1 |
TUNG Tran Thanh, YOO Jeongha, ALOTAIBI Faisal K, et al. Graphene oxide-assisted liquid phase exfoliation of graphite into graphene for highly conductive film and electromechanical sensors[J]. ACS Applied Materials & Interfaces, 2016, 8(25): 16521-16532.
|
2 |
GUO Jingyu, ZHANG Dongzhi, LI Tingting, et al. Green light-driven acetone gas sensor based on electrospinned CdS nanospheres/Co3O4 nanofibers hybrid for the detection of exhaled diabetes biomarker[J]. Journal of Colloid and Interface Science, 2022, 606: 261-271.
|
3 |
JING Zhihong, ZHAN Jinhua. Fabrication and gas-sensing properties of porous ZnO nanoplates[J]. Advanced Materials, 2008, 20(23): 4547-4551.
|
4 |
张天翔, 王冬. 用于气体传感器的碳复合NiO敏感材料[J]. 化工进展, 2020, 39(11): 4544-4549.
|
|
ZHANG Tianxiang, WANG Dong. Research on carbon composite NiO sensitive material used for gas sensor[J]. Chemical Industry and Engineering Progress, 2020, 39(11): 4544-4549.
|
5 |
张晓, 徐瑶华, 刘皓, 等. 基于金属氧化物的乙醇检测气敏材料的研究进展[J]. 化工进展, 2019, 38(7): 3207-3226.
|
|
ZHANG Xiao, XU Yaohua, LIU Hao, et al. Recent advances of ethanol detection materials based on metal oxides[J]. Chemical Industry and Engineering Progress, 2019, 38(7): 3207-3226.
|
6 |
LI Gaojie, CHENG Zhixuan, XIANG Qun, et al. Bimetal PdAu decorated SnO2 nanosheets based gas sensor with temperature-dependent dual selectivity for detecting formaldehyde and acetone[J]. Sensors and Actuators B: Chemical, 2019, 283: 590-601.
|
7 |
HUANGFU Peijue, ATKINSON Richard. Long-term exposure to NO2 and O3 and all-cause and respiratory mortality: A systematic review and meta-analysis[J]. Environment International, 2020, 144: 105998.
|
8 |
Tae Hoon EOM, CHO Sung Hwan, Jun Min SUH, et al. Substantially improved room temperature NO2 sensing in 2-dimensional SnS2 nanoflowers enabled by visible light illumination[J]. Journal of Materials Chemistry A, 2021, 9(18): 11168-11178.
|
9 |
YAO Xingyu, ZHAO Jinbo, JIN Zhidong, et al. Flower-like hydroxyfluoride-sensing platform toward NO2 detection[J]. ACS Applied Materials & Interfaces, 2021, 13(22): 26278-26287.
|
10 |
LI Qingting, ZENG Wen, LI Yanqiong. Metal oxide gas sensors for detecting NO2 in industrial exhaust gas: Recent developments[J]. Sensors and Actuators B: Chemical, 2022, 359: 131579.
|
11 |
HVIDTFELDT Ulla Arthur, Mette SØRENSEN, GEELS Camilla, et al. Long-term residential exposure to PM2.5, PM10, black carbon, NO2, and ozone and mortality in a Danish cohort[J]. Environment International, 2019, 123: 265-272.
|
12 |
HUANG Yanqian, ZHU Meng, JI Mengmeng, et al. Air pollution, genetic factors, and the risk of lung cancer: A prospective study in the UK biobank[J]. American Journal of Respiratory and Critical Care Medicine, 2021, 204(7): 817-825.
|
13 |
SHIN Dain, SOHN Inkyu, KIM Jaehyeok, et al. Defect-selective functionalization of 2D-WS2 nanofilms with Pt nanoparticles for enhanced room-temperature NO2 gas sensing[J]. ACS Applied Nano Materials, 2023, 6(20): 19327-19337.
|
14 |
LIU Yingxuan, ZHANG Yanan, LIU Shuting, et al. Fiber optic room temperature ethanol sensor based on ZnSnO3/TiO2 with UV radiation sensitization[J]. Sensors and Actuators B: Chemical, 2024, 399: 134814.
|
15 |
HOJAMBERDIEV Mirabbos, GOEL Neeraj, KUMAR Rahul, et al. Efficient NO2 sensing performance of a low-cost nanostructured sensor derived from molybdenite concentrate[J]. Green Chemistry, 2020, 22(20): 6981-6991.
|
16 |
GAO Xing, ZHANG Tong. An overview: Facet-dependent metal oxide semiconductor gas sensors[J]. Sensors and Actuators B: Chemical, 2018, 277: 604-633.
|
17 |
DROBEK Martin, KIM Jae-Hun, BECHELANY Mikhael, et al. MOF-based membrane encapsulated ZnO nanowires for enhanced gas sensor selectivity[J]. ACS Applied Materials & Interfaces, 2016, 8(13): 8323-8328.
|
18 |
陶国清, 程知萱, 张丹, 等. 双金属MOF衍生的Co掺杂氧化锌多孔材料制备及其气敏性能[J]. 功能材料, 2020, 51(9): 9185-9192.
|
|
TAO Guoqing, CHENG Zhixuan, ZHANG Dan, et al. Preparation and gas sensing properties of Co-doped ZnO porous materials derived by bimetal MOF[J]. Journal of Functional Materials, 2020, 51(9): 9185-9192.
|
19 |
YAO Mingshui, TANG Wenxiang, WANG Guane, et al. MOF thin film-coated metal oxide nanowire array: Significantly improved chemiresistor sensor performance[J]. Advanced Materials, 2016, 28(26): 5229-5234.
|
20 |
WU Xiaonan, XIONG Shunshun, GONG Yu, et al. MOF-SMO hybrids as a H2S sensor with superior sensitivity and selectivity[J]. Sensors and Actuators B: Chemical, 2019, 292: 32-39.
|
21 |
赵佳明. Cu2O@SnO2异质核-壳多面体的制备以及气敏性能研究[D]. 长春: 吉林大学, 2021.
|
|
ZHAO Jiaming. Preparation and gas sensing properties of Cu2O@SnO2 heterogeneous core-shell polyhedron[D]. Changchun: Jilin University, 2021.
|
22 |
郭杰. 基于Co3O4纳米异质结构的气体传感器研究[D]. 长春: 吉林大学, 2021.
|
|
GUO jie. Research on gas sensor based on Co3O4 nano-heterostructure[D]. Changchun: Jilin University, 2021.
|
23 |
KIM Seon Joon, Hyeong-Jun KOH, REN Chang e, et al. Metallic Ti3C2T x MXene gas sensors with ultrahigh signal-to-noise ratio[J]. ACS Nano, 2018, 12(2): 986-993.
|
24 |
LIPATOV Alexey, ALHABEB Mohamed, LUKATSKAYA Maria R, et al. MXene materials: Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes[J]. Advanced Electronic Materials, 2016, 2(12): 1670068.
|
25 |
SHAHZAD Faisal, ALHABEB Mohamed, HATTER Christine B, et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes)[J]. Science, 2016, 353(6304): 1137-1140.
|
26 |
LIU Ji, ZHANG Haobin, SUN Renhui, et al. Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding[J]. Advanced Materials, 2017, 29(38): 1702367.
|
27 |
NAGUIB M, KURTOUGLU M, PRESSER V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2 [J]. Advanced materials, 2011, 23(37): 4248-4253.
|
28 |
TAI Huiling, DUAN Zaihua, HE Zaizhou, et al. Enhanced ammonia response of Ti3C2T nanosheets supported by TiO2 nanoparticles at room temperature[J]. Sensors and Actuators B: Chemical, 2019, 298: 126874.
|
29 |
YANG Zijie, JIANG Li, WANG Jing, et al. Flexible resistive NO2 gas sensor of three-dimensional crumpled MXene Ti3C2T x /ZnO spheres for room temperature application[J]. Sensors and Actuators B: Chemical, 2021, 326: 128828.
|
30 |
LEE Jong-Heun. Gas sensors using hierarchical and hollow oxide nanostructures: Overview[J]. Sensors and Actuators B: Chemical, 2009, 140(1): 319-336.
|
31 |
GHIDIU Michael, LUKATSKAYA Maria R, ZHAO Mengqiang, et al. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance[J]. Nature, 2014, 516(7529): 78-81.
|
32 |
陈赛, 陶丽娟, 李伟, 等. ZIF-8/丙烯酸十四-十六酯共聚物和PB/丙烯酸十四-十六酯共聚物形状稳定相变材料的制备与性能[J]. 复合材料学报, 2021, 38(11): 3896-3903.
|
|
CHEN Sai, TAO Lijuan, LI Wei, et al. Fabrication and characterization of shape-stabilized phase change materials of ZIF-8/P(tetradecyl acrylate-co-hexadecyl acrylate) and Prussian blue/(tetradecyl acrylate-co-hexadecyl acrylate)[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3896-3903.
|
33 |
JANG Eunhee, KIM Eunjoo, KIM Heejoong, et al. Formation of ZIF-8 membranes inside porous supports for improving both their H2/CO2 separation performance and thermal/mechanical stability[J]. Journal of Membrane Science, 2017, 540: 430-439.
|
34 |
LI Xinliang, YIN Xiaowei, XU Hailong, et al. Ultralight MXene-coated, interconnected SiCnws three-dimensional lamellar foams for efficient microwave absorption in the X-band[J]. ACS Applied Materials & Interfaces, 2018, 10(40): 34524-34533.
|
35 |
LIU Siwei, WANG Mingyuan, LIU Guiwu, et al. Enhanced NO2 gas-sensing performance of 2D Ti3C2/TiO2 nanocomposites by in situ formation of Schottky barrier[J]. Applied Surface Science, 2021, 567: 150747.
|
36 |
SABRY Raad S, AGOOL Ibrahim R, ABBAS Asaad M. Hydrothermal synthesis of In2O3: Ag nanostructures for NO2 gas sensor[J]. Silicon, 2019, 11(5): 2475-2478.
|
37 |
LEE HsinYing, HEISH YungChing, LEE ChingTing. High sensitivity detection of nitrogen oxide gas at room temperature using zinc oxide-reduced graphene oxide sensing membrane[J]. Journal of Alloys and Compounds, 2019, 773: 950-954.
|
38 |
TANG Xiao, DU Aijun, KOU Liangzhi. Gas sensing and capturing based on two‐dimensional layered materials: Overview from theoretical perspective[J]. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2018, 8: 1361
|
39 |
BARSAN Nicolae, WEIMAR Udo. Conduction model of metal oxide gas sensors[J]. Journal of Electroceramics, 2001, 7(3): 143-167.
|