化工进展 ›› 2024, Vol. 43 ›› Issue (7): 3923-3933.DOI: 10.16085/j.issn.1000-6613.2023-1010
• 材料科学与技术 • 上一篇
唐安琪(), 魏昕, 丁黎明, 王玉杰, 徐一潇, 刘轶群()
收稿日期:
2023-06-20
修回日期:
2023-09-08
出版日期:
2024-07-10
发布日期:
2024-08-14
通讯作者:
刘轶群
作者简介:
唐安琪(1994—),女,工程师,博士,研究方向为分离膜材料与技术。E-mail:tangaq.bjhy@sinopec.com。
TANG Anqi(), WEI Xin, DING Liming, WANG Yujie, XU Yixiao, LIU Yiqun()
Received:
2023-06-20
Revised:
2023-09-08
Online:
2024-07-10
Published:
2024-08-14
Contact:
LIU Yiqun
摘要:
气体分离膜技术是一项广受关注的新兴技术,芳香族聚酰亚胺是最具应用前景的气体分离膜材料之一。目前,学术界已对多种结构的聚酰亚胺进行了实验室规模的开发和研究,但在实际工业应用情境下,膜材料长期服役过程中的物理老化现象极大影响着气体分离性能的准确评估和工艺参数的合理设计。本文综述了当前针对聚酰亚胺类薄膜和非对称膜物理老化行为的研究现状,总结了前人提出的老化机理模型,分析了影响老化进程的主要因素,提出了物理老化的预防和改善方法。提出不易老化的气体分离膜用聚酰亚胺应具备的特质包括较强的分子链刚性、受限的链空间构型和合适的链间相互作用。未来相关研究的重点方向可能为聚酰亚胺新结构探索、交联剂开发、制备工艺优化等方面。
中图分类号:
唐安琪, 魏昕, 丁黎明, 王玉杰, 徐一潇, 刘轶群. 聚酰亚胺气体分离膜的物理老化现象浅析[J]. 化工进展, 2024, 43(7): 3923-3933.
TANG Anqi, WEI Xin, DING Liming, WANG Yujie, XU Yixiao, LIU Yiqun. Discussing physical aging phenomenon of polyimide gas separation membranes[J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3923-3933.
1 | KOROS W J, FLEMING G K. Membrane-based gas separation[J]. Journal of Membrane Science, 1993, 83(1): 1-80. |
2 | BAKER R W, Bee Ting LOW. Gas separation membrane materials: A perspective[J]. Macromolecules, 2014, 47(20): 6999-7013. |
3 | SANAEEPUR H, EBADI AMOOGHIN A, BANDEHALI S, et al. Polyimides in membrane gas separation: Monomer’s molecular design and structural engineering[J]. Progress in Polymer Science, 2019, 91: 80-125. |
4 | QIU Wulin, XU Liren, CHEN Chien-Chiang, et al. Gas separation performance of 6FDA-based polyimides with different chemical structures[J]. Polymer, 2013, 54(22): 6226-6235. |
5 | XU Zhen, CROFT Z L, GUO Dong, et al. Recent development of polyimides: Synthesis, processing, and application in gas separation[J]. Journal of Polymer Science, 2021, 59(11): 943-962. |
6 | WOOCK T, BJORGAARD S, TANDE Brian, et al. Purification of natural gas using thermally rearranged polybenzoxazole and polyimide membranes-A review: Part 1[J]. Membrane Technology, 2016, 2016(9): 7-12. |
7 | Ze-Xian LOW, BUDD P M, MCKEOWN N B, et al. Gas permeation properties, physical aging, and its mitigation in high free volume glassy polymers[J]. Chemical Reviews, 2018, 118(12): 5871-5911. |
8 | HUTCHINSON J M. Physical aging of polymers[J]. Progress in Polymer Science, 1995, 20(4): 703-760. |
9 | REZAC M E, PFROMM P H, COSTELLO L M, et al. Aging of thin polyimide-ceramic and polycarbonate-ceramic composite membranes[J]. Industrial & Engineering Chemistry Research, 1993, 32(9): 1921-1926. |
10 | LIN Wenhui, CHUNG Tai-Shung. Gas permeability, diffusivity, solubility, and aging characteristics of 6FDA-durene polyimide membranes[J]. Journal of Membrane Science, 2001, 186(2): 183-193. |
11 | KIM J H, KOROS W J, PAUL D R. Physical aging of thin 6FDA-based polyimide membranes containing carboxyl acid groups. Part II. Optical properties[J]. Polymer, 2006, 47(9): 3104-3111. |
12 | FU Ywu-Jang, HSIAO Sheng-Wen, HU Chien-Chieh, et al. Effect of physical aging on sorption and permeation of small molecules in polyimide membranes[J]. Desalination, 2008, 234(1/2/3): 58-65. |
13 | STRUIK L C E. Physical aging in plastics and other glassy materials[J]. Polymer Engineering & Science, 1977, 17(3): 165-173. |
14 | KIM J H, KOROS W J, PAUL D R. Physical aging of thin 6FDA-based polyimide membranes containing carboxyl acid groups. Part Ⅰ. Transport properties[J]. Polymer, 2006, 47(9): 3094-3103. |
15 | MCCAIG M S, PAUL D R. Effect of film thickness on the changes in gas permeability of a glassy polyarylate due to physical aging. Part Ⅰ. Experimental observations[J]. Polymer, 2000, 41(2): 629-637. |
16 | MCCAIG M S, PAUL D R, BARLOW J W. Effect of film thickness on the changes in gas permeability of a glassy polyarylate due to physical aging Part Ⅱ. Mathematical model[J]. Polymer, 2000, 41(2): 639-648. |
17 | XIAO Youchang, Bee Ting LOW, HOSSEINI S S, et al. The strategies of molecular architecture and modification of polyimide-based membranes for CO2 removal from natural gas—A review[J]. Progress in Polymer Science, 2009, 34(6): 561-580. |
18 | CURRO J G, LAGASSE R R, SIMHA Robert. Diffusion model for volume recovery in glasses[J]. Macromolecules, 1982, 15(6): 1621-1626. |
19 | 丁晓莉, 曹义鸣, 赵红永, 等. 聚酰亚胺中空纤维气体分离膜的物理老化现象[J]. 高校化学工程学报, 2010, 24(3): 382-387. |
DING Xiaoli, CAO Yiming, ZHAO Hongyong, et al. The physical aging phenomenon of polyimide hollow fiber membranes for gas separation[J]. Journal of Chemical Engineering of Chinese Universities, 2010, 24(3): 382-387. | |
20 | KAWAKAMI H, MIKAWA M, NAGAOKA S. Gas transport properties in thermally cured aromatic polyimide membranes[J]. Journal of Membrane Science, 1996, 118(2): 223-230. |
21 | KOROS W. Elevated temperature application of polymer hollow-fiber membranes[J]. Journal of Membrane Science, 2001, 181(2): 157-166. |
22 | WIENEKE J U, STAUDT C. Thermal stability of 6 F D A - ( c o - ) polyimides containing carboxylic acid groups[J]. Polymer Degradation and Stability, 2010, 95(4): 684-693. |
23 | ZHOU Chun, CHUNG Tai-Shung, WANG Rong, et al. A governing equation for physical aging of thick and thin fluoropolyimide films[J]. Journal of Applied Polymer Science, 2004, 92(3): 1758-1764. |
24 | CUI Lili, QIU Wulin, PAUL D R, et al. Physical aging of 6FDA-based polyimide membranes monitored by gas permeability[J]. Polymer, 2011, 52(15): 3374-3380. |
25 | LIN Wenhui, CHUNG Tai-Shung. The physical aging phenomenon of 6FDA-durene polyimide hollow fiber membranes[J]. Journal of Polymer Science Part B: Polymer Physics, 2000, 38(5): 765-775. |
26 | PFROMM P H, PINNAU I, KOROS W J. Gas transport through integral-asymmetric membranes: A comparison to isotropic film transport properties[J]. Journal of Applied Polymer Science, 1993, 48(12): 2161-2171. |
27 | CHUNG Tai-Shung, LIN Wenhui, VORA R H. The effect of shear rates on gas separation performance of 6FDA-durene polyimide hollow fibers[J]. Journal of Membrane Science, 2000, 167(1): 55-66. |
28 | CHUNG Tai-Shung, KAFCHINSKI E R. Aging phenomenon of 6FDA-polyimide/polyacrylonitrile composite hollow fibers[J]. Journal of Applied Polymer Science, 1996, 59(1): 77-82. |
29 | YOSHINO M, NAKAMURA S, KITA H, et al. Olefin/paraffin separation performance of asymmetric hollow fiber membrane of 6FDA/BPDA-DDBT copolyimide[J]. Journal of Membrane Science, 2003, 212(1/2): 13-27. |
30 | SWAIDAN R, GHANEM B, LITWILLER E, et al. Physical aging, plasticization and their effects on gas permeation in “rigid” polymers of intrinsic microporosity[J]. Macromolecules, 2015, 48(18): 6553-6561. |
31 | LUO Shuangjiang, WIEGAND J R, GAO Peiyuan, et al. Molecular origins of fast and selective gas transport in pentiptycene-containing polyimide membranes and their physical aging behavior[J]. Journal of Membrane Science, 2016, 518: 100-109. |
32 | ALGHUNAIMI F, GHANEM B, ALASLAI N, et al. Gas permeation and physical aging properties of iptycene diamine-based microporous polyimides[J]. Journal of Membrane Science, 2015, 490: 321-327. |
33 | WANG Yingge, GHANEM B S, HAN Yu, et al. Facile synthesis and gas transport properties of Hünlich’s base-derived intrinsically microporous polyimides[J]. Polymer, 2020, 201: 122619. |
34 | KANG Shuanyan, ZHANG Zhiguang, WU Lei, et al. Synthesis and gas separation properties of polyimide membranes derived from oxygencyclic pseudo-Tröger’s base[J]. Journal of Membrane Science, 2021, 637: 119604. |
35 | XIAO Yuyang, LEI Xingfeng, LIU Yang, et al. Double-decker-shaped phenyl-substituted silsesquioxane (DDSQ)-based nanocomposite polyimide membranes with tunable gas permeability and good aging resistance[J]. Separation and Purification Technology, 2023, 315: 123725. |
36 | WEIDMAN J R, LUO Shuangjiang, DOHERTY C M, et al. Analysis of governing factors controlling gas transport through fresh and aged triptycene-based polyimide films[J]. Journal of Membrane Science, 2017, 522: 12-22. |
37 | ZHANG Zhiguang, REN Xiaolong, HUO Guolong, et al. Tuning interchain cavity of fluorinated polyimide by DABA for improved gas separation performance[J]. Journal of Membrane Science, 2023, 675: 121485. |
38 | ZHOU Fangbin, KOROS W J. Study of thermal annealing on Matrimid® fiber performance in pervaporation of acetic acid and water mixtures[J]. Polymer, 2006, 47(1): 280-288. |
39 | VANHERCK K, KOECKELBERGHS G, VANKELECOM I F J. Crosslinking polyimides for membrane applications: A review[J]. Progress in Polymer Science, 2013, 38(6): 874-896. |
40 | KROL J J, BOERRIGTER M, KOOPS G H. Polyimide hollow fiber gas separation membranes: Preparation and the suppression of plasticization in propane/propylene environments[J]. Journal of Membrane Science, 2001, 184(2): 275-286. |
41 | CHEN Xiuling, ZHANG Zhiguang, WU Lei, et al. Hydrogen bonding-induced 6FDA-DABA/TB polymer blends for high performance gas separation membranes[J]. Journal of Membrane Science, 2022, 655: 120575. |
42 | ROBESON L M. The upper bound revisited[J]. Journal of Membrane Science, 2008, 320(1/2): 390-400. |
43 | FUHRMAN C, NUTT M, VICHTOVONGA K, et al. Effect of thermal hysteresis on the gas permeation properties of 6FDA-based polyimides[J]. Journal of Applied Polymer Science, 2004, 91(2): 1174-1182. |
44 | MCCAIG M S, PAUL D R. Effect of UV crosslinking and physical aging on the gas permeability of thin glassy polyarylate films[J]. Polymer, 1999, 40(26): 7209-7225. |
45 | KIM J H, KOROS W J, PAUL D R. Effects of CO2 exposure and physical aging on the gas permeability of thin 6FDA-based polyimide membranes: Part 2. With crosslinking[J]. Journal of Membrane Science, 2006, 282(1): 32-43. |
46 | LIU Ye, WANG Rong, CHUNG Tai-Shung. Chemical cross-linking modification of polyimide membranes for gas separation[J]. Journal of Membrane Science, 2001, 189(2): 231-239. |
47 | ZHOU Chun, CHUNG Tai-Shung, WANG Rong, et al. The accelerated CO2 plasticization of ultra-thin polyimide films and the effect of surface chemical cross-linking on plasticization and physical aging[J]. Journal of Membrane Science, 2003, 225(1/2): 125-134. |
48 | POWELL C E, DUTHIE X J, KENTISH S E, et al. Reversible diamine cross-linking of polyimide membranes[J]. Journal of Membrane Science, 2007, 291(1/2): 199-209. |
49 | CUI Lili, QIU Wulin, PAUL D R, et al. Responses of 6FDA-based polyimide thin membranes to CO2 exposure and physical aging as monitored by gas permeability[J]. Polymer, 2011, 52(24): 5528-5537. |
50 | TIAN Zhikang, CAO Bing, LI Pei. Effects of sub-Tg cross-linking of triptycene-based polyimides on gas permeation, plasticization resistance and physical aging properties[J]. Journal of Membrane Science, 2018, 560: 87-96. |
51 | WARD J K, KOROS W J. Crosslinkable mixed matrix membranes with surface modified molecular sieves for natural gas purification: Ⅱ. Performance characterization under contaminated feed conditions[J]. Journal of Membrane Science, 2011, 377(1/2): 82-88. |
52 | TAN Xiaoyu, ROBIJNS S, THÜR R, et al. Truly combining the advantages of polymeric and zeolite membranes for gas separations[J]. Science, 2022, 378(6625): 1189-1194. |
53 | SONG Shuqing, ZHAO Mingang, GUO Zheyuan, et al. Mixed matrix composite membranes with MOF-protruding structure for efficient CO2 separation[J]. Journal of Membrane Science, 2023, 669: 121340. |
54 | YANG Yanqin, Kunli GOH, WEERACHANCHAI P, et al. 3D covalent organic framework for morphologically induced high-performance membranes with strong resistance toward physical aging[J]. Journal of Membrane Science, 2019, 574: 235-242. |
55 | LIU Tongxin, ZHANG Ruili, SI Guangrui, et al. Molecularly homogenized composite membranes containing solvent-soluble metallocavitands for CO2/CH4 separation[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(40): 13534-13544. |
[1] | 丁路, 王培尧, 孔令学, 白进, 于广锁, 李文, 王辅臣. 煤气化过程反应模型研究进展[J]. 化工进展, 2024, 43(7): 3593-3612. |
[2] | 李妍, 吴芹, 陈康成, 张耀远, 史大昕, 黎汉生. 聚酰亚胺渗透汽化膜用于有机溶剂脱水的改性研究进展[J]. 化工进展, 2024, 43(6): 2915-2927. |
[3] | 王庆泰, 张赛, 王杰敏. 全钒液流电池多孔电极非均匀压缩的数值模拟[J]. 化工进展, 2024, 43(6): 2940-2949. |
[4] | 熊远帆, 李华山, 龚宇烈. 非共沸工质蒸发式冷凝器多目标优化设计[J]. 化工进展, 2024, 43(6): 2950-2960. |
[5] | 郑锁祺, 詹凌霄, 陈恒, 李志浩, 王禹瑞, 赵宁, 吴昊, 杨林军. 基于混合模型的脱硫废水旁路蒸发系统能耗特性[J]. 化工进展, 2024, 43(6): 2968-2976. |
[6] | 易智康, 刘思琪, 崔国民, 段欢欢, 肖媛. 有分流棋盘模型应用于不相容多组分质量交换网络优化[J]. 化工进展, 2024, 43(6): 2986-2995. |
[7] | 张东旭, 刘成, 宋乐春, 黄启玉, 王唯. 乳状液体系中气体水合物成核过程研究进展[J]. 化工进展, 2024, 43(6): 3007-3020. |
[8] | 王涛, 高翔, 高继峰, 邓海全, 余显涌, 周振华, 唐玲, 吕航. 改性Cu-BTC基混合基质膜在CO2分离中的应用[J]. 化工进展, 2024, 43(6): 3240-3246. |
[9] | 王宝山, 陈晓杰, 赵培宇, 张许. 基于三维生物膜电极的难生化有机化工废水处理研究进展[J]. 化工进展, 2024, 43(6): 3359-3373. |
[10] | 马海飞, 廖亚龙, 武敏, 贾小宝, 杨双宇. 湿法炼铜浸出液萃取分离硫酸机理[J]. 化工进展, 2024, 43(6): 3410-3419. |
[11] | 周秋明, 牛丛丛, 吕帅帅, 李红伟, 文富利, 徐润, 李明丰. 通过产物转化分离推动CO2加氢制甲醇过程的研究进展[J]. 化工进展, 2024, 43(5): 2776-2785. |
[12] | 武西宁, 张宁, 秦佳敏, 徐龙, 魏朝阳, 马晓迅. 低冷量下强化CO2吸收的甲醇基纳米流体性能[J]. 化工进展, 2024, 43(5): 2811-2822. |
[13] | 李海鹏, 吴桐, 王琪, 郜时旺, 王晓龙, 李旭, 高新华, 年佩, 魏逸彬. 透水NaA分子筛膜强化的CO2加氢高效制甲醇[J]. 化工进展, 2024, 43(5): 2834-2842. |
[14] | 郑可欣, 江雨欣, 毕可鑫, 赵祺铭, 陈少臣, 王冰冰, 任俊宇, 吉旭, 邱彤, 戴一阳. 用于蒸汽裂解产物成分预测的集成迁移学习框架[J]. 化工进展, 2024, 43(5): 2880-2889. |
[15] | 冯飞飞, 田斌, 马鹏飞, 韦荐昕, 徐龙, 田原宇, 马晓迅. 木质素分离原理与方法研究进展[J]. 化工进展, 2024, 43(5): 2512-2525. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |