化工进展 ›› 2024, Vol. 43 ›› Issue (S1): 517-532.DOI: 10.16085/j.issn.1000-6613.2023-2158
收稿日期:
2023-12-06
修回日期:
2024-07-23
出版日期:
2024-11-20
发布日期:
2024-12-06
通讯作者:
李志合,赵天生
作者简介:
万震(1997—),男,博士研究生,研究方向为应用催化。E-mail:wanzhen202108@163.com。
基金资助:
WAN Zhen1,2(), WANG Shaoqing2, LI Zhihe2(), ZHAO Tiansheng1()
Received:
2023-12-06
Revised:
2024-07-23
Online:
2024-11-20
Published:
2024-12-06
Contact:
LI Zhihe, ZHAO Tiansheng
摘要:
芳烃是重要的有机化工产品原料,也是汽油的重要混合组分,传统获取途径来自石油路线。石油的持续消耗与日渐枯竭迫使人们从可再生生物质资源路线获取芳烃。生物质中的木质素具有丰富的芳香结构组成,是生产芳烃的潜在原料。HZSM-5分子筛催化木质素热解转化制芳烃受到关注,然而存在产物选择性差、催化剂易积炭失活等问题。本文分析了HZSM-5理化特性、反应条件对芳烃产物分布影响;综述了金属改性、脱硅改性、复合介孔催化剂、辅助催化等改性方式,通过调变催化剂的酸性、孔道、传质扩散等提高生物油产物中单环芳烃的分布以及催化剂的稳定性。提出了该催化热解转化过程研究的未来方向,如根据目标芳烃产物选择HZSM-5改性策略、深入揭示其催化作用和积炭机理等。
中图分类号:
万震, 王绍庆, 李志合, 赵天生. HZSM-5分子筛催化木质素热解制芳烃研究进展[J]. 化工进展, 2024, 43(S1): 517-532.
WAN Zhen, WANG Shaoqing, LI Zhihe, ZHAO Tiansheng. Advances in HZSM-5 catalyzed pyrolysis of lignin to aromatic hydrocarbons[J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 517-532.
木质素 来源 | 原料∶催化剂 | 催化剂接触 方式 | Si/Al | 温度 /℃ | 活性评价方式 | 芳烃 产率/% | 文献 |
---|---|---|---|---|---|---|---|
碱性 | 1∶4 | 原位 | 15 | 650 | Py-GC/MS | 34① | [ |
25 | 32① | ||||||
55 | 22① | ||||||
210 | 8① | ||||||
黑液 | 1∶2 | 非原位 | 25 | 650 | Py-GC/MS | 35.5② | [ |
50 | 41.4② | ||||||
210 | 50.8② | ||||||
麦草 | 1∶2 | 原位 | 25 | 500 | 连续式热解 | 30④ | [ |
有机溶剂 | — | 原位 | 25 | 550 | Py-GC/MS | 26② | [ |
秸秆 | — | 非原位 | 23 | 600 | 连续式热解 | 70① | [ |
Kraft | 1∶1 | 原位 | 30 | 500 | 固定床 | 7③ | [ |
醋酸 | 1∶2 | 非原位 | 25 | 500 | 固定床 | 93② | [ |
碱性 | 1∶5 | 原位 | 23 | 600 | Py-GC/MS/FID | 7.63③ | [ |
50 | 2.27③ | ||||||
80 | 1.32③ | ||||||
杉木 | 1∶2 | 非原位 | 25 | 650 | Py-GC/MS | 63.72② | [ |
50 | 49.19② | ||||||
210 | 17.82② | ||||||
稻草 | 25 | 67.27② | |||||
50 | 66.62② | ||||||
210 | 21.42② | ||||||
杨木磨木 | 1∶1 | 非原位 | 30 | 600 | Py-GC/MS/FID | 2.62③ | [ |
280 | 0.76③ | ||||||
糠醛渣 | 1∶1 | 原位 | — | 500 | Py-GC/MS | 27.00② | [ |
— | 650 | 59.20② | |||||
— | 800 | 62.28② | |||||
磨木 | 1∶5 | 非原位 | 25 | 650 | Py-GC/MS | 6.3×10⑤ | [ |
碱性 | 3.5×10⑤ | ||||||
Klason | 3.1×10⑤ | ||||||
醇解 | 4.0×10⑤ | ||||||
碱性 | 7∶3 | 非原位 | 80 | 550 | 微波固定床 | 37② | [ |
原位 | 23② | ||||||
有机溶剂 | 1∶4 | 非原位 | 30 | 600 | Py-GC/MS | 16.4③ | [ |
1∶3 | 原位 | 23③ |
表1 HZSM-5催化木质素热解制芳烃
木质素 来源 | 原料∶催化剂 | 催化剂接触 方式 | Si/Al | 温度 /℃ | 活性评价方式 | 芳烃 产率/% | 文献 |
---|---|---|---|---|---|---|---|
碱性 | 1∶4 | 原位 | 15 | 650 | Py-GC/MS | 34① | [ |
25 | 32① | ||||||
55 | 22① | ||||||
210 | 8① | ||||||
黑液 | 1∶2 | 非原位 | 25 | 650 | Py-GC/MS | 35.5② | [ |
50 | 41.4② | ||||||
210 | 50.8② | ||||||
麦草 | 1∶2 | 原位 | 25 | 500 | 连续式热解 | 30④ | [ |
有机溶剂 | — | 原位 | 25 | 550 | Py-GC/MS | 26② | [ |
秸秆 | — | 非原位 | 23 | 600 | 连续式热解 | 70① | [ |
Kraft | 1∶1 | 原位 | 30 | 500 | 固定床 | 7③ | [ |
醋酸 | 1∶2 | 非原位 | 25 | 500 | 固定床 | 93② | [ |
碱性 | 1∶5 | 原位 | 23 | 600 | Py-GC/MS/FID | 7.63③ | [ |
50 | 2.27③ | ||||||
80 | 1.32③ | ||||||
杉木 | 1∶2 | 非原位 | 25 | 650 | Py-GC/MS | 63.72② | [ |
50 | 49.19② | ||||||
210 | 17.82② | ||||||
稻草 | 25 | 67.27② | |||||
50 | 66.62② | ||||||
210 | 21.42② | ||||||
杨木磨木 | 1∶1 | 非原位 | 30 | 600 | Py-GC/MS/FID | 2.62③ | [ |
280 | 0.76③ | ||||||
糠醛渣 | 1∶1 | 原位 | — | 500 | Py-GC/MS | 27.00② | [ |
— | 650 | 59.20② | |||||
— | 800 | 62.28② | |||||
磨木 | 1∶5 | 非原位 | 25 | 650 | Py-GC/MS | 6.3×10⑤ | [ |
碱性 | 3.5×10⑤ | ||||||
Klason | 3.1×10⑤ | ||||||
醇解 | 4.0×10⑤ | ||||||
碱性 | 7∶3 | 非原位 | 80 | 550 | 微波固定床 | 37② | [ |
原位 | 23② | ||||||
有机溶剂 | 1∶4 | 非原位 | 30 | 600 | Py-GC/MS | 16.4③ | [ |
1∶3 | 原位 | 23③ |
木质素来源 | 金属 | 负载量/% | 制备方法 | 芳烃产率/% | 芳烃选择性/% | 文献 | ||||
---|---|---|---|---|---|---|---|---|---|---|
MAHCs | B | T | X | PAHCs | ||||||
杉木 | Mg | 2 | 浸渍 | — | — | 12 | 19.5 | 20.82 | — | [ |
杨木 | — | — | 14.5 | 21 | 18 | — | ||||
玉米秸秆 | — | — | 15 | 22 | 17 | — | ||||
工业 | Zn | 1 | 浸渍 | 48.9 | 43.35 | — | 14.11 | 26.18 | 56.65 | [ |
杉木 | 2 | — | — | 22.34 | 24.40 | 18 | — | [ | ||
杨木 | — | — | 18.61 | 25.89 | 19.5 | — | ||||
玉米秸秆 | — | — | 23.84 | 22.5 | 17.5 | — | ||||
工业 | Fe | 1 | 浸渍 | 43.7 | 44.62 | — | 9.38 | 30.66 | 55.38 | [ |
柳枝 | 1.4 | 离子交换 | 5.5① | 72.24 | 9.99 | 36.97 | 21.57 | 27.76 | [ | |
2.4 | 2.9① | 72.02 | 8.79 | 33.80 | 25.84 | 27.98 | ||||
4.2 | 3.2① | 71.38 | 11.37 | 34.46 | 22.35 | 28.62 | ||||
工业 | Co | 0.5 | 浸渍 | 41.8 | 63.40 | — | 19.86 | 38.04 | 36.60 | [ |
1 | 51.1 | 54.01 | — | 19.18 | 31.31 | 45.99 | ||||
2 | 37.3 | 59.25 | — | 10.99 | 39.14 | 40.75 | ||||
5 | 28.4 | 44.01 | — | 9.51 | 24.30 | 55.99 | ||||
工业 | Ni | 1 | 浸渍 | 41.3 | 31.96 | — | 10.90 | 16.95 | 68.04 | |
玉米秸秆 | 2 | 19.23① | 78.46 | 28.34 | 22.78 | 7.45 | 21.54 | [ | ||
火炬松 | 14.19① | 82.73 | 26.88 | 27.92 | 11.10 | 17.27 | ||||
红橡木 | 14.96① | 83.50 | 23.72 | 27.30 | 14.02 | 16.50 | ||||
玉米秸秆 | Mo | 2 | 混合煅烧 | 27.06① | 91.68 | 37.54 | 32.01 | 9.74 | 8.32 | |
火炬松 | 22.86① | 94.48 | 34.97 | 37.96 | 14.30 | 5.52 | ||||
红橡木 | 20.67① | 94.54 | 26.62 | 39.48 | 18.32 | 5.46 | ||||
工业 | Cu | 1 | 浸渍 | 46.6 | 40.99 | — | 10.52 | 26.82 | 59.01 | [ |
工业 | Ga | 1 | 浸渍 | 49.4 | 40.08 | — | 11.94 | 25.10 | 59.92 | |
杉木 | 2 | — | — | 17 | 22.5 | 17 | — | [ | ||
杨木 | — | — | 17.5 | 21.5 | 19 | — | ||||
玉米秸秆 | — | — | 10 | 25.74 | 23.83 | — |
表2 金属改性HZSM-5催化木质素制芳烃
木质素来源 | 金属 | 负载量/% | 制备方法 | 芳烃产率/% | 芳烃选择性/% | 文献 | ||||
---|---|---|---|---|---|---|---|---|---|---|
MAHCs | B | T | X | PAHCs | ||||||
杉木 | Mg | 2 | 浸渍 | — | — | 12 | 19.5 | 20.82 | — | [ |
杨木 | — | — | 14.5 | 21 | 18 | — | ||||
玉米秸秆 | — | — | 15 | 22 | 17 | — | ||||
工业 | Zn | 1 | 浸渍 | 48.9 | 43.35 | — | 14.11 | 26.18 | 56.65 | [ |
杉木 | 2 | — | — | 22.34 | 24.40 | 18 | — | [ | ||
杨木 | — | — | 18.61 | 25.89 | 19.5 | — | ||||
玉米秸秆 | — | — | 23.84 | 22.5 | 17.5 | — | ||||
工业 | Fe | 1 | 浸渍 | 43.7 | 44.62 | — | 9.38 | 30.66 | 55.38 | [ |
柳枝 | 1.4 | 离子交换 | 5.5① | 72.24 | 9.99 | 36.97 | 21.57 | 27.76 | [ | |
2.4 | 2.9① | 72.02 | 8.79 | 33.80 | 25.84 | 27.98 | ||||
4.2 | 3.2① | 71.38 | 11.37 | 34.46 | 22.35 | 28.62 | ||||
工业 | Co | 0.5 | 浸渍 | 41.8 | 63.40 | — | 19.86 | 38.04 | 36.60 | [ |
1 | 51.1 | 54.01 | — | 19.18 | 31.31 | 45.99 | ||||
2 | 37.3 | 59.25 | — | 10.99 | 39.14 | 40.75 | ||||
5 | 28.4 | 44.01 | — | 9.51 | 24.30 | 55.99 | ||||
工业 | Ni | 1 | 浸渍 | 41.3 | 31.96 | — | 10.90 | 16.95 | 68.04 | |
玉米秸秆 | 2 | 19.23① | 78.46 | 28.34 | 22.78 | 7.45 | 21.54 | [ | ||
火炬松 | 14.19① | 82.73 | 26.88 | 27.92 | 11.10 | 17.27 | ||||
红橡木 | 14.96① | 83.50 | 23.72 | 27.30 | 14.02 | 16.50 | ||||
玉米秸秆 | Mo | 2 | 混合煅烧 | 27.06① | 91.68 | 37.54 | 32.01 | 9.74 | 8.32 | |
火炬松 | 22.86① | 94.48 | 34.97 | 37.96 | 14.30 | 5.52 | ||||
红橡木 | 20.67① | 94.54 | 26.62 | 39.48 | 18.32 | 5.46 | ||||
工业 | Cu | 1 | 浸渍 | 46.6 | 40.99 | — | 10.52 | 26.82 | 59.01 | [ |
工业 | Ga | 1 | 浸渍 | 49.4 | 40.08 | — | 11.94 | 25.10 | 59.92 | |
杉木 | 2 | — | — | 17 | 22.5 | 17 | — | [ | ||
杨木 | — | — | 17.5 | 21.5 | 19 | — | ||||
玉米秸秆 | — | — | 10 | 25.74 | 23.83 | — |
供氢原料 | 催化剂 | 反应装置 | 芳烃产率/% | 芳烃选择性/% | 文献 | ||||
---|---|---|---|---|---|---|---|---|---|
MAHCs | B | T | X | PAHCs | |||||
四氢化萘 | HZSM-5 | Py-GC/MS | 35.93① | 59.50 | 43.33 | 11.33 | 3.92 | 40.50 | [ |
废油 | ZSM-5/MCM-41 | 微波固定床 | 50① | 75.81 | — | — | — | 24.19 | [ |
废弃食用油 | HZSM-5 | Py-GC/MS | 86.3① | 83.78 | 8 | 20 | 20 | 16.22 | [ |
丙酮 | Co/HZSM-5 | 固定床 | 24.25② | 95.05 | 49.24 | 35.63 | 6.06 | 4.95 | [ |
Fe/HZSM-5 | 36.51② | 96.80 | — | — | — | 3.2 | |||
聚乙烯 | HZSM-5 | Py-GC/MS | 26.3① | — | — | — | — | — | [ |
表3 富氢原料辅助HZSM-5催化木质素热解
供氢原料 | 催化剂 | 反应装置 | 芳烃产率/% | 芳烃选择性/% | 文献 | ||||
---|---|---|---|---|---|---|---|---|---|
MAHCs | B | T | X | PAHCs | |||||
四氢化萘 | HZSM-5 | Py-GC/MS | 35.93① | 59.50 | 43.33 | 11.33 | 3.92 | 40.50 | [ |
废油 | ZSM-5/MCM-41 | 微波固定床 | 50① | 75.81 | — | — | — | 24.19 | [ |
废弃食用油 | HZSM-5 | Py-GC/MS | 86.3① | 83.78 | 8 | 20 | 20 | 16.22 | [ |
丙酮 | Co/HZSM-5 | 固定床 | 24.25② | 95.05 | 49.24 | 35.63 | 6.06 | 4.95 | [ |
Fe/HZSM-5 | 36.51② | 96.80 | — | — | — | 3.2 | |||
聚乙烯 | HZSM-5 | Py-GC/MS | 26.3① | — | — | — | — | — | [ |
1 | PAN Tao, GE Sida, YU Mengnan, et al. Synthesis and consequence of Zn modified ZSM-5 zeolite supported Ni catalyst for catalytic aromatization of olefin/paraffin[J]. Fuel, 2022, 311: 122629. |
2 | ZENG Dehong, ZHU Gangli, XIA Chungu. Recent advances of aromatization catalysts for C4 hydrocarbons[J]. Fuel Processing Technology, 2022, 226: 107087. |
3 | JIANG Jianrong, FENG Xiao, YANG Minbo, et al. Comparative technoeconomic analysis and life cycle assessment of aromatics production from methanol and naphtha[J]. Journal of Cleaner Production, 2020, 277: 123525. |
4 | ZHANG Peng, YANG Ying, LI Zhichun, et al. Preparation, characterization and naphtha aromatization performance of the catalytic reforming catalyst Pt/MY (M=Mg, Ba or Ce)[J]. Catalysis Today, 2020, 353: 146-152. |
5 | 李卓, 张娜, 潘政, 等. 木质素化学催化降解的研究进展[J]. 高分子材料科学与工程, 2020, 36(9): 181-190. |
LI Zuo, ZHANG Na, PAN Zheng, et al. Progress on chemical catalytic degradation of lignin[J]. Polymeric Materials Science and Engineering, 2020, 36(9): 181-190. | |
6 | 张雷, 王海英, 韩洪晶, 等. 木质素催化热解用催化剂的研究进展[J]. 化工进展, 2022, 41(5): 2429-2440. |
ZHANG Lei, WANG Haiying, HAN Hongjing, et al. Development of catalysts for catalytic pyrolysis of lignin[J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2429-2440. | |
7 | 王海英, 韩洪晶, 宋华, 等. 木质素及其模型化合物热解研究进展[J]. 化工进展, 2019, 38(7): 3088-3096. |
WANG Haiying, HAN Hongjing, SONG Hua, et al. Progress in pyrolysis of lignin and its model compounds[J]. Chemical Industry and Engineering Progress, 2019, 38(7): 3088-3096. | |
8 | 陈宇, 纪红兵. 木质素类生物质催化热解制备精细化学品研究进展[J]. 化工进展, 2019, 38(1): 626-638. |
CHEN Yu, JI Hongbing. Catalytic pyrolysis of lignin biomass for the production of fine chemicals[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 626-638. | |
9 | 沈炜炜, 曹斌, 何思蓉, 等. 木质素催化快速热解的解聚增值研究进展[J]. 能源环境保护, 2023, 37(5): 145-158, 208. |
SHEN Weiwei, CAO Bin, HE Sirong, et al. Advances in value-added depolymerization by catalytic fast pyrolysis of lignin[J]. Energy Environmental Protection, 2023, 37(5): 145-158, 208. | |
10 | 王则祥, 李航, 谢文銮, 等. 木质素基本结构、热解机理及特性研究进展[J]. 新能源进展, 2020, 8(1): 6-14. |
WANG Zexiang, LI Hang, XIE Wenluan, et al. Progress in basic structure, pyrolysis mechanism and characteristics of lignin[J]. Advances in New and Renewable Energy, 2020, 8(1): 6-14. | |
11 | LIU Wujun, LI Wenwei, JIANG Hong, et al. Fates of chemical elements in biomass during its pyrolysis[J]. Chemical Reviews, 2017, 117(9): 6367-6398. |
12 | MAMMAN Ajit Singh, LEE Jong-Min, KIM Yeong-Cheol, et al. Furfural: Hemicellulose/xylosederived biochemical[J]. Biofuels, Bioproducts and Biorefining, 2008, 2(5): 438-454. |
13 | BRANDT Agnieszka, John GRÄSVIK, HALLETT Jason P, et al. Deconstruction of lignocellulosic biomass with ionic liquids[J]. Green Chemistry, 2013, 15(3): 550-583. |
14 | AHMAD Umme Marium, JI Na, LI Hanyang, et al. Can lignin be transformed into agrochemicals? Recent advances in the agricultural applications of lignin[J]. Industrial Crops and Products, 2021, 170: 113646. |
15 | CHANG Guozhang, HUANG Yanqin, XIE Jianjun, et al. The lignin pyrolysis composition and pyrolysis products of palm kernel shell, wheat straw, and pine sawdust[J]. Energy Conversion and Management, 2016, 124: 587-597. |
16 | RODRIGUES PINTO Paula C, BORGES DA SILVA Eduardo A, RODRIGUES Alírio Egídio. Insights into oxidative conversion of lignin to high-added-value phenolic aldehydes[J]. Industrial & Engineering Chemistry Research, 2011, 50(2): 741-748. |
17 | SHARBINI KAMALUDDIN Huda, GONG Xuan, MA Pandong, et al. Influence of zeolite ZSM-5 synthesis protocols and physicochemical properties in the methanol-to-olefin process[J]. Materials Today Chemistry, 2022, 26: 101061. |
18 | Jǐrí ČEJKA, Blanka WICHTERLOVÁ, Soňa BEDNÁŘOVÁ. Alkylation of toluene with ethene over H-ZSM-5 zeolites[J]. Applied Catalysis A: General, 1991, 79(2): 215-226. |
19 | WEISZ Paul B, HAAG Werner O, RODEWALD Paul G. Catalytic production of high-grade fuel (gasoline) from biomass compounds by shape-selective catalysis[J]. Science, 1979, 206(4414): 57-58. |
20 | MA Zhiqiang, TROUSSARD Ekaterina, VAN BOKHOVEN Jeroen A. Controlling the selectivity to chemicals from lignin via catalytic fast pyrolysis[J]. Applied Catalysis A: General, 2012, 423: 130-136. |
21 | SHEN Dekui, ZHAO Jing, XIAO Rui, et al. Production of aromatic monomers from catalytic pyrolysis of black-liquor lignin[J]. Journal of Analytical and Applied Pyrolysis, 2015, 111: 47-54. |
22 | BI Peiyan, WANG Jicong, ZHANG Yajing, et al. From lignin to cycloparaffins and aromatics: Directional synthesis of jet and diesel fuel range biofuels using biomass[J]. Bioresource Technology, 2015, 183: 10-17. |
23 | Christian BÄHRLE, CUSTODIS Victoria, JESCHKE Gunnar, et al. The influence of zeolites on radical formation during lignin pyrolysis[J]. ChemSusChem, 2016, 9(17): 2397-2403. |
24 | ZHOU Guofeng, JENSEN Peter A, LE Duy M, et al. Direct upgrading of fast pyrolysis lignin vapor over the HZSM-5 catalyst[J]. Green Chemistry, 2016, 18(7): 1965-1975. |
25 | SHAFAGHAT Hoda, REZAEI Pouya Sirous, Donghoon RO, et al. In-situ catalytic pyrolysis of lignin in a bench-scale fixed bed pyrolyzer[J]. Journal of Industrial and Engineering Chemistry, 2017, 54: 447-453. |
26 | ZHENG Yunwu, TAO Lei, YANG Xiaoqin, et al. Comparative study on pyrolysis and catalytic pyrolysis upgrading of biomass model compounds: Thermochemical behaviors, kinetics, and aromatic hydrocarbon formation[J]. Journal of the Energy Institute, 2019, 92(5): 1348-1363. |
27 | LUO Zhongyang, LU Kongyu, YANG Yi, et al. Catalytic fast pyrolysis of lignin to produce aromatic hydrocarbons: Optimal conditions and reaction mechanism[J]. RSC Advances, 2019, 9(55): 31960-31968. |
28 | SHEN Dekui, ZHAO Jing, XIAO Rui. Catalytic transformation of lignin to aromatic hydrocarbons over solid-acid catalyst: Effect of lignin sources and catalyst species[J]. Energy Conversion and Management, 2016, 124: 61-72. |
29 | KIM Jae-Young, LEE Jae Hoon, PARK Jeesu, et al. Catalytic pyrolysis of lignin over HZSM-5 catalysts: Effect of various parameters on the production of aromatic hydrocarbon[J]. Journal of Analytical and Applied Pyrolysis, 2015, 114: 273-280. |
30 | ZOU Qiuxia, LIN Weijie, XU Dezhong, et al. Study the effect of zeolite pore size and acidity on the catalytic pyrolysis of Kraft lignin[J]. Fuel Processing Technology, 2022, 237: 107467. |
31 | 李娜. 糠醛渣木质素分离及热解特性研究[D]. 济南: 齐鲁工业大学, 2020. |
LI Na. Study on isolation and pyrolysis behavior of lignin from furfural residue [D]. Jinan: Qilu University of Technology, 2020. | |
32 | 马中青, 王浚浩, 黄明, 等. 木质素种类和催化剂添加量对热解产物的影响[J]. 农业工程学报, 2020, 36(1): 274-282. |
MA Zhongqing, WANG Junhao, HUANG Ming, et al. Effects of lignin species and catalyst addition on pyrolysis products[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(1): 274-282. | |
33 | FAN Liangliang, CHEN Paul, ZHOU Nan, et al. In-situ and ex-situ catalytic upgrading of vapors from microwave-assisted pyrolysis of lignin[J]. Bioresource Technology, 2018, 247: 851-858. |
34 | ZHANG Min, RESENDE Fernando L P, MOUTSOGLOU Alex. Catalytic fast pyrolysis of aspen lignin via Py-GC/MS[J]. Fuel, 2014, 116: 358-369. |
35 | LIANG Jie, SHAN Guangcun, SUN Yifei. Catalytic fast pyrolysis of lignocellulosic biomass: Critical role of zeolite catalysts[J]. Renewable and Sustainable Energy Reviews, 2021, 139: 110707. |
36 | LUO Guanqun, RESENDE Fernando L P. In-situ and ex-situ upgrading of pyrolysis vapors from beetle-killed trees[J]. Fuel, 2016, 166: 367-375. |
37 | WANG Jingxian, CAO Jingpei, ZHAO Xiaoyan, et al. Enhancement of light aromatics from catalytic fast pyrolysis of cellulose over bifunctional hierarchical HZSM-5 modified by hydrogen fluoride and nickel/hydrogen fluoride[J]. Bioresource Technology, 2019, 278: 116-123. |
38 | YUNG Matthew M, STARACE Anne K, MUKARAKATE Calvin, et al. Biomass catalytic pyrolysis on Ni/ZSM-5: Effects of nickel pretreatment and loading[J]. Energy & Fuels, 2016, 30(7): 5259-5268. |
39 | ILIOPOULOU E F, STEFANIDIS S D, KALOGIANNIS K G, et al. Catalytic upgrading of biomass pyrolysis vapors using transition metal-modified ZSM-5 zeolite[J]. Applied Catalysis B: Environmental, 2012, 127: 281-290. |
40 | PRIHARTO Neil, GHYSELS Stef, PALA Mehmet, et al. Ex situ catalytic fast pyrolysis of lignin-rich digested stillage over Na/ZSM-5, H/ZSM-5, and Fe/ZSM-5[J]. Energy & Fuels, 2020, 34(10): 12710-12723. |
41 | CHENG Yuting, Jungho JAE, SHI Jian, et al. Production of renewable aromatic compounds by catalytic fast pyrolysis of lignocellulosic biomass with bifunctional Ga/ZSM-5 catalysts[J]. Angewandte Chemie, 2012, 51(6): 1387-1390. |
42 | 黄明, 朱亮, 马中青, 等. 金属改性分子筛催化热解木质素制取轻质芳烃[J]. 燃料化学学报, 2021, 49(3): 292-302. |
HUANG Ming, ZHU Liang, MA Zhongqing, et al. Production of light aromatics from the fast pyrolysis of lignin catalyzed by metal- modified H-ZSM-5 zeolites[J]. Journal of Fuel Chemistry and Technology, 2021, 49(3): 292-302. | |
43 | JIN Tao, WANG Hongtao, PENG Jiebang, et al. Catalytic pyrolysis of lignin with metal-modified HZSM-5 as catalysts for monocyclic aromatic hydrocarbons production[J]. Fuel Processing Technology, 2022, 230: 107201. |
44 | MULLEN Charles A, BOATENG Akwasi A. Production of aromatic hydrocarbons via catalytic pyrolysis of biomass over Fe-modified HZSM-5 zeolites[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(7): 1623-1631. |
45 | XUE Yuan, SHARMA Ashokkumar, HUO Jiajie, et al. Low-pressure two-stage catalytic hydropyrolysis of lignin and lignin-derived phenolic monomers using zeolite-based bifunctional catalysts[J]. Journal of Analytical and Applied Pyrolysis, 2020, 146: 104779. |
46 | LEE Hyung Won, Jin sun CHA, PARK Young-Kwon. Catalytic co-pyrolysis of kraft lignin with refuse-derived fuels using Ni-loaded ZSM-5 type catalysts[J]. Catalysts, 2018, 8(11): 506. |
47 | 赵静. 木质素快速热解催化重整制备芳香烃的研究[D]. 南京: 东南大学, 2016. |
ZHAO Jing. Research on the preparation of aromatic hydrocarbons from fast catalytic pyrolysis of lignin[D]. Nanjing: Southeast University, 2016. | |
48 | 贾启芳, 朱丽娟, 范明慧, 等. 金属氧化物改性的HZSM-5催化热解木质素定向制备对二甲苯[J]. 有机化学, 2018, 38(8): 2101-2108. |
JIA Qifang, ZHU Lijuan, FAN Minghui, et al. Catalytic pyrolysis of lignin for directional production of p-xylene over metal oxides-modified HZSM-5 catalysts[J]. Chinese Journal of Organic Chemistry, 2018, 38(8): 2101-2108. | |
49 | LI Zhen, ZHANG Huihui, YANG Deshi, et al. Efficient conversion of lignin to aromatics via catalytic fast pyrolysis over niobium-doped HZSM-5[J]. Molecules, 2023, 28(10): 4245. |
50 | TANG Songshan, ZHANG Changsen, XUE Xiangfei, et al. Catalytic pyrolysis of lignin over hierarchical HZSM-5 zeolites prepared by post-treatment with alkaline solutions[J]. Journal of Analytical and Applied Pyrolysis, 2019, 137: 86-95. |
51 | 唐松山. 碱改性HZSM-5催化热解木质素研究[D]. 郑州: 郑州大学, 2017. |
TANG Songshan. Study on catalytic pyrolysis of lignin with alkali modified HZSM-5 zeolites[D]. Zhengzhou: Zhengzhou University, 2017. | |
52 | KIM Young-Min, Jungho JAE, KIM Beom-Sik, et al. Catalytic co-pyrolysis of torrefied yellow poplar and high-density polyethylene using microporous HZSM-5 and mesoporous Al-MCM-41 catalysts[J]. Energy Conversion and Management, 2017, 149: 966-973. |
53 | BI Yadong, LEI Xiaojuan, XU Guihua, et al. Catalytic fast pyrolysis of kraft lignin over hierarchical HZSM-5 and Hβ zeolites[J]. Catalysts, 2018, 8(2): 82. |
54 | ZHANG Donghong, JIN Tao, PENG Jiebang, et al. In-situ synthesis of micro/mesoporous HZSM-5 zeolite for catalytic pyrolysis of lignin to produce monocyclic aromatics[J]. Fuel, 2023, 334: 126588. |
55 | JIN Tao, ZHANG Donghong, PENG Jiebang, et al. Pretreatment of HZSM-5 with organic alkali and cobalt: Application in catalytic pyrolysis of lignin to produce monocyclic aromatic hydrocarbons[J]. Fuel Processing Technology, 2022, 233: 107308. |
56 | HU Changsong, ZHANG Huiyan, WU Shiliang, et al. Molecular shape selectivity of HZSM-5 in catalytic conversion of biomass pyrolysis vapors: The effective pore size[J]. Energy Conversion and Management, 2020, 210: 112678. |
57 | HU Xun, ZHANG Zhanming, GHOLIZADEH Mortaza, et al. Coke formation during thermal treatment of bio-oil[J]. Energy & Fuels, 2020, 34(7): 7863-7914. |
58 | LI Kai, ZHANG Guan, WANG Zexiang, et al. Calcium formate assisted catalytic pyrolysis of pine for enhanced production of monocyclic aromatic hydrocarbons over bimetal-modified HZSM-5[J]. Bioresource Technology, 2020, 315: 123805. |
59 | WANG Shaoqing, LI Zhihe, BAI Xueyuan, et al. Catalytic pyrolysis of lignin with red mud derived hierarchical porous catalyst for alkyl-phenols and hydrocarbons production[J]. Journal of Analytical and Applied Pyrolysis, 2018, 136: 8-17. |
60 | FAN Minghui, JIANG Peiwen, BI Peiyan, et al. Directional synthesis of ethylbenzene through catalytic transformation of lignin[J]. Bioresource Technology, 2013, 143: 59-67. |
61 | WANG Shaoqing, LI Zhihe, YI Weiming, et al. Regulating aromatic hydrocarbon components from catalytic pyrolysis of corn cob lignin with a tailored HZSM-5@Al-SBA-15 hierarchical zeolite[J]. Industrial Crops and Products, 2022, 181: 114813. |
62 | 王绍庆, 韩瑜, 易维明, 等. 负载型多级孔分子筛催化热解木质素制取单环芳烃[J]. 燃料化学学报(中英文), 2023, 51(8): 1096-1105. |
WANG Shaoqing, HAN Yu, YI Weiming, et al. Catalytic pyrolysis of lignin for production of mono-aromatic hydrocarbons over supported hierarchical zeolite[J]. Journal of Fuel Chemistry and Technology, 2023, 51(8): 1096-1105. | |
63 | WANG Shaoqing, JIAO Yan, LI Zhihe, et al. Modulating the acidity and accessibility of HZSM-5@Al-KIT-6 catalysts for the tandem catalytic upgrading of lignin pyrolysis vapors[J]. Applied Catalysis A: General, 2023, 656: 119129. |
64 | WAN Zhen, LI Zhihe, YI Weiming, et al. Fast co-pyrolysis of lignin with spent bleaching clay into monocyclic aromatic hydrocarbons over a novel low-cost composite catalyst[J]. Journal of Analytical and Applied Pyrolysis, 2022, 168: 105748. |
65 | WAN Zhen, LI Zhihe, LI Guo, et al. Catalytic co-pyrolysis of lignin and spent bleaching clay via binder-modified HZSM-5: Evolution of coke composition[J]. Microporous and Mesoporous Materials, 2023, 350: 112429. |
66 | ZHANG Huiyan, XIAO Rui, NIE Jianlong, et al. Catalytic pyrolysis of black-liquor lignin by co-feeding with different plastics in a fluidized bed reactor[J]. Bioresource Technology, 2015, 192: 68-74. |
67 | WAN Zhen, WANG Shaoqing, LI Zhihe, et al. Co-pyrolysis of lignin and spent bleaching clay: Insight into the catalytic characteristic and hydrogen supply of spent bleaching clay[J]. Journal of Analytical and Applied Pyrolysis, 2022, 163: 105491. |
68 | ZHAO Jing, WANG Zhanghong, SHEN Dekui, et al. Coked Ni/Al2O3 from the catalytic reforming of volatiles from co-pyrolysis of lignin and polyethylene: Preparation, identification and application as a potential adsorbent[J]. Catalysis Science & Technology, 2021, 11(12): 4162-4171. |
69 | ZHOU Jiao, JIN Wei, SHEN Dekui, et al. Formation of aromatic hydrocarbons from co-pyrolysis of lignin-related model compounds with hydrogen-donor reagents[J]. Journal of Analytical and Applied Pyrolysis, 2018, 134: 143-149. |
70 | PATIL Vivek, ADHIKARI Sushil, CROSS Phillip. Co-pyrolysis of lignin and plastics using red clay as catalyst in a micro-pyrolyzer[J]. Bioresource Technology, 2018, 270: 311-319. |
71 | KE Linyao, WANG Yunpu, WU Qiuhao, et al. Pressurized ex-situ catalytic co-pyrolysis of polyethylene and lignin: Efficient BTEX production and process mechanism analysis[J]. Chemical Engineering Journal, 2022, 431: 134122. |
72 | TAO Liangliang, MA Xianming, YE Lihui, et al. Interactions of lignin and LDPE during catalytic co-pyrolysis: Thermal behavior and kinetics study by TG-FTIR[J]. Journal of Analytical and Applied Pyrolysis, 2021, 158: 105267. |
73 | DUAN Dengle, WANG Yunpu, DAI Leilei, et al. Ex-situ catalytic co-pyrolysis of lignin and polypropylene to upgrade bio-oil quality by microwave heating[J]. Bioresource Technology, 2017, 241: 207-213. |
74 | XUE Yuan, ZHOU Shuai, BAI Xianglan. Role of hydrogen transfer during catalytic copyrolysis of lignin and tetralin over HZSM-5 and HY zeolite catalysts[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(8): 4237-4250. |
75 | ZOU Rongge, WANG Yunpu, JIANG Lin, et al. Microwave-assisted co-pyrolysis of lignin and waste oil catalyzed by hierarchical ZSM-5/MCM-41 catalyst to produce aromatic hydrocarbons[J]. Bioresource Technology, 2019, 289: 121609. |
76 | FAN Liangliang, RUAN Roger, LI Jun, et al. Aromatics production from fast co-pyrolysis of lignin and waste cooking oil catalyzed by HZSM-5 zeolite[J]. Applied Energy, 2020, 263: 114629. |
77 | 周娇. 木质素共混热解耦合催化重整制备芳香烃的研究[D]. 南京: 东南大学, 2018. |
ZHOU Jiao. Research on the preparation of aromatic hydrocarbons from catalytic co-pyrolysis of lignin with hydrogen-donor reagent[D]. Nanjing: Southeast University, 2018. | |
78 | 栗童. 生物质三组分及玉米秸秆与典型多氢原料共热解特性研究[D]. 南京: 东南大学, 2019. |
LI Tong. Research on characteristics of co-pyrolysis of biomass components and corn straw with typical hydrogen-enriched feedstocks[D]. Nanjing: Southeast University, 2019. | |
79 | WANG Shaoqing, LI Zhihe, BAI Xueyuan, et al. Influence of inherent hierarchical porous char with alkali and alkaline earth metallic species on lignin pyrolysis[J]. Bioresource Technology, 2018, 268: 323-331. |
80 | ZHANG Huiyan, LUO Bingbing, WU Kai, et al. Enhancing aromatic yield from catalytic pyrolysis of Ca2+-loaded lignin coupled with metal-modified HZSM-5[J]. Applications in Energy and Combustion Science, 2022, 9: 100049. |
81 | YANG Mingfa, SHAO Jingai, YANG Haiping, et al. Enhancing the production of light olefins and aromatics from catalytic fast pyrolysis of cellulose in a dual-catalyst fixed bed reactor[J]. Bioresource Technology, 2019, 273: 77-85. |
82 | WU Jilai, CHANG Guozhang, LI Xiao, et al. Effects of NaOH on the catalytic pyrolysis of lignin/HZSM-5 to prepare aromatic hydrocarbons[J]. Journal of Analytical and Applied Pyrolysis, 2020, 146: 104775. |
83 | ZHANG Huiyan, LUO Bingbing, WU Kai, et al. Ex-situ catalytic pyrolysis of lignin using lignin-carbon catalyst combined with HZSM-5 to improve the yield of high-quality liquid fuels[J]. Fuel, 2022, 318: 123635. |
84 | LEE Hyung Won, KIM Young-Min, Jungho JAE, et al. Catalytic pyrolysis of lignin using a two-stage fixed bed reactor comprised of in situ natural zeolite and ex-situ HZSM-5[J]. Journal of Analytical and Applied Pyrolysis, 2016, 122: 282-288. |
85 | WANG Shaoqing, LI Zhihe, BAI Xueyuan, et al. Catalytic pyrolysis of lignin in a cascade dual-catalyst system of modified red mud and HZSM-5 for aromatic hydrocarbon production[J]. Bioresource Technology, 2019, 278: 66-72. |
86 | WANG Shaoqing, LI Zhihe, YI Weiming, et al. Renewable aromatic hydrocarbons production from catalytic pyrolysis of lignin with Al-SBA-15 and HZSM-5: Synergistic effect and coke behaviour[J]. Renewable Energy, 2021, 163: 1673-1681. |
87 | FAN Liangliang, CHEN Paul, ZHANG Yaning, et al. Fast microwave-assisted catalytic co-pyrolysis of lignin and low-density polyethylene with HZSM-5 and MgO for improved bio-oil yield and quality[J]. Bioresource Technology, 2017, 225: 199-205. |
88 | Sumin RYU, LEE Hyung Won, KIM Young-Min, et al. Catalytic fast co-pyrolysis of organosolv lignin and polypropylene over in situ red mud and ex-situ HZSM-5 in two-step catalytic micro reactor[J]. Applied Surface Science, 2020, 511: 145521. |
89 | WAN Zhen, LI Zhihe, YI Weiming, et al. Lignin and spent bleaching clay into mono-aromatic hydrocarbons by a cascade dual catalytic pyrolysis system: Critical role of spent bleaching clay[J]. International Journal of Biological Macromolecules, 2023, 236: 123879. |
[1] | 郝静远, 齐宝金, 魏进家. 不同压力下榆神地区富油煤原位热解产物特性[J]. 化工进展, 2024, 43(S1): 268-281. |
[2] | 韩洪晶, 车宇, 田宇轩, 王海英, 张亚男, 陈彦广. 木质素催化氢解催化剂及溶剂的研究进展[J]. 化工进展, 2024, 43(S1): 315-324. |
[3] | 张浩, 刘世钰, 沈卫华, 方云进. Ca-ZSM-5催化尿素脱水制备单氰胺[J]. 化工进展, 2024, 43(S1): 365-373. |
[4] | 陈王觅, 席北斗, 李鸣晓, 叶美瀛, 侯佳奇, 于承泽, 魏域芳, 孟繁华. 热解系统碳排放削减技术研究进展[J]. 化工进展, 2024, 43(S1): 479-503. |
[5] | 陈慕华, 嵇震, 王芳, 黄凯健, 付博, 刘博, 刘绍忠, 朱新宝. 纤维素基共聚型聚羧酸减水剂的合成及其性能[J]. 化工进展, 2024, 43(S1): 564-570. |
[6] | 付维, 宁淑英, 蔡晨, 陈佳音, 周皞, 苏亚欣. Cu改性MIL-100(Fe)催化剂的SCR-C3H6脱硝特性[J]. 化工进展, 2024, 43(9): 4951-4960. |
[7] | 欧红香, 闵政, 薛洪来, 曹海珍, 毕海普, 王钧奇. 疏水改性纳米氧化镁对短氟碳链泡沫性能影响[J]. 化工进展, 2024, 43(9): 5177-5184. |
[8] | 全翠, 高宁博, 张广涛, 索浩杰. 含油污泥热解残渣制备渗水砖的重金属和多环芳烃浸出特性[J]. 化工进展, 2024, 43(9): 5226-5233. |
[9] | 孙燕, 谢晓阳, 冯倩颖, 郑璐, 何皎洁, 杨利伟, 白波. 基于单宁酸-铁(Ⅲ)改性正渗透膜制备及抗污染性能[J]. 化工进展, 2024, 43(9): 5309-5319. |
[10] | 梁国威, 金晶, 董波, 侯封校. 化学链燃烧中煤灰原位改性对钙基载氧体炭沉积的影响[J]. 化工进展, 2024, 43(8): 4253-4261. |
[11] | 殷晨阳, 刘永峰, 陈睿哲, 张璐, 宋金瓯, 刘海峰. 基于量子化学计算的正己烷热解反应动力学模拟[J]. 化工进展, 2024, 43(8): 4273-4282. |
[12] | 付涛, 李立, 高莉宁, 朱富维, 曹炜烨, 陈华鑫. 水泥基硼掺杂石墨相氮化碳降解NO[J]. 化工进展, 2024, 43(8): 4403-4410. |
[13] | 龙涛, 周锋, 张伟, 吴泓, 王建, 陈霖. CO-CO2体系制备氘代甲醇催化剂的合成与改性[J]. 化工进展, 2024, 43(8): 4411-4420. |
[14] | 郑云香, 高艺伦, 李宴汝, 刘青霖, 张浩腾, 王向鹏. 氨基三乙酸酐改性多孔双网络水凝胶的制备及吸附性能[J]. 化工进展, 2024, 43(8): 4542-4549. |
[15] | 刘玉灿, 高中鲁, 徐心怡, 纪现国, 张岩, 孙洪伟, 王港. 钙改性水葫芦基生物炭吸附水中敌草隆的效能与机理[J]. 化工进展, 2024, 43(8): 4630-4641. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |