面积 /m2·g-1 | 微孔比表面积 /m2·g-1 | 介孔比表面积 /m2·g-1 | 总孔体积 /cm3·g-1 | 微孔体积 /cm3·g-1 | 介孔体积 /cm3·g-1 |
---|---|---|---|---|---|---|---|---|
USY | 84 | — | 586 | 509 | 77 | 0.39 | 0.249 | 0.141 |
0.02MFe-Y | 64 | 4.28 | 564 | 455 | 109 | 0.392 | 0.222 | 0.170 |
0.06MFe-Y | 47 | 11.01 | 603 | 469 | 134 | 0.464 | 0.229 | 0.235 |
0.12MFe-Y | 52 | 9.46 | 613 | 467 | 146 | 0.448 | 0.223 | 0.225 |
表1 Y分子筛的物性分析
样品 | 相对 结晶度/% | Fe2O3质量 分数/% | BET比表面积 /m2·g-1 | 微孔比表面积 /m2·g-1 | 介孔比表面积 /m2·g-1 | 总孔体积 /cm3·g-1 | 微孔体积 /cm3·g-1 | 介孔体积 /cm3·g-1 |
---|---|---|---|---|---|---|---|---|
USY | 84 | — | 586 | 509 | 77 | 0.39 | 0.249 | 0.141 |
0.02MFe-Y | 64 | 4.28 | 564 | 455 | 109 | 0.392 | 0.222 | 0.170 |
0.06MFe-Y | 47 | 11.01 | 603 | 469 | 134 | 0.464 | 0.229 | 0.235 |
0.12MFe-Y | 52 | 9.46 | 613 | 467 | 146 | 0.448 | 0.223 | 0.225 |
样品 | 弱酸位点/µmol·g-1 | 强酸位点/µmol·g-1 | 总酸位点/µmol·g-1 | ||||
---|---|---|---|---|---|---|---|
B | L | B+L | B | L | B+L | ||
USY | 88 | 177 | 265 | 74 | 92 | 166 | 431 |
0.02MFe-Y | 125 | 97 | 222 | 101 | 106 | 207 | 429 |
0.06MFe-Y | 124 | 126 | 250 | 93 | 101 | 194 | 444 |
0.12MFe-Y | 79 | 105 | 184 | 43 | 166 | 209 | 393 |
表2 Py-IR测定的分子筛酸类型及酸量
样品 | 弱酸位点/µmol·g-1 | 强酸位点/µmol·g-1 | 总酸位点/µmol·g-1 | ||||
---|---|---|---|---|---|---|---|
B | L | B+L | B | L | B+L | ||
USY | 88 | 177 | 265 | 74 | 92 | 166 | 431 |
0.02MFe-Y | 125 | 97 | 222 | 101 | 106 | 207 | 429 |
0.06MFe-Y | 124 | 126 | 250 | 93 | 101 | 194 | 444 |
0.12MFe-Y | 79 | 105 | 184 | 43 | 166 | 209 | 393 |
催化剂 | 平均片晶长度/nm | 平均堆垛层数 | fMo |
---|---|---|---|
NiMo/USY | 2.93 | 1.97 | 0.32 |
NiMo/0.02MFe-Y | 3.31 | 2.02 | 0.31 |
NiMo/0.06MFe-Y | 2.68 | 2.86 | 0.35 |
NiMo/0.12MFe-Y | 2.42 | 3.42 | 0.39 |
表3 所有催化剂的MoS2的平均片晶长度、堆垛层数和fMo
催化剂 | 平均片晶长度/nm | 平均堆垛层数 | fMo |
---|---|---|---|
NiMo/USY | 2.93 | 1.97 | 0.32 |
NiMo/0.02MFe-Y | 3.31 | 2.02 | 0.31 |
NiMo/0.06MFe-Y | 2.68 | 2.86 | 0.35 |
NiMo/0.12MFe-Y | 2.42 | 3.42 | 0.39 |
催化剂 | Mo硫化度①/% | Ni硫化度②/% | NiS x /% | NiMoS/% | Ni2+/% |
---|---|---|---|---|---|
NiMo/USY | 84.3 | 57.7 | 32.9 | 24.8 | 42.3 |
NiMo/0.02MFe-Y | 81.8 | 56.2 | 31.6 | 24.7 | 43.7 |
NiMo/0.06MFe-Y | 87.7 | 61.5 | 32.8 | 28.7 | 38.5 |
NiMo/0.12MFe-Y | 88.1 | 62.5 | 33.7 | 28.9 | 37.5 |
表4 NiMo基催化剂的XPS表征结果
催化剂 | Mo硫化度①/% | Ni硫化度②/% | NiS x /% | NiMoS/% | Ni2+/% |
---|---|---|---|---|---|
NiMo/USY | 84.3 | 57.7 | 32.9 | 24.8 | 42.3 |
NiMo/0.02MFe-Y | 81.8 | 56.2 | 31.6 | 24.7 | 43.7 |
NiMo/0.06MFe-Y | 87.7 | 61.5 | 32.8 | 28.7 | 38.5 |
NiMo/0.12MFe-Y | 88.1 | 62.5 | 33.7 | 28.9 | 37.5 |
样品 | BP/% | THDBT+HHDBT/% | CHB/% | BCH/% | kHDS/mol·g-1·s-1 | TOF/s-1 | DDS选择性 | HYD选择性 | HYD/DDS |
---|---|---|---|---|---|---|---|---|---|
NiMo/USY | 42.6 | 46.3 | 7.9 | 3.2 | 3.25×10-8 | 7.93×10-5 | 0.43 | 0.57 | 1.33 |
NiMo/0.02MFe-Y | 32.5 | 60.5 | 5.1 | 1.9 | 2.91×10-8 | 7.43×10-5 | 0.33 | 0.67 | 2.03 |
NiMo/0.06MFe-Y | 48.3 | 36.9 | 6.8 | 8.0 | 3.61×10-8 | 7.94×10-5 | 0.48 | 0.52 | 1.08 |
NiMo/0.12MFe-Y | 51.1 | 35.5 | 4.0 | 9.4 | 5.86×10-8 | 10.0×10-5 | 0.51 | 0.49 | 0.96 |
表5 不同催化剂250℃下对DBT进行加氢脱硫后的产物分布、反应速率常数和路径选择性
样品 | BP/% | THDBT+HHDBT/% | CHB/% | BCH/% | kHDS/mol·g-1·s-1 | TOF/s-1 | DDS选择性 | HYD选择性 | HYD/DDS |
---|---|---|---|---|---|---|---|---|---|
NiMo/USY | 42.6 | 46.3 | 7.9 | 3.2 | 3.25×10-8 | 7.93×10-5 | 0.43 | 0.57 | 1.33 |
NiMo/0.02MFe-Y | 32.5 | 60.5 | 5.1 | 1.9 | 2.91×10-8 | 7.43×10-5 | 0.33 | 0.67 | 2.03 |
NiMo/0.06MFe-Y | 48.3 | 36.9 | 6.8 | 8.0 | 3.61×10-8 | 7.94×10-5 | 0.48 | 0.52 | 1.08 |
NiMo/0.12MFe-Y | 51.1 | 35.5 | 4.0 | 9.4 | 5.86×10-8 | 10.0×10-5 | 0.51 | 0.49 | 0.96 |
1 | 周红军, 周颖, 徐春明. 中国碳达峰碳中和目标下炼化一体化新路径与实践[J]. 化工进展, 2022, 41(4): 2226-2230. |
ZHOU Hongjun, ZHOU Ying, XU Chunming. Exploration of refining and chemical integration under China’s dual-carbon target[J]. Chemical Industry and Engineering Progress, 2022, 41(4): 2226-2230. | |
2 | WEISE Christian Frederik, FALSIG Hanne, MOSES Poul Georg, et al. Single-atom Pt promotion of industrial Co-Mo-S catalysts for ultra-deep hydrodesulfurization[J]. Journal of Catalysis, 2021, 403: 74-86. |
3 | WENG Xiaoyi, CAO Liyuan, ZHANG Guohao, et al. Ultradeep hydrodesulfurization of diesel: Mechanisms, catalyst design strategies, and challenges[J]. Industrial & Engineering Chemistry Research, 2020, 59(49): 21261-21274. |
4 | XU Zhusong, WANG Haoze, KANG Huanqi, et al. Effect of organic phosphorus addition on the state of active metal species and catalytic performance of NiW/Al2O3 hydrodesulfurization catalyst[J]. Fuel, 2023, 340: 127547. |
5 | ZHANG Ge, YANG Fan, XU Zhusong, et al. Electronic structure regulation of CoMoS catalysts by N, P co-doped carbon modification for effective hydrodesulfurization[J]. Fuel, 2022, 322: 124160. |
6 | 梁吉雷, 吴雯洁, 吴萌萌, 等. 绿色合成介孔碳负载(Ni)MoS2加氢脱硫催化剂[J]. 燃料化学学报(中英文), 2023, 51(12): 1761-1771. |
LIANG Jilei, WU Wenjie, WU Mengmeng, et al. Green synthesis of mesoporous carbon supported (Ni)MoS2 as efficient hydrodesulfurization catalyst[J]. Journal of Fuel Chemistry and Technology, 2023, 51(12): 1761-1771. | |
7 | 张晶, 李翔, 孟利红, 等. Pd在MCM-41中的分布对二苯并噻吩加氢脱硫反应动力学的影响[J]. 石油学报(石油加工), 2023, 39(4): 791-798. |
ZHANG Jing, LI Xiang, MENG Lihong, et al. Effect of distribution of Pd in MCM-41 on the kinetics of hydrodesulfurization of dibenzothiophene[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2023, 39(4): 791-798. | |
8 | SUN Houxiang, SUN Huayang, ZHANG Xinyue, et al. Effect of divalent tin on the SnSAPO-5 molecular sieve and its modulation to alumina support to form a highly efficient NiW catalyst for deep hydrodesulfurization of 4,6-dimethyldibenzothiophene[J]. ACS Catalysis, 2019, 9(8): 6613-6623. |
9 | MEI Jinlin, SHI Yu, XIAO Chengkun, et al. Hierarchically porous Beta/SBA-16 with different silica-alumina ratios and the hydrodesulfurization performances of DBT and 4,6-DMDBT[J]. Petroleum Science, 2022, 19(1): 375-386. |
10 | KANG Xin, LIU Jiancong, TIAN Chungui, et al. Surface curvature-confined strategy to ultrasmall nickel-molybdenum sulfide nanoflakes for highly efficient deep hydrodesulfurization[J]. Nano Research, 2020, 13(3): 882-890. |
11 | MÉNDEZ Franklin J, VARGAS Roylena, BLANCO Joel, et al. Titanium-modified MCM-41 molecular sieves as efficient supports to increase the hydrogenation abilities of NiMoS and CoMoS catalysts[J]. Journal of Industrial and Engineering Chemistry, 2021, 95: 340-349. |
12 | ZHANG Lei, DAI Quan, FU Wenqian, et al. CoMo catalyst on zeolite TS-1 nanorod assemblies with high activity in the hydrodesulfurization of 4,6-dimethyldibenzothiophene[J]. Journal of Catalysis, 2018, 359: 130-142. |
13 | YANG Yu, MANDIZADEH Samira, ZHANG Hao, et al. The role of ZnO in reactive desulfurization of diesel over ZnO@Zeolite Y: Classification, preparation, and evaluation[J]. Separation and Purification Technology, 2021, 256: 117784. |
14 | FU Wenqian, ZHANG Lei, TANG Tiandi, et al. Extraordinarily high activity in the hydrodesulfurization of 4,6-dimethyldibenzothiophene over Pd supported on mesoporous zeolite Y[J]. Journal of the American Chemical Society, 2011, 133(39): 15346-15349. |
15 | 苗杰, 李双, 迟姚玲, 等. nMoO x ·USY加氢脱硫性能的研究[J]. 石油化工, 2019, 48(9): 892-898. |
MIAO Jie, LI Shuang, CHI Yaoling, et al. An investigation on the hydrodesulrization performance of nMoO x ·USY[J]. Petrochemical Technology, 2019, 48(9): 892-898. | |
16 | ZHOU Wenwu, WEI Qiang, ZHOU Yasong, et al. Hydrodesulfurization of 4,6-dimethyldibenzothiophene over NiMo sulfide catalysts supported on meso-microporous Y zeolite with different mesopore sizes[J]. Applied Catalysis B: Environmental, 2018, 238: 212-224. |
17 | SALEH Tawfik A, SULAIMAN Kazeem O, AL-HAMMADI Saddam A. Effect of carbon on the hydrodesulfurization activity of MoCo catalysts supported on zeolite/active carbon hybrid supports[J]. Applied Catalysis B: Environmental, 2020, 263: 117661. |
18 | 李双, 贺友, 黄傲寒, 等. 柠檬酸预处理对nMoO x ·USY加氢脱硫性能的影响[J]. 石油化工, 2021, 50(10): 1013-1018. |
LI Shuang, HE You, HUANG Aohan, et al. Effect of citric acid pretreatment on hydrodesulfurization performance of nMoO x ·USY catalyst[J]. Petrochemical Technology, 2021, 50(10): 1013-1018. | |
19 | DONG Yanzeng, YU Xiaohang, WANG Zhiheng, et al. Effects of HY addition on NiMoS active phase of NiMo(NH3) impregnated NiMo/Al2O3-HY and its role in 4,6-dimethyl-dibenzothiophene hydrodesulfurization[J]. Journal of Industrial and Engineering Chemistry, 2023, 117: 172-187. |
20 | KARAMI Hamid, KAZEMEINI Mohammad, SOLTANALI Saeed, et al. Influence of adding a modified zeolite-Y onto the NiMo/Al2O3 catalyst utilized to produce a diesel fuel with highly reduced sulfur content[J]. Microporous and Mesoporous Materials, 2022, 332: 111704. |
21 | ZHOU Wenwu, ZHOU Anning, ZHANG Yating, et al. Hydrodesulfurization of 4,6-dimethyldibenzothiophene over NiMo supported on Ga-modified Y zeolites catalysts[J]. Journal of Catalysis, 2019, 374: 345-359. |
22 | SUN Houxiang, LI Lei, ZHANG Huabing, et al. Effect of zirconium modified Y zeolite via in situ synthesis and its regulation on the formation of excellent NiW catalyst for ultra-deep hydrodesulfurization of 4,6-DMDBT[J]. Chemical Engineering Journal, 2023, 478: 147514. |
23 | WANG Yandan, SHEN Baojian, LI Jiangcheng, et al. Interaction of coupled titanium and phosphorous on USY to tune hydrodesulfurization of 4,6-DMDBT and FCC LCO over NiW catalyst[J]. Fuel Processing Technology, 2014, 128: 166-175. |
24 | LI Lei, WANG Minjian, HUANG Lingxiang, et al. Electron-donating-accepting behavior between nitrogen-doped carbon materials and Fe species and its promotion for DBT hydrodesulfurization[J]. Applied Catalysis B: Environmental, 2019, 254: 360-370. |
25 | 马明超, 臧甲忠, 于海斌, 等. 金属改性对多环芳烃选择性开环Pt/Beta催化剂性能的影响[J]. 化工进展, 2021, 40(11): 6113-6120. |
MA Mingchao, ZANG Jiazhong, YU Haibin, et al. Effects of metal modification on the performance of Pt/Beta catalysts for selective ring opening of polycyclic aromatics[J]. Chemical Industry and Engineering Progress, 2021, 40(11): 6113-6120. | |
26 | LI Yushan, XIE Qingqing, WANG Mengyu, et al. Fe3+ and chlorotrimethylsilane modified NaY catalysts display enhanced activity and durability for acetalization of glycerol to solketal[J]. Chemical Engineering Journal, 2023, 452: 139303. |
27 | AL-KHATTAF S. Catalytic transformation of toluene over a high-acidity Y-zeolite based catalyst[J]. Energy & Fuels, 2006, 20(3): 946-954. |
28 | LIU Xuandong, LIU Jinjia, LI Lei, et al. Preparation of electron-rich Fe-based catalyst via electronic structure regulation and its promotion to hydrodesulfurization of dibenzothiophene[J]. Applied Catalysis B: Environmental, 2020, 269: 118779. |
29 | ZHOU Wenwu, ZHANG Qing, ZHOU Yasong, et al. Effects of Ga- and P-modified USY-based NiMoS catalysts on ultra-deep hydrodesulfurization for FCC diesels[J]. Catalysis Today, 2018, 305: 171-181. |
30 | 周文武, 韩峙宇, 陈治平, 等. 多级孔NiMo负载TS-1分子筛催化剂的制备及其加氢脱硫性能[J]. 无机化学学报, 2023, 39(5): 891-905. |
ZHOU Wenwu, HAN Shiyu, CHEN Zhiping, et al. Hierarchical TS-1 zeolite loaded with NiMo catalysts: Preparation and performance in hydrodesulfurization[J]. Chinese Journal of Inorganic Chemistry, 2023, 39(5): 891-905. | |
31 | WANG Baishuai, LI Xiangcheng, CHEN Pingan, et al. Effect of Mo addition on the microstructure and catalytic performance Fe-Mo catalyst[J]. Journal of Alloys and Compounds, 2019, 786: 440-448. |
32 | 赵瑞玉, 曹东炜, 曾令有, 等. 助剂Ni与载体的相互作用及其对NiMo/γ-Al2O3催化剂加氢脱硫性能的影响[J]. 燃料化学学报, 2016, 44(5): 564-569. |
ZHAO Ruiyu, CAO Dongwei, ZENG Lingyou, et al. Interaction between Ni promoter and Al2O3 support and its effect on the performance of NiMo/γ-Al2O3 catalyst in hydrodesulphurization[J]. Journal of Fuel Chemistry and Technology, 2016, 44(5): 564-569. |
[1] | 李琢宇, 余美琪, 陈孝彦, 胡若晖, 王庆宏, 陈春茂, 詹亚力. 炼油废催化剂吸附去除水中硝基苯的特性与机制[J]. 化工进展, 2025, 44(2): 1076-1087. |
[2] | 杨帆, 赵溢涛, 朱学栋, 王达锐. 三元尖晶石与孪晶ZSM-5分子筛在苯与二氧化碳甲基化中的应用[J]. 化工进展, 2025, 44(2): 856-866. |
[3] | 刘法志, 张鹏威, 刘涛, 谢玉仙, 何建乐, 苏胜, 徐俊, 向军. Sb改性钒钛SCR脱硝催化剂抗CO中毒性能[J]. 化工进展, 2025, 44(2): 1129-1137. |
[4] | 张琪, 王涛, 张雪冰, 李为真, 冯波, 蒋智慧, 吕毅军, 门卓武. 合成气制高级醇Co基催化剂研究进展[J]. 化工进展, 2025, 44(2): 773-787. |
[5] | 李知行, 代卫炯, 刘相洋, 王飞, 李瑞丰. ZSM-5分子筛结构与反应性的研究进展[J]. 化工进展, 2025, 44(2): 788-808. |
[6] | 贾亦静, 陶金泉, 黄文斌, 刘昊然, 李蓉蓉, 姚荣鹏, 白天瑜, 魏强, 周亚松. CO2加氢制低碳烯烃Fe基催化剂研究进展[J]. 化工进展, 2025, 44(2): 820-833. |
[7] | 廖旭, 王玮, 黄文婷, 熊文涛, 王泽宇, 覃佐东, 林金清. 生物质基催化剂在二氧化碳转化为环状碳酸酯中的研究进展[J]. 化工进展, 2025, 44(2): 834-846. |
[8] | 洪思琦, 顾方伟, 郑金玉. PEM水电解制氢低铱催化剂发展现状及展望[J]. 化工进展, 2025, 44(1): 158-168. |
[9] | 李雪莲, 曹志会, 雷普瑛, 白冰, 王璇, 张金鑫, 侯凯, 刘爱芳, 齐凯, 高丽丽. 珊瑚状Mo2C/Mo3P@NC异质结电极高效催化Li-CO2电池[J]. 化工进展, 2025, 44(1): 202-211. |
[10] | 宋顺明, 张敬雯, 张良清, 邱佳容, 陈剑锋, 曾宪海. 生物质基多元醇催化转化制备二醇[J]. 化工进展, 2025, 44(1): 228-252. |
[11] | 秦婷婷, 牛强. 二氧化碳加氢制高级醇Fe基催化剂研究进展[J]. 化工进展, 2025, 44(1): 253-265. |
[12] | 庄柯, 陈宏, 许芸, 仲兆平, 周峻伍, 周凯, 董月红. SiO2改性Ce-V-W/Ti催化剂载体的抗碱(土)金属中毒性能[J]. 化工进展, 2025, 44(1): 266-276. |
[13] | 董家彤, 单梦晴, 王华. Au-CuO/Cu2O串联催化增强电催化CO2还原制乙醇[J]. 化工进展, 2025, 44(1): 277-285. |
[14] | 游小银, 汪楚乔, 刘才华, 彭小明. Z型CN/NGBO/BV催化剂体系的构筑及光类芬顿降解四环素性能[J]. 化工进展, 2025, 44(1): 286-296. |
[15] | 李佳优, 张雨涵, 姜楠, 蒋博龙. 过渡金属硫化物NiS(x)@NF催化剂水热法制备及其析氢性能[J]. 化工进展, 2025, 44(1): 297-304. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 11
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 29
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |