化工进展 ›› 2024, Vol. 43 ›› Issue (S1): 504-516.DOI: 10.16085/j.issn.1000-6613.2024-1073
收稿日期:
2024-07-04
修回日期:
2024-08-19
出版日期:
2024-11-20
发布日期:
2024-12-06
通讯作者:
王荣昌
作者简介:
陈高祥(1996—),男,博士研究生,研究方向为微生物电合成。E-mail:yunhaoccc@163.com。
基金资助:
CHEN Gaoxiang(), WANG Rongchang(), JIANG Jiacheng
Received:
2024-07-04
Revised:
2024-08-19
Online:
2024-11-20
Published:
2024-12-06
Contact:
WANG Rongchang
摘要:
微生物电合成系统是以微生物作为生物催化剂,利用可再生能源将二氧化碳(CO2)还原为有机化合物的可持续发展技术,可以帮助缓解大气温室气体并实现低碳循环生物经济和工业CO2生物转化过程。本文介绍了微生物电合成系统中阴极与微生物之间的电子传递机制,包括直接电子传递和间接电子传递,其中氢气(H2)介导的间接电子传递为研究最多的电子传递过程。本文还介绍了微生物电合成系统中阴极电化学产氢和生物产氢过程的发生机制,阐述了H2的产生和利用以及在CO2的还原过程中不同微生物之间的相互依存和协作机制。本文还围绕H2介导的间接电子传递过程提出促进阴极析氢反应、投加外源介质和优化反应器设计等强化措施以促进H2的产生和CO2的还原过程。本文为提升微生物电合成系统的电子传递效率和目标产物产率提供了理论依据和技术支撑。
中图分类号:
陈高祥, 王荣昌, 蒋佳承. 微生物电合成系统阴极电子传递机制和氢介导强化措施[J]. 化工进展, 2024, 43(S1): 504-516.
CHEN Gaoxiang, WANG Rongchang, JIANG Jiacheng. Mechanism of cathodic electron transfer and hydrogen–mediated enhanced measures in microbial electrosynthesis system[J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 504-516.
项目 | 强化措施 | 阴极电位/电流密度/电压 | 产物产率 | 库仑效率 | 参考文献 |
---|---|---|---|---|---|
阴极析氢 | NiMo合金修饰的硅基底 | 10A/m2 | 4.60×10–3mmol/h 乙酸 | 98.6% | [ |
9.16×10–3mmol/h 甲烷 | 98.2% | ||||
Ni泡沫修饰的碳毡 | -0.89V(vs. SHE) | 2.00g/(L·d)乙酸 | — | [ | |
Mo2C修饰的碳毡 | -1.05V(vs. Ag/AgCl) | (0.15±0.01)g/(L·d)乙酸 | 50.0% ± 0.3% | [ | |
Pt纳米颗粒/rGO修饰的碳毡 | -0.90V(vs. Ag/AgCl) | 26.20g/(m2·d)乙酸 | — | [ | |
Sporomusa ovata生物打印的钛网 | -0.80V(vs. Ag/AgCl) | (0.34±0.12)g/(L·d)乙酸 | 55.0% ± 20.1% | [ | |
800℃煅烧ZIF-67修饰的碳毡 | -1.05V(vs. Ag/AgCl) | 0.19g/(L·d)乙酸 | — | [ | |
不锈钢金属网修饰的碳毡 | 1.00V | (163.00±13.50)mmol/(m2·d)甲烷 | — | [ | |
阴极室增设析氢钛网阴极 | -0.90V(vs. Ag/AgCl) | 0.68~0.70g/(L·d)乙酸 | 66.0% ± 12.0% | [ | |
投加介质 | 全氟化碳纳米乳液 | -1.02V(vs. SHE) | 1.1mmol/h乙酸 | 100% | [ |
多孔聚氨酯颗粒 | 133A/m2 | 1.48g/(L·d)乙酸 | 最大38.0% | [ | |
SiO2纳米颗粒 | 39A/m2 | 2.14g/(L·d)乙酸 | 36.0% | [ | |
Fe3O4纳米颗粒 | — | — | — | [ | |
反应器设计 | 电解氢移动床生物膜反应器 | 111A/m2 | 1.42L/(L·d )甲烷 | — | [ |
电产氢气泡柱反应器 | 156A/m2 | 1.15g/(L·d)乙酸 | 最大92.0% | [ | |
反应器内部引入导流筒 | 337A/m2 | 3.10g/(L·d)乙酸 | 53.0% | [ | |
设计圆柱形碳毡电极 | -1.50V(vs. Ag/AgCl) | 12.88mmol /L乙酸 | 88.0% | [ | |
增设顶空气体循环装置 | -0.90V(vs. Ag/AgCl) | 0.68~0.70g/(L·d)乙酸 | 66.0%±12.0% | [ |
表1 微生物电合成系统氢介导的电子传递强化措施及性能
项目 | 强化措施 | 阴极电位/电流密度/电压 | 产物产率 | 库仑效率 | 参考文献 |
---|---|---|---|---|---|
阴极析氢 | NiMo合金修饰的硅基底 | 10A/m2 | 4.60×10–3mmol/h 乙酸 | 98.6% | [ |
9.16×10–3mmol/h 甲烷 | 98.2% | ||||
Ni泡沫修饰的碳毡 | -0.89V(vs. SHE) | 2.00g/(L·d)乙酸 | — | [ | |
Mo2C修饰的碳毡 | -1.05V(vs. Ag/AgCl) | (0.15±0.01)g/(L·d)乙酸 | 50.0% ± 0.3% | [ | |
Pt纳米颗粒/rGO修饰的碳毡 | -0.90V(vs. Ag/AgCl) | 26.20g/(m2·d)乙酸 | — | [ | |
Sporomusa ovata生物打印的钛网 | -0.80V(vs. Ag/AgCl) | (0.34±0.12)g/(L·d)乙酸 | 55.0% ± 20.1% | [ | |
800℃煅烧ZIF-67修饰的碳毡 | -1.05V(vs. Ag/AgCl) | 0.19g/(L·d)乙酸 | — | [ | |
不锈钢金属网修饰的碳毡 | 1.00V | (163.00±13.50)mmol/(m2·d)甲烷 | — | [ | |
阴极室增设析氢钛网阴极 | -0.90V(vs. Ag/AgCl) | 0.68~0.70g/(L·d)乙酸 | 66.0% ± 12.0% | [ | |
投加介质 | 全氟化碳纳米乳液 | -1.02V(vs. SHE) | 1.1mmol/h乙酸 | 100% | [ |
多孔聚氨酯颗粒 | 133A/m2 | 1.48g/(L·d)乙酸 | 最大38.0% | [ | |
SiO2纳米颗粒 | 39A/m2 | 2.14g/(L·d)乙酸 | 36.0% | [ | |
Fe3O4纳米颗粒 | — | — | — | [ | |
反应器设计 | 电解氢移动床生物膜反应器 | 111A/m2 | 1.42L/(L·d )甲烷 | — | [ |
电产氢气泡柱反应器 | 156A/m2 | 1.15g/(L·d)乙酸 | 最大92.0% | [ | |
反应器内部引入导流筒 | 337A/m2 | 3.10g/(L·d)乙酸 | 53.0% | [ | |
设计圆柱形碳毡电极 | -1.50V(vs. Ag/AgCl) | 12.88mmol /L乙酸 | 88.0% | [ | |
增设顶空气体循环装置 | -0.90V(vs. Ag/AgCl) | 0.68~0.70g/(L·d)乙酸 | 66.0%±12.0% | [ |
79 | ZHAO Guoqiang, RUI Kun, DOU Shixue, et al. Heterostructures for electrochemical hydrogen evolution reaction: A review[J]. Advanced Functional Materials, 2018, 28(43): 1803291. |
80 | Jakub STASZAK-JIRKOVSKÝ, MALLIAKAS Christos D, LOPES Pietro P, et al. Design of active and stable Co-Mo-S x chalcogels as pH-universal catalysts for the hydrogen evolution reaction[J]. Nature Materials, 2016, 15(2): 197-203. |
81 | Elisabet PERONA-VICO, Laura FELIU-PARADEDA, PUIG Sebastià, et al. Bacteria coated cathodes as an in-situ hydrogen evolving platform for microbial electrosynthesis[J]. Scientific Reports, 2020, 10: 19852. |
82 | LUO Haiping, QI Jiaxin, ZHOU Meizhou, et al. Enhanced electron transfer on microbial electrosynthesis biocathode by polypyrrole-coated acetogens[J]. Bioresource Technology, 2020, 309: 123322. |
83 | HAN Hexing, TIAN Lijiao, LIU Dongfeng, et al. Reversing electron transfer chain for light-driven hydrogen production in biotic-abiotic hybrid systems[J]. Journal of the American Chemical Society, 2022, 144(14): 6434-6441. |
84 | GEELHOED Jeanine S, STAMS Alfons J M. Electricity-assisted biological hydrogen production from acetate by Geobacter sulfurreducens [J]. Environmental Science & Technology, 2011, 45(2): 815-820. |
85 | YU Lin, DUAN Jizhou, ZHAO Wei, et al. Characteristics of hydrogen evolution and oxidation catalyzed by Desulfovibrio caledoniensis biofilm on pyrolytic graphite electrode[J]. Electrochimica Acta, 2011, 56(25): 9041-9047. |
86 | VILLANO Marianna, DE BONIS Luca, ROSSETTI Simona, et al. Bioelectrochemical hydrogen production with hydrogenophilic dechlorinating bacteria as electrocatalytic agents[J]. Bioresource Technology, 2011, 102(3): 3193-3199. |
87 | JEREMIASSE Adriaan W, HAMELERS Hubertus V M, CROESE Elsemiek, et al. Acetate enhances startup of a H2-producing microbial biocathode[J]. Biotechnology and Bioengineering, 2012, 109(3): 657-664. |
88 | JOURDIN Ludovic, FREGUIA Stefano, DONOSE Bogdan C, et al. Autotrophic hydrogen-producing biofilm growth sustained by a cathode as the sole electron and energy source[J]. Bioelectrochemistry, 2015, 102: 56-63. |
89 | PUIG Sebastià, Ramon GANIGUÉ, Pau BATLLE-VILANOVA, et al. Tracking bio-hydrogen-mediated production of commodity chemicals from carbon dioxide and renewable electricity[J]. Bioresource Technology, 2017, 228: 201-209. |
90 | CROESE Elsemiek, PEREIRA Maria Alcina, EUVERINK Gert-Jan W, et al. Analysis of the microbial community of the biocathode of a hydrogen-producing microbial electrolysis cell[J]. Applied Microbiology and Biotechnology, 2011, 92(5): 1083-1093. |
91 | AULENTA Federico, CATAPANO Laura, SNIP Laura, et al. Linking bacterial metabolism to graphite cathodes: Electrochemical insights into the H2-producing capability of Desulfovibrio sp.[J]. ChemSusChem, 2012, 5(6): 1080-1085. |
92 | MARSHALL Christopher W, ROSS Daniel E, HANDLEY Kim M, et al. Metabolic reconstruction and modeling microbial electrosynthesis[J]. Scientific Reports, 2017, 7(1): 8391. |
93 | QI Xuejiao, JIA Xuan, WANG Yong, et al. Development of a rapid startup method of direct electron transfer-dominant methanogenic microbial electrosynthesis[J]. Bioresource Technology, 2022, 358: 127385. |
94 | MORITA Masahiko, MALVANKAR Nikhil S, FRANKS Ashley E, et al. Potential for direct interspecies electron transfer in methanogenic wastewater digester aggregates[J]. Mbio, 2011, 2(4): e00159-11. |
95 | 刘璐, 刘星, 靖宪月, 等. 地杆菌:驱动厌氧生物地球化学循环的“多面手”[J]. 微生物学报, 2022, 62(6): 2277-2288. |
LIU Lu, LIU Xing, JING Xianyue, et al. Geoabcter: The “generalist” driving anaerobic biogeochemical cycles[J]. Acta Microbiologica Sinica, 2022, 62(6): 2277-2288. | |
96 | Míriam CERRILLO, Marc VIÑAS, August BONMATÍ. Startup of electromethanogenic microbial electrolysis cells with two different biomass inocula for biogas upgrading[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(10): 8852-8859. |
97 | KUMAR Vikas, NABATEREGA Resty, KHOEI Shiva, et al. Insight into interactions between syntrophic bacteria and archaea in anaerobic digestion amended with conductive materials[J]. Renewable and Sustainable Energy Reviews, 2021, 144: 110965. |
98 | PAN Zeyan, LIU Zhuangzhuang, HU Xiaona, et al. Enhancement of acetate production in hydrogen-mediated microbial electrosynthesis reactors by addition of silica nanoparticles[J]. Bioresources and Bioprocessing, 2023, 10(1): 3. |
99 | SAVLA Nishit, GUIN Mridula, PANDIT Soumya, et al. Recent advancements in the cathodic catalyst for the hydrogen evolution reaction in microbial electrolytic cells[J]. International Journal of Hydrogen Energy, 2022, 47(34): 15333-15356. |
100 | MENEGHELLO Marta, OLIVEIRA Ana Rita, Aurore JACQ-BAILLY, et al. Formate dehydrogenases reduce CO2 rather than H C O 3 - : An electrochemical demonstration[J]. Angewandte Chemie International Edition, 2021, 60(18): 9964-9967. |
101 | KRACKE Frauke, WONG Andrew Barnabas, MAEGAARD Karen, et al. Robust and biocompatible catalysts for efficient hydrogen-driven microbial electrosynthesis[J]. Communications Chemistry, 2019, 2: 45. |
102 | HUANG Haifeng, HUANG Qiong, SONG Tianshun, et al. In situ growth of Mo2C on cathodes for efficient microbial electrosynthesis of acetate from CO2 [J]. Energy and Fuels, 2020, 34(9): 11299-11306. |
103 | MA Xin, ZHANG Guoqiang, LI Fengting, et al. Boosting the microbial electrosynthesis of acetate from CO2 by hydrogen evolution catalysts of Pt nanoparticles/rGO[J]. Catalysis Letters, 2021, 151(10): 2939-2949. |
104 | BAJRACHARYA Suman, KRIGE Adolf, MATSAKAS Leonidas, et al. Microbial electrosynthesis using 3D-bioprinting of Sporomusa ovata on copper, stainless-steel and titanium cathodes for CO2 reduction[J]. Fermentation, 2023, 10(1): 34. |
105 | YIN Jingjing, ZHANG Kang, ZHOU Yonghang, et al. Co3O4/C derived from ZIF-67 cathode enhances the microbial electrosynthesis of acetate from CO2 [J]. International Journal of Hydrogen Energy, 2024, 58: 426-432. |
106 | GAO Tianyu, ZHANG Hanmin, XU Xiaotong, et al. Mutual effects of CO2 absorption and H2-mediated electromethanogenesis triggering efficient biogas upgrading[J]. Science of the Total Environment, 2022, 818: 151732. |
107 | BAJRACHARYA Suman, KRIGE Adolf, MATSAKAS Leonidas, et al. Dual cathode configuration and headspace gas recirculation for enhancing microbial electrosynthesis using Sporomusa ovata [J]. Chemosphere, 2022, 287: 132188. |
108 | RODRIGUES Roselyn M, GUAN Xun, IÑIGUEZ Jesus A, et al. Perfluorocarbon nanoemulsion promotes the delivery of reducing equivalents for electricity-driven microbial CO2 reduction[J]. Nature Catalysis, 2019, 2(5): 407-414. |
109 | XUE Xiaoyuan, LIU Zhuangzhuang, CAI Wenfang, et al. Porous polyurethane particles enhanced the acetate production of a hydrogen-mediated microbial electrosynthesis reactor[J]. Bioresource Technology Reports, 2022, 18: 101073. |
110 | GACITÚA Manuel A, Bernardo GONZÁLEZ, MAJONE Mauro, et al. Boosting the electrocatalytic activity of Desulfovibrio paquesii biocathodes with magnetite nanoparticles[J]. International Journal of Hydrogen Energy, 2014, 39(27): 14540-14545. |
111 | CUI Kai, GUO Kun, CARVAJAL-ARROYO José Maria, et al. An electrolytic bubble column with an external hollow fiber membrane gas-liquid contactor for effective microbial electrosynthesis of acetate from CO2 [J]. Chemical Engineering Journal, 2023, 471: 144296. |
112 | PAN Zeyan, HUI Yuanyuan, HU Xiaona, et al. A novel electrolytic gas lift reactor for efficient microbial electrosynthesis of acetate from carbon dioxide[J]. Bioresource Technology, 2024, 393: 130124. |
113 | LI Shuwei, KIM Minsoo, SONG Young Eun, et al. Housing of electrosynthetic biofilms using a roll-up carbon veil electrode increases CO2 conversion and faradaic efficiency in microbial electrosynthesis cells[J]. Bioresource Technology, 2024, 393: 130157. |
114 | LU Wenduo, SONG Yuening, LIU Chuanqi, et al. Microbial electrochemical CO2 reduction and in-situ biogas upgrading at various pH conditions[J]. Fermentation, 2023, 9(5): 444. |
115 | EFTEKHARI Ali. Electrocatalysts for hydrogen evolution reaction[J]. International Journal of Hydrogen Energy, 2017, 42(16): 11053-11077. |
116 | CHEN Weifu, MUCKERMAN James T, FUJITA Etsuko. Recent developments in transition metal carbides and nitrides as hydrogen evolution electrocatalysts[J]. Chemical Communications, 2013, 49(79): 8896-8909. |
1 | Arne KÄTELHÖN, MEYS Raoul, DEUTZ Sarah, et al. Climate change mitigation potential of carbon capture and utilization in the chemical industry[J]. Proceedings of the National Academy of Science, 2019, 116(23): 11187-11194. |
2 | Gary GRIM R, HUANG Zhe, GUARNIERI Michael T, et al. Transforming the carbon economy: Challenges and opportunities in the convergence of low-cost electricity and reductive CO2 utilization[J]. Energy & Environmental Science, 2020, 13(2): 472-494. |
3 | ZHANG Zhien, PAN Shuyuan, LI Hao, et al. Recent advances in carbon dioxide utilization[J]. Renewable and Sustainable Energy Reviews, 2020, 125: 109799. |
4 | ANWER Abdul Hakeem, SHOEB Mohd, MASHKOOR Fouzia, et al. Simultaneous reduction of carbon dioxide and energy harvesting using RGO-based SiO2-TiO2 nanocomposite for supercapacitor and microbial electrosynthesis[J]. Applied Catalysis B: Environmental, 2023, 339: 123091. |
5 | VASSILEV Igor, HERNANDEZ Paula A, Pau BATLLE-VILANOVA, et al. Microbial electrosynthesis of isobutyric, butyric, caproic acids, and corresponding alcohols from carbon dioxide[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(7): 8485-8493. |
6 | CHEN Gaoxiang, WANG Rongchang, SUN Maoxin, et al. Carbon dioxide reduction to high-value chemicals in microbial electrosynthesis system: Biological conversion and regulation strategies[J]. Chemosphere, 2023, 344: 140251. |
7 | KUMAR Amit, HSU Leo Huan Hsuan, KAVANAGH Paul, et al. The ins and outs of microorganism-electrode electron transfer reactions[J]. Nature Reviews Chemistry, 2017, 1: 24. |
8 | CHU Na, JIANG Yong, LIANG Qinjun, et al. Electricity-driven microbial metabolism of carbon and nitrogen: A waste-to-resource solution[J]. Environmental Science & Technology, 2023, 57(11): 4379-4395. |
9 | TREMBLAY Pier-Luc, ANGENENT Largus T, ZHANG Tian. Extracellular electron uptake: Among autotrophs and mediated by surfaces[J]. Trends in Biotechnology, 2017, 35(4): 360-371. |
10 | ROTARU Amelia-Elena, SHRESTHA Pravin Malla, LIU Fanghua, et al. A new model for electron flow during anaerobic digestion: Direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane[J]. Energy & Environmental Science, 2014, 7(1): 408-415. |
11 | Lluis BAÑERAS, Álvaro CABEZA, Elisabet PERONA-VICO, et al. Microbial models for biocathodic electrochemical CO2 transformation: A comprehensive review on pure cultures[J]. Bioresource Technology Reports, 2024, 25: 101766. |
12 | PAQUETE Catarina M, ROSENBAUM Miriam A, Lluís BAÑERAS, et al. Let’s chat: Communication between electroactive microorganisms[J]. Bioresource Technology, 2022, 347: 126705. |
13 | TIAN Yan, WU Jing, LIANG Dandan, et al. Insights into the electron transfer behaviors of a biocathode regulated by cathode potentials in microbial electrosynthesis cells for biogas upgrading[J]. Environmental Science & Technology, 2023, 57(16): 6733-6742. |
14 | BAJRACHARYA Suman, KRIGE Adolf, MATSAKAS Leonidas, et al. Advances in cathode designs and reactor configurations of microbial electrosynthesis systems to facilitate gas electro-fermentation[J]. Bioresource Technology, 2022, 354: 127178. |
15 | NEVIN Kelly P, WOODARD Trevor L, FRANKS Ashley E, et al. Microbial electrosynthesis: Feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds[J]. mBio, 2010, 1(2): e00103-10. |
16 | BAI Yang, ZHOU Lei, IRFAN Muhammad, et al. Bioelectrochemical methane production from CO2 by Methanosarcina barkeri via direct and H2-mediated indirect electron transfer[J]. Energy, 2020, 210: 118445. |
17 | SHI Liang, DONG Hailiang, REGUERA Gemma, et al. Extracellular electron transfer mechanisms between microorganisms and minerals[J]. Nature Reviews Microbiology, 2016, 14(10): 651-662. |
18 | Michael KÖPKE, MIHALCEA Christophe, LIEW Fungmin, et al. 2,3-Butanediol production by acetogenic bacteria, an alternative route to chemical synthesis, using industrial waste gas[J]. Applied & Environmental Microbiology, 2011, 77(15): 5467-5475. |
19 | Michael KÖPKE, HELD Claudia, HUJER Sandra, et al. Clostridium ljungdahlii represents a microbial production platform based on syngas[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(29): 13087-13092. |
20 | BOTO Santiago T, BARDL Bettina, HARNISCH Falk, et al. Microbial electrosynthesis with Clostridium ljungdahlii benefits from hydrogen electron mediation and permits a greater variety of products[J]. Green Chemistry, 2023, 25(11): 4375-4386. |
21 | RABAEY Korneel, ROZENDAL René A. Microbial electrosynthesis—Revisiting the electrical route for microbial production[J]. Nature Reviews Microbiology, 2010, 8(10): 706-716. |
22 | ROSENBAUM Miriam, AULENTA Federico, VILLANO Marianna, et al. Cathodes as electron donors for microbial metabolism: Which extracellular electron transfer mechanisms are involved?[J]. Bioresource Technology, 2011, 102(1): 324-333. |
23 | AULENTA Federico, REALE Priscilla, CATERVI Alessandro, et al. Kinetics of trichloroethene dechlorination and methane formation by a mixed anaerobic culture in a bio-electrochemical system[J]. Electrochimica Acta, 2008, 53(16): 5300-5305. |
24 | TREMBLAY Pier-Luc, FARAGHIPARAPARI Neda, ZHANG Tian. Accelerated H2 evolution during microbial electrosynthesis with Sporomusa ovata [J]. Catalysts, 2019, 9(2): 166. |
25 | ZHAO Juntao, LI Feng, CAO Yingxiu, et al. Microbial extracellular electron transfer and strategies for engineering electroactive microorganisms[J]. Biotechnology Advances, 2021, 53: 107682. |
26 | BECKWITH Christopher R, EDWARDS Marcus J, LAWES Matthew, et al. Characterization of MtoD from Sideroxydans lithotrophicus: A cytochrome c electron shuttle used in lithoautotrophic growth[J]. Frontiers in Microbiology, 2015, 6: 332. |
27 | BOSE A, GARDEL E J, VIDOUDEZ C, et al. Electron uptake by iron-oxidizing phototrophic bacteria[J]. Nature Communications, 2014, 5: 3391. |
28 | ARYAL Nabin, AMMAM Fariza, PATIL Sunil A, et al. An overview of cathode materials for microbial electrosynthesis of chemicals from carbon dioxide[J]. Green Chemistry, 2017, 19(24): 5748-5760. |
29 | XIANG Yinbo, LIU Guangli, ZHANG Renduo, et al. Acetate production and electron utilization facilitated by sulfate-reducing bacteria in a microbial electrosynthesis system[J]. Bioresource Technology, 2017, 241: 821-829. |
30 | NIE Huarong, ZHANG Tian, CUI Mengmeng, et al. Improved cathode for high efficient microbial-catalyzed reduction in microbial electrosynthesis cells[J]. Physical Chemistry Chemical Physics, 2013, 15(34): 14290-14294. |
31 | DONG Zhiwei, WANG Haoqi, TIAN Shihao, et al. Fluidized granular activated carbon electrode for efficient microbial electrosynthesis of acetate from carbon dioxide[J]. Bioresource Technology, 2018, 269: 203-209. |
32 | SONG Tianshun, ZHANG Hongkun, LIU Haixia, et al. High efficiency microbial electrosynthesis of acetate from carbon dioxide by a self-assembled electroactive biofilm[J]. Bioresource Technology, 2017, 243: 573-582. |
33 | LOVLEY Derek R, NEVIN Kelly P. Electrobiocommodities: Powering microbial production of fuels and commodity chemicals from carbon dioxide with electricity[J]. Current Opinion in Biotechnology, 2013, 24(3): 385-390. |
34 | MOHANAKRISHNA Gunda, SEELAM Jai Sankar, VANBROEKHOVEN Karolien, et al. An enriched electroactive homoacetogenic biocathode for the microbial electrosynthesis of acetate through carbon dioxide reduction[J]. Faraday Discussions, 2015, 183: 445-462. |
35 | MARTINEZ Claudia M, ALVAREZ Luis H. Application of redox mediators in bioelectrochemical systems[J]. Biotechnology Advances, 2018, 36(5): 1412-1423. |
36 | TIAN Shihao, WANG Haoqi, DONG Zhiwei, et al. Mo2C-induced hydrogen production enhances microbial electrosynthesis of acetate from CO2 reduction[J]. Biotechnology for Biofuels, 2019, 12: 71. |
37 | Sovik DAS, Swati DAS, GHANGREKAR M M. Application of TiO2 and Rh as cathode catalyst to boost the microbial electrosynthesis of organic compounds through CO2 sequestration[J]. Process Biochemistry, 2021, 101: 237-246. |
38 | PAN Qin, TIAN Xiaochun, LI Junpeng, et al. Interfacial electron transfer for carbon dioxide valorization in hybrid inorganic-microbial systems[J]. Applied Energy, 2021, 292: 116885. |
39 | ZHU Xiaobo, JACK Joshua, LEININGER Aaron, et al. Syngas mediated microbial electrosynthesis for CO2 to acetate conversion using Clostridium ljungdahlii [J]. Resources, Conservation and Recycling, 2022, 184: 106395. |
40 | BLANCHET Elise, DUQUENNE François, RAFRAFI Yan, et al. Importance of the hydrogen route in up-scaling electrosynthesis for microbial CO2 reduction[J]. Energy & Environmental Science, 2015, 8(12): 3731-3744. |
41 | SHIN Hyo Jeong, JUNG Kyung A, Chul Woo NAM, et al. A genetic approach for microbial electrosynthesis system as biocommodities production platform[J]. Bioresource Technology, 2017, 245: 1421-1429. |
42 | CAI Wenfang, CUI Kai, LIU Zhuangzhuang, et al. An electrolytic-hydrogen-fed moving bed biofilm reactor for efficient microbial electrosynthesis of methane from CO2 [J]. Chemical Engineering Journal, 2022, 428: 132093. |
43 | GOMEZ VIDALES Abraham, OMANOVIC Sasha, TARTAKOVSKY Boris. Combined energy storage and methane bioelectrosynthesis from carbon dioxide in a microbial electrosynthesis system[J]. Bioresource Technology Reports, 2019, 8: 100302. |
44 | GOMEZ VIDALES Abraham, OMANOVIC Sasha, TARTAKOVSKY Boris. In-situ electrodeposition of nickel on a biocathode to enhance methane production from carbon dioxide in a microbial electrosynthesis system[J]. ECS Transactions, 2020, 97(7): 565-572. |
45 | VILLANO Marianna, AULENTA Federico, CIUCCI Costanza, et al. Bioelectrochemical reduction of CO2 to CH4 via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture[J]. Bioresource Technology, 2010, 101(9): 3085-3090. |
46 | BAKONYI Péter, László KOÓK, Tamás RÓZSENBERSZKI, et al. CO2-refinery through microbial electrosynthesis (MES): A concise review on design, operation, biocatalysts and perspectives[J]. Journal of CO2 Utilization, 2023, 67: 102348. |
47 | CLAASSENS Nico J, COTTON Charles A R, KOPLJAR Dennis, et al. Making quantitative sense of electromicrobial production[J]. Nature Catalysis, 2019, 2: 437-447. |
48 | BIAN Yanhong, LEININGER Aaron, Harold D MAY, et al. H2 mediated mixed culture microbial electrosynthesis for high titer acetate production from CO2 [J]. Environmental Science and Ecotechnology, 2024, 19: 100324. |
49 | COTTON Charles AR, Christian EDLICH-MUTH, Arren BAR-EVEN. Reinforcing carbon fixation: CO2 reduction replacing and supporting carboxylation[J]. Current Opinion in Biotechnology, 2018, 49: 49-56. |
50 | HUANG Yuxi, HU Zhiqiang. An integrated electrochemical and biochemical system for sequential reduction of CO2 to methane[J]. Fuel, 2018, 220: 8-13. |
51 | LI Yixin, LUO Qingliu, SU Jiaying, et al. Metabolic regulation of Shewanella oneidensis for microbial electrosynthesis: From extracellular to intracellular[J]. Metabolic Engineering, 2023, 80: 1-11. |
52 | LI Han, OPGENORTH Paul H, WERNICK David G, et al. Integrated electromicrobial conversion of CO2 to higher alcohols[J]. Science, 2012, 335(6076): 1596. |
53 | QIU Zhenyu, ZHANG Kang, LI Xiangling, et al. Sn promotes formate production to enhance microbial electrosynthesis of acetate via indirect electron transport[J]. Biochemical Engineering Journal, 2023, 192: 108842. |
54 | IZADI Paniz, FONTMORIN Jean-Marie, VIRDIS Bernardino, et al. The effect of the polarised cathode, formate and ethanol on chain elongation of acetate in microbial electrosynthesis[J]. Applied Energy, 2021, 283: 116310. |
55 | LIU Licheng, PANT Deepak. Integrative electrochemical and biological catalysis for the mild and efficient utilization of renewable electricity and carbon resources[J]. Sustainable Energy & Fuels, 2024, 8(3): 460-480. |
56 | CHEN Zhipeng, WANG Xiaohan, LIU Licheng. Electrochemical reduction of carbon dioxide to value-added products: The electrocatalyst and microbial electrosynthesis[J]. The Chemical Record, 2019, 19(7): 1272-1282. |
57 | YING Zanyun, QIU Qianlinglin, YE Jiexu, et al. Mechanism, performance enhancement, and economic feasibility of CO2 microbial electrosynthesis systems: A data-driven analysis of research topics and trends[J]. Renewable and Sustainable Energy Reviews, 2024, 202: 114704. |
58 | YING Zanyun, CHEN Han, HE Zheng, et al. Redox mediator-regulated microbial electrolysis cell to boost coulombic efficiency and degradation activity during gaseous chlorobenzene abatement[J]. Journal of Power Sources, 2022, 528: 231214. |
59 | LI Tao, YANG Xiaoli, SONG Hailiang, et al. Quinones contained in wastewater as redox mediators for the synergistic removal of azo dye in microbial fuel cells[J]. Journal of Environmental Management, 2022, 301: 113924. |
60 | MORADI Masoumeh, GAO Yu, NARENKUMAR Jayaraman, et al. Filamentous marine Gram-positive Nocardiopsis dassonvillei biofilm as biocathode and its electron transfer mechanism[J]. Science of the Total Environment, 2024, 908: 168347. |
61 | HU Jiaping, ZENG Cuiping, LIU Guangli, et al. Carbon dots internalization enhances electroactive biofilm formation and microbial acetate synthesis[J]. Journal of Cleaner Production, 2023, 411: 137333. |
62 | LA CAVA Eugenio, GUIONET Alexis, SAITO Junki, et al. Involvement of proton transfer for carbon dioxide reduction coupled with extracellular electron uptake in Shewanella oneidensis MR-1[J]. Electroanalysis, 2020, 32(8): 1659-1663. |
63 | LIGHT Samuel H, SU Lin, Rafael RIVERA-LUGO, et al. A flavin-based extracellular electron transfer mechanism in diverse Gram-positive bacteria[J]. Nature, 2018, 562(7725): 140-144. |
64 | PHAM The Hai, BOON Nico, DE MAEYER Katrien, et al. Use of Pseudomonas species producing phenazine-based metabolites in the anodes of microbial fuel cells to improve electricity generation[J]. Applied Microbiology and Biotechnology, 2008, 80(6): 985-993. |
65 | NAKASONO Satoshi, MATSUMOTO Norio, SAIKI Hiroshi. Electrochemical cultivation of Thiobacillus ferrooxidans by potential control[J]. Bioelectrochemistry and Bioenergetics, 1997, 43(1): 61-66. |
66 | MATSUMOTO Norio, YOSHINAGA Hisao, OHMURA Naoya, et al. High density cultivation of two strains of iron-oxidizing bacteria through reduction of ferric iron by intermittent electrolysis[J]. Biotechnology and Bioengineering, 2000, 70(4): 464-466. |
67 | LIU Xiaobo, YU Xiaobin. Enhancement of butanol production: From biocatalysis to bioelectrocatalysis[J]. ACS Energy Letters, 2020, 5(3): 867-878. |
68 | CHEN Hui, DONG Fangyuan, MINTEER Shelley D. The progress and outlook of bioelectrocatalysis for the production of chemicals, fuels and materials[J]. Nature Catalysis, 2020, 3: 225-244. |
69 | LOJOU E, DURAND M C, DOLLA A, et al. Hydrogenase activity control at Desulfovibrio vulgaris cell-coated carbon electrodes: Biochemical and chemical factors influencing the mediated bioelectrocatalysis[J]. Electroanalysis, 2002, 14(13): 913-922. |
70 | LI Shuwei, KIM Minsoo, Jungho JAE, et al. Solid neutral red/Nafion conductive layer on carbon felt electrode enhances acetate production from CO2 and energy efficiency in microbial electrosynthesis system[J]. Bioresource Technology, 2022, 363: 127983. |
71 | YANG Houyun, WANG Yixuan, HE Chuanshu, et al. Redox mediator-modified biocathode enables highly efficient microbial electro-synthesis of methane from carbon dioxide[J]. Applied Energy, 2020, 274: 115292. |
72 | IZADI Paniz, FONTMORIN Jean-Marie, GODAIN Alexiane, et al. Parameters influencing the development of highly conductive and efficient biofilm during microbial electrosynthesis: The importance of applied potential and inorganic carbon source[J]. NPJ Biofilms and Microbiomes, 2020, 6(1): 40. |
73 | SUN Qie, LI Hailong, YAN Jinying, et al. Selection of appropriate biogas upgrading technology—A review of biogas cleaning, upgrading and utilisation[J]. Renewable and Sustainable Energy Reviews, 2015, 51: 521-532. |
74 | DEUTZMANN Jörg S, SAHIN Merve, SPORMANN Alfred M. Extracellular enzymes facilitate electron uptake in biocorrosion and bioelectrosynthesis[J]. mBio, 2015, 6(2): e00496-15. |
75 | ASLAM Samina, RANI Sadia, Kiran LAL, et al. Electrochemical hydrogen production: Sustainable hydrogen economy[J]. Green Chemistry, 2023, 25(23): 9543-9573. |
76 | ROGER Isolda, SHIPMAN Michael A, SYMES Mark D. Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting[J]. Nature Reviews Chemistry, 2017, 1(1): 3. |
77 | CHEN Dachang, CHEN Zhiwen, ZHANG Xiaoxing, et al. Exploring single atom catalysts of transition-metal doped phosphorus carbide monolayer for HER: A first-principles study[J]. Journal of Energy Chemistry, 2021, 52: 155-162. |
78 | ANANTHARAJ Sengeni, NODA Suguru, JOTHI Vasanth Rajendiran, et al. Strategies and perspectives to catch the missing pieces in energy-efficient hydrogen evolution reaction in alkaline media[J]. Angewandte Chemie International Edition, 2021, 60(35): 18981-19006. |
[1] | 王博葳, 郑明朕, 王乐萌, 付东, 王珊, 朱生俊, 赵昆, 张盼. Na2SO4电解制备NaOH捕集CO2[J]. 化工进展, 2024, 43(S1): 604-614. |
[2] | 于梦洁, 吴语童, 罗发祥, 豆义波. 低浓度二氧化碳还原光催化剂结构设计的研究进展[J]. 化工进展, 2024, 43(S1): 335-350. |
[3] | 廖旭, 周骏, 罗杰, 曾瑞琳, 王泽宇, 李尊华, 林金清. 多孔离子聚合物催化二氧化碳环加成反应的研究进展[J]. 化工进展, 2024, 43(9): 4925-4940. |
[4] | 罗丛佳, 豆义波, 卫敏. 水滑石光催化剂结构调控用于二氧化碳还原的研究进展[J]. 化工进展, 2024, 43(7): 3891-3909. |
[5] | 马佳慧, 王毅斌, 冯敬武, 谭厚章, 林翅. 工业含钙固废矿化CO2的实验[J]. 化工进展, 2024, 43(6): 3440-3449. |
[6] | 刘克峰, 刘陶然, 蔡勇, 胡雪生, 董卫刚, 周华群, 高飞. 二氧化碳捕集技术研究和工程示范进展[J]. 化工进展, 2024, 43(6): 2901-2914. |
[7] | 周爱国, 郑家乐, 杨川箬, 杨小艺, 赵俊德, 李兴春. 直接空气二氧化碳捕集技术工业化进展[J]. 化工进展, 2024, 43(6): 2928-2939. |
[8] | 智远, 马吉亮, 陈晓平, 刘道银, 梁财. 流化床喷雾浸渍制备负载型钠基CO2吸附剂脱碳性能[J]. 化工进展, 2024, 43(6): 2961-2967. |
[9] | 张真, 张凡, 云祉婷. 绿氢在石化和化工行业的减碳经济性分析[J]. 化工进展, 2024, 43(6): 3021-3028. |
[10] | 陈富强, 仲兆平, 戚仁志. 铜基催化剂电还原二氧化碳为甲酸研究进展[J]. 化工进展, 2024, 43(6): 3051-3060. |
[11] | 曾壮, 李柯志, 苑志伟, 杜金涛, 李卓师, 王悦. CO/CO2 加氢制低碳醇改性费托合成催化剂研究进展[J]. 化工进展, 2024, 43(6): 3061-3079. |
[12] | 闫哲, 刘畅, 王丰旭, 周宏旺, 刘樨, 赵雪冰. 耦合生物质氧化转化的CO2电化学还原[J]. 化工进展, 2024, 43(6): 3310-3321. |
[13] | 冯勇强, 王洁茹, 王超娴, 李芳, 苏婉婷, 孙宇, 赵彬然. γ-Al2O3 负载的Ni、Fe、Cu对介质阻挡放电等离子体转化CO2/CH4的影响[J]. 化工进展, 2024, 43(5): 2705-2713. |
[14] | 解仲凯, 施伟东. 电荷极化光催化剂光转化二氧化碳制多碳化学品的研究进展[J]. 化工进展, 2024, 43(5): 2714-2722. |
[15] | 周运桃, 王洪星, 李新刚, 崔丽凤. CeO2载体在CO2加氢制甲醇中的应用和研究进展[J]. 化工进展, 2024, 43(5): 2723-2738. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |