1 |
WU Shutao, HUANG Xun, ZHANG Hongliang, et al. Efficient electrochemical hydrogenation of nitroaromatics into arylamines on a CuCo2O4 spinel cathode in an alkaline electrolyte[J]. ACS Catalysis, 2022, 12(1): 58-65.
|
2 |
ABDELHAMID Hani Nasser. High performance and ultrafast reduction of 4-nitrophenol using metal-organic frameworks[J]. Journal of Environmental Chemical Engineering, 2021, 9(1): 104404.
|
3 |
ATTIA Yasser A, MOHAMED Yasser M A. Silicon-grafted Ag/AgX/rGO nanomaterials (X = Cl or Br) as dip-photocatalysts for highly efficient p-nitrophenol reduction and paracetamol production[J]. Applied Organometallic Chemistry, 2019, 33(3): 1-11.
|
4 |
YU Yeonhwa, JUNG Euiyoung, KIM Hyun Jin, et al. Protein particles decorated with Pd nanoparticles for the catalytic reduction of p-nitrophenol to p-aminophenol[J]. ACS Applied Nano Materials, 2020, 3(10): 10487-10496.
|
5 |
ZHANG Tingting, JIANG Jingyang, WANG Yanhua. Green route for the preparation of p-aminophenol from nitrobenzene by catalytic hydrogenation in pressurized CO2/H2O system[J]. Organic Process Research & Development, 2015, 19(12): 2050-2054.
|
6 |
ZOU Luyao, CUI Yuanyuan, DAI Weilin. Highly efficient Au/TiO2 catalyst for one-pot conversion of nitrobenzene to p-aminophenol in water media[J]. Chinese Journal of Chemistry, 2014, 32(3): 257-262.
|
7 |
DONG Zhen, WANG Tao, ZHAO Jie, et al. Ni-Silicides nanoparticles as substitute for noble metals for hydrogenation of nitrobenzene to p-aminophenol in sulfuric acid[J]. Applied Catalysis A: General, 2016, 520: 151-156.
|
8 |
RODE Chandrashekhar V, VAIDYA Manisha J, CHAUDHARI Raghunath V. Synthesis of p-aminophenol by catalytic hydrogenation of nitrobenzene[J]. Organic Process Research & Development, 1999, 3(6): 465-470.
|
9 |
王淑芳, 高杨, 王延吉, 等. 负载型纳米Pt催化剂的制备及其催化合成对氨基苯酚[J]. 石油化工, 2009, 38(4): 361-366.
|
|
WANG Shufang, GAO Yang, WANG Yanji, et al. Preparation of supported nano-Pt catalyst for synthesis of p-aminophenol[J]. Petrochemical Technology, 2009, 38(4): 361-366.
|
10 |
王淑芳, 王延吉, 高杨, 等. SAPO-5分子筛的制备及其催化合成对氨基苯酚[J]. 催化学报, 2010, 31(6): 637-644.
|
|
WANG Shufang, WANG Yanji, GAO Yang, et al. Preparation of SAPO-5 and its catalytic synthesis of p-aminophenol[J]. Chinese Journal of Catalysis, 2010, 31(6): 637-644.
|
11 |
WANG Shufang, JIN Yadan, HE Beibei, et al. Synthesis of bifunctional Pt/MgAPO-5 catalysts and their catalytic performance in the hydrogenation of nitrobenzene to p-aminophenol[J]. Science China Chemistry, 2010, 53(7): 1514-1519.
|
12 |
宋丽娟, 王利, 张晓彤, 等. 一种非酸介质中硝基苯选择加氢制对氨基苯酚的催化剂:CN102600891A[P]. 2012-07-25.
|
|
SONG Lijuan, WANG Li, ZHANG Xiaotong, et al. A catalyst for selective hydrogenation of nitrobenzene to p-aminophenol in a non-acid medium:CN102600891A[P]. 2012-07-25.
|
13 |
Jeeva RATNAM K, Sudarshan REDDY R, SEKHAR N S, et al. Bamberger rearrangement on solid acids[J]. Applied Catalysis A: General, 2008, 348(1): 26-29.
|
14 |
DESHPANDE Abhay, FIGUERAS F, LAKSHMI KANTAM M, et al. Environmentally friendly hydrogenation of nitrobenzene to p-aminophenol using heterogeneous catalysts[J]. Journal of Catalysis, 2010, 275(2): 250-256.
|
15 |
黄伟, 储政, 任磊, 等. 碳基固体酸在硝基苯加氢制备对氨基苯酚中的应用[J]. 化工进展, 2023, 42(1): 272-281.
|
|
HUANG Wei, CHU Zheng, REN Lei, et al. Application of carbon-based solid acid in hydrogenation of nitrobenzene to p-aminophenol[J]. Chemical Industry and Engineering Progress, 2023, 42(1): 272-281.
|
16 |
刘迎新, 刘晓爽, 曾茂, 等. 硝基苯催化加氢合成对氨基苯酚的研究进展[J]. 石油化工, 2018, 47(1): 79-85.
|
|
LIU Yingxin, LIU Xiaoshuang, ZENG Mao, et al. Progress in synthesis of p-aminophenol by catalytic hydrogenation of nitrobenzene[J]. Petrochemical Technology, 2018, 47(1): 79-85.
|
17 |
GU Jing, ZHANG Zhiyang, DING Liping, et al. Platinum nanoparticles encapsulated in HZSM-5 crystals as an efficient catalyst for green production of p-aminophenol[J]. Catalysis Communications, 2017, 97: 98-101.
|
18 |
蒋文艳, 魏光涛, 刘子涵, 等. 催化转移加氢及其强化研究进展[J]. 现代化工, 2019, 39(3): 26-30.
|
|
JIANG Wenyan, WEI Guangtao, LIU Zihan, et al. Research progress in catalytic transfer hydrogenation and its intensification[J]. Modern Chemical Industry, 2019, 39(3): 26-30.
|
19 |
郑纯智, 张继炎, 王日杰. 催化转移加氢及其在有机合成中的应用[J]. 工业催化, 2004, 12(3): 29-35.
|
|
ZHENG Chunzhi, ZHANG Jiyan, WANG Rijie. Catalytic transfer hydrogenation and its application in organic synthesis[J]. Industrial Catalysis, 2004, 12(3): 29-35.
|
20 |
MENG Qinglei, YANG Xiaolong, WANG Xian, et al. Preparation strategy using pre-nucleation coupled with in situ reduction for a high-performance catalyst towards selective hydrogen production from formic acid[J]. Catalysts, 2022, 12(3): 325.
|
21 |
王显. 甲酸氢能转换过程中抗中毒催化剂的理性设计与精准制备[D]. 合肥: 中国科学技术大学, 2021.
|
|
WANG Xian. Rational design and precise preparation of anti-poisoning catalyst in the conversion of formic acid to hydrogen energy[D]. Hefei: University of Science and Technology of China, 2021.
|
22 |
JIA Yu, LI Fang, ZHANG Yisheng, et al. A novel process for the synthesis of p-aminophenol by transfer hydrogenation of nitrobenzene using formic acid as hydrogen source[J]. Asia-Pacific Journal of Chemical Engineering, 2022, 17(5): 1-10.
|
23 |
DHAKSHINAMOORTHY Amarajothi, GARCIA Hermenegildo. Metal-organic frameworks as solid catalysts for the synthesis of nitrogen-containing heterocycles[J]. Chemical Society Reviews, 2014, 43(16): 5750-5765.
|
24 |
Raja DAS, PACHFULE Pradip, BANERJEE Rahul, et al. Metal and metal oxide nanoparticle synthesis from metal organic frameworks (MOFs): Finding the border of metal and metal oxides[J]. Nanoscale, 2012, 4(2): 591-599.
|
25 |
SHEN Kui, CHEN Xiaodong, CHEN Junying, et al. Development of MOF-derived carbon-based nanomaterials for efficient catalysis[J]. ACS Catalysis, 2016, 6(9): 5887-5903.
|
26 |
CAO Wenxiu, LUO Wenhao, GE Hongguang, et al. UiO-66 derived Ru/ZrO2@C as a highly stable catalyst for hydrogenation of levulinic acid to γ-valerolactone[J]. Green Chemistry, 2017, 19(9): 2201-2211.
|
27 |
ZHANG Weina, LU Guang, CUI Chenlong, et al. A family of metal-organic frameworks exhibiting size-selective catalysis with encapsulated noble-metal nanoparticles[J]. Advanced Materials, 2014, 26(24): 4056-4060.
|
28 |
ZHANG Xue, QIAO Jing, LIU Chang, et al. A MOF-derived ZrO2/C nanocomposite for efficient electromagnetic wave absorption[J]. Inorganic Chemistry Frontiers, 2020, 7(2): 385-393.
|
29 |
RAHMAN Md Anisur, ROUT S, THOMAS Joseph P, et al. Defect-rich dopant-free ZrO2 nanostructures with superior dilute ferromagnetic semiconductor properties[J]. Journal of the American Chemical Society, 2016, 138(36): 11896-11906.
|
30 |
QIAO Jing, ZHANG Xue, XU Dongmei, et al. Design and synthesis of TiO2/Co/carbon nanofibers with tunable and efficient electromagnetic absorption[J]. Chemical Engineering Journal, 2020, 380: 122591.
|
31 |
FENG Wei, WANG Yaming, CHEN Junchen, et al. Reduced graphene oxide decorated with in-situ growing ZnO nanocrystals: Facile synthesis and enhanced microwave absorption properties[J]. Carbon, 2016, 108: 52-60.
|
32 |
Qing LYU, MENG Qinglei, LIU Weiwei, et al. Pd-PdO interface as active site for HCOOH selective dehydrogenation at ambient condition[J]. The Journal of Physical Chemistry C, 2018, 122(4): 2081-2088.
|
33 |
WEI Qinhong, MA Qingxiang, ZUO Pingping, et al. Hollow structure and electron promotion effect of mesoporous Pd/CeO2 catalyst for enhanced catalytic hydrogenation[J]. ChemCatChem, 2018, 10(5): 1019-1026.
|