化工进展 ›› 2024, Vol. 43 ›› Issue (6): 3359-3373.DOI: 10.16085/j.issn.1000-6613.2023-1079
• 资源与环境化工 • 上一篇
王宝山1,2(), 陈晓杰1,2, 赵培宇1,2, 张许1,2
收稿日期:
2023-06-29
修回日期:
2023-09-07
出版日期:
2024-06-15
发布日期:
2024-07-02
通讯作者:
王宝山
作者简介:
王宝山(1979—),男,副教授,研究方向为水污染控制。E-mail:wbs@mail.lzjtu.cn。
基金资助:
WANG Baoshan1,2(), CHEN Xiaojie1,2, ZHAO Peiyu1,2, ZHANG Xu1,2
Received:
2023-06-29
Revised:
2023-09-07
Online:
2024-06-15
Published:
2024-07-02
Contact:
WANG Baoshan
摘要:
近年来,难降解有机化工污染物在自然水体中被广泛检出,对水生态环境和人体健康构成了严重威胁。生物膜电极技术因具备环境友好、去除效率高、适用范围广等优点,在难降解污染物处理领域应用前景日渐广阔。对此,介绍了三维生物膜电极(3D-BERs)反应器构建方法,阐述了三维生物膜电极对有机污染物的降解机理,分析了电化学催化氧化与电活性微生物(EAMs)的协同降解作用,从电子迁移强化角度解析了污染物强化降解机制,并概述了3D-BERs的构建方法与运行参数对反应器效率的影响。本文系统综述了3D-BERs在难生化有机化工废水处理领域中的应用与优势,提出了三维生物膜电极技术的发展前景和今后研究工作的重点方向,为难生化有机化工废水的高效处理提供新思路与技术选择。
中图分类号:
王宝山, 陈晓杰, 赵培宇, 张许. 基于三维生物膜电极的难生化有机化工废水处理研究进展[J]. 化工进展, 2024, 43(6): 3359-3373.
WANG Baoshan, CHEN Xiaojie, ZHAO Peiyu, ZHANG Xu. Research progress on the treatment of refractory organic chemical wastewater using three-dimensional biofilm electrodes[J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3359-3373.
类型 | 门水平 | 属水平 | 环境 | 功能特点 | 参考文献 |
---|---|---|---|---|---|
古菌 | 广古菌门(Euryarchaeota) | 铁丸菌属(Ferroglobus) | 阴极 | 可接收电子,在阴极产氢产甲烷 | [ |
地丸菌属(Geoglobus) | |||||
火球菌属(Pyrococcus) | |||||
细菌 | 绿弯菌门(Chloroflexi) | SBR1031属(SBR1031) | 阴极 | 可分泌紧密黏附的蛋白质,促进邻近细菌细胞的附着和聚集,在不利环境中获得抗性 | [ |
放线菌门(Actinobacteria) | 微白霜菌属(Micropruina) | 阳极 | 易适应抗生素环境;可在电场中参与木质素降解 | [ | |
拟杆菌门(Bacteroidetes) | 金黄杆菌属(Chryseobacterium) | 阳极 | 对有毒污染物具有优异的耐受性,可降解多种有机物,同时富含胞外电子传递基因 | [ | |
厚壁菌门(Firmicutes) | 丹毒丝菌属 (Erysipelothrix) | 阴极 | 利用有机碳源进行生长繁殖 并将硝酸盐还原为氮气 | [ | |
食酸菌属(Acidovorax) | 阳极 | 具有胞外电子传递能力的细菌,在微生物燃料电池中高度富集 | [ | ||
梭菌属(Clostridium) | 两极 | 能够利用黄素或泛醌等介体将电子传递到阳极 | [ | ||
变形菌门(Proteobacteria) | 寡养单胞菌属(Stenotrophomonas) | 阳极 | 可生物降解许多环境化学物质如毒死蜱、咔唑等 | [ | |
嗜甲基菌属(Methylophilus) | 阳极 | 可降解多种有机化合物,如双氯芬酸、布洛芬 | [ | ||
假单胞菌属(Pseudomonas) | 两极 | 可高效矿化多环芳烃 | [ | ||
动胶菌属(Zoogloea) | 阳极 | 可降解表面活性剂和甲苯等有机污染物 | [ | ||
丛毛单胞菌属(Comamonas) | 阳极 | 可降解抗生素,产电双重功能,对多种重金属具有较高的适应性 | [ | ||
陶厄氏菌属(Thauera) | 阴极 | 可以利用氢和无机碳进行自养生长 | [ | ||
不动杆菌属(Acinetobacter) | 阳极 | 是抗生素污染废水中的主要细菌属 | [ | ||
氢噬胞菌属(Hydrogenophaga) | 阴极 | 典型的氢利用物种,可以利用氢作为电子供体,还具有降解复杂有机污染物的能力 | [ | ||
脱硫球茎菌属(Desulfobulbus) | 阳极 | 可高效去除磺胺嘧啶、环丙沙星、磺胺甲𫫇唑等抗生素 | [ | ||
脱硫弧菌属(Desulfovibrio) | 阳极 | 可参与降解四氢呋喃等环状有机物 | [ | ||
地杆菌属(Geobacter) | 阳极 | 利用乙酸作为主要的发酵产物,可用于发电 | [ | ||
希瓦氏菌属(Shewanella) | 阳极 | 可降解硝基苯等复杂有机物 | [ | ||
赫山单胞菌属(Herminiimonas) | 阳极 | 具有抵抗有毒物质的能力,可对有机物实现矿化 | [ | ||
真菌 | 子囊菌门(Ascomycota) | 假丝酵母属(Candida) | 阳极 | 可自身产电发挥与细菌相同功能 | [ |
克鲁维酵母属(Kluyveromyces) | |||||
多型汉逊酵母菌属(Ogataea) | |||||
路德类酵母菌属(Saccharomyces) | |||||
毕赤酵母属(Scheffersomyces) | |||||
芽生葡萄孢酵母属(Blastobotrys) |
表1 在不同电化学环境下EAMs及功能特点
类型 | 门水平 | 属水平 | 环境 | 功能特点 | 参考文献 |
---|---|---|---|---|---|
古菌 | 广古菌门(Euryarchaeota) | 铁丸菌属(Ferroglobus) | 阴极 | 可接收电子,在阴极产氢产甲烷 | [ |
地丸菌属(Geoglobus) | |||||
火球菌属(Pyrococcus) | |||||
细菌 | 绿弯菌门(Chloroflexi) | SBR1031属(SBR1031) | 阴极 | 可分泌紧密黏附的蛋白质,促进邻近细菌细胞的附着和聚集,在不利环境中获得抗性 | [ |
放线菌门(Actinobacteria) | 微白霜菌属(Micropruina) | 阳极 | 易适应抗生素环境;可在电场中参与木质素降解 | [ | |
拟杆菌门(Bacteroidetes) | 金黄杆菌属(Chryseobacterium) | 阳极 | 对有毒污染物具有优异的耐受性,可降解多种有机物,同时富含胞外电子传递基因 | [ | |
厚壁菌门(Firmicutes) | 丹毒丝菌属 (Erysipelothrix) | 阴极 | 利用有机碳源进行生长繁殖 并将硝酸盐还原为氮气 | [ | |
食酸菌属(Acidovorax) | 阳极 | 具有胞外电子传递能力的细菌,在微生物燃料电池中高度富集 | [ | ||
梭菌属(Clostridium) | 两极 | 能够利用黄素或泛醌等介体将电子传递到阳极 | [ | ||
变形菌门(Proteobacteria) | 寡养单胞菌属(Stenotrophomonas) | 阳极 | 可生物降解许多环境化学物质如毒死蜱、咔唑等 | [ | |
嗜甲基菌属(Methylophilus) | 阳极 | 可降解多种有机化合物,如双氯芬酸、布洛芬 | [ | ||
假单胞菌属(Pseudomonas) | 两极 | 可高效矿化多环芳烃 | [ | ||
动胶菌属(Zoogloea) | 阳极 | 可降解表面活性剂和甲苯等有机污染物 | [ | ||
丛毛单胞菌属(Comamonas) | 阳极 | 可降解抗生素,产电双重功能,对多种重金属具有较高的适应性 | [ | ||
陶厄氏菌属(Thauera) | 阴极 | 可以利用氢和无机碳进行自养生长 | [ | ||
不动杆菌属(Acinetobacter) | 阳极 | 是抗生素污染废水中的主要细菌属 | [ | ||
氢噬胞菌属(Hydrogenophaga) | 阴极 | 典型的氢利用物种,可以利用氢作为电子供体,还具有降解复杂有机污染物的能力 | [ | ||
脱硫球茎菌属(Desulfobulbus) | 阳极 | 可高效去除磺胺嘧啶、环丙沙星、磺胺甲𫫇唑等抗生素 | [ | ||
脱硫弧菌属(Desulfovibrio) | 阳极 | 可参与降解四氢呋喃等环状有机物 | [ | ||
地杆菌属(Geobacter) | 阳极 | 利用乙酸作为主要的发酵产物,可用于发电 | [ | ||
希瓦氏菌属(Shewanella) | 阳极 | 可降解硝基苯等复杂有机物 | [ | ||
赫山单胞菌属(Herminiimonas) | 阳极 | 具有抵抗有毒物质的能力,可对有机物实现矿化 | [ | ||
真菌 | 子囊菌门(Ascomycota) | 假丝酵母属(Candida) | 阳极 | 可自身产电发挥与细菌相同功能 | [ |
克鲁维酵母属(Kluyveromyces) | |||||
多型汉逊酵母菌属(Ogataea) | |||||
路德类酵母菌属(Saccharomyces) | |||||
毕赤酵母属(Scheffersomyces) | |||||
芽生葡萄孢酵母属(Blastobotrys) |
序号 | 类型 | 阳极 | 阴极 | 颗粒电极 | 其他参数 | 去除率 | 参考文献 |
---|---|---|---|---|---|---|---|
1 | 垃圾渗滤液 | RuO2-IrO2 | 不锈钢 | 柱状活性炭 | J0=60mA/cm2;C0=2091mg/L; NH4+-N=2531mg/L;pH=8.4;HRT=3h; D=4.8cm | CODCr=26.5%; NH4+-N=81.1% | [ |
2 | 磺胺甲𫫇唑(SMX)、 四环素(TC) | 活性炭纤维/ 钛网 | 活性炭纤维/ 钛网 | GAC+GR | V0=0.8V;C0=0.2mg/L;HRT=6h;T=28℃ | SMX=88.9%~93.5%;TC=89.3%~95.6% | [ |
3 | RBRX-3B | 不锈钢网/ 活性炭纤维 | 钛网/ 活性炭纤维 | GAC | V0=2.5V;C0=1000mg/L;HRT=24h; T=20℃;D=21cm | >90.0% | [ |
4 | 磺胺甲𫫇唑(SMX) | 不锈钢网 | 钛网 | GAC | V0=1V;C0=4000mg/L;HRT=2.5d; T=28℃±2℃;D=11cm | >99.3% | [ |
5 | 布洛芬 | 钛网 | 不锈钢孔板 | 赤泥 | J0=12.73A/m2;C0=93.2μg/L±5.16μg/L; HRT=3.5h;T=28℃±2℃;pH=7.16±0.13; D=30cm | 93.5% | [ |
6 | 焦化废水 | 钛网 | RuO2-IrO2 | GAC | V0=8V;C0=734mg/L;HRT=20h; pH=6.94;D=10cm | 79.6% | [ |
7 | 四氢呋喃 | Ti-IrO2 | 钛网 | 聚氨酯海绵 填料 | V0=10V;C0=4190mg/L±585mg/L; HRT=24h;pH=6.9;D=15cm | 95.9%±1.6% | [ |
8 | 焦化废水 (中试) | Ti/RuO2-IrO2 | Ti/RuO2-IrO2 | GAC | V0=8V;C0=3160.56mg/L;HRT=6h; pH=10.09;D=28cm | 94.4% | [ |
9 | 焦化废水 | 石墨棒 | 不锈钢网 | GAC | I0=20mA;C0=497mg/L;NH4+-N=418mg/L; HRT=10h;pH=8.99;D=5cm | CODCr=68.5%; NH4+-N=99.0% | [ |
10 | 地塞米松 (DEX) | 钛板 | 钛板 | 聚苯胺负载 活性炭 | I0=3mA;C0=100μg/L;HRT=20h; pH=7.2±0.2;D=5cm | 95.7% | [ |
11 | 高氯酸盐 | 石墨棒 | 钛网 | 活性炭纤维 | I0=20mA;C0=10mg/L;HRT=48h;T=30℃±2℃;pH=7.4~8.4;D=2.5cm | 98.2% | [ |
12 | 四溴双酚A | Ti/RuO2-IrO2 | 不锈钢板 | GAC / 颗粒沸石 | V0=5V;C0=20mg/L;HRT=2h;pH=8; D=10cm | 95.0% | [ |
13 | 十二烷基 硫酸钠(SDS) | 石墨板 | 石墨板 | 石墨颗粒 | I0=1786~1796mA/m3;C0=105mg/L±10mg/L; HRT=38.5h;pH=7.5~7.8;D=10cm | 88.0% | [ |
14 | 甲硝唑(MNZ)混合含氮废水 | 石墨棒 | 活性炭纤维毡缠绕不锈钢 | GAC和玻璃珠 | I0=1mA;C0(MNZ)=10mg/L;NO3--N=35mg/L; HRT=6h;T=25℃±3℃;D=8cm | MNZ=94.4%; NO3--N=82.8% | [ |
15 | 水杨酸 | 不锈钢板 | 钛板 | 锂渣 | I0=0.25~0.40A;C0=110.86μg/L;HRT=6h; T=20℃;pH=7.4~7.5;D=15cm | 85.2% | [ |
16 | 罗丹明B | 不锈钢板 | 钛板 | 钢渣 | I0=1.0A;C0=10mg/L;HRT=3.5h; T=20℃±1℃;pH=7.3~7.4;D=8cm | 91.7±1.3% | [ |
17 | 合成废水 | 碳板 | 碳板 | 陶粒 | V0=0.5V;C0=250mg/L;HRT=6h; T=25℃±1℃;D=10cm | >90.0% | [ |
18 | 有机酸 工业废水 | 碳棒 | 碳棒 | MnO2/TiO2/ g-C3N4@ GAC | V0=0.439V;C0=6500mg/L;HRT=12h; pH=5~6 | CODCr=98.0% | [ |
19 | 磺胺嘧啶(SDZ)、环丙沙星(CIP) | 不锈钢丝网 | 不锈钢丝网 | GAC | V0=0.8V;C0=2mg/L;HRT=36h;D=8cm | SDZ=99.1%; CIP=97.3% | [ |
表2 3D-BERs对各类难降解污染物去除效果
序号 | 类型 | 阳极 | 阴极 | 颗粒电极 | 其他参数 | 去除率 | 参考文献 |
---|---|---|---|---|---|---|---|
1 | 垃圾渗滤液 | RuO2-IrO2 | 不锈钢 | 柱状活性炭 | J0=60mA/cm2;C0=2091mg/L; NH4+-N=2531mg/L;pH=8.4;HRT=3h; D=4.8cm | CODCr=26.5%; NH4+-N=81.1% | [ |
2 | 磺胺甲𫫇唑(SMX)、 四环素(TC) | 活性炭纤维/ 钛网 | 活性炭纤维/ 钛网 | GAC+GR | V0=0.8V;C0=0.2mg/L;HRT=6h;T=28℃ | SMX=88.9%~93.5%;TC=89.3%~95.6% | [ |
3 | RBRX-3B | 不锈钢网/ 活性炭纤维 | 钛网/ 活性炭纤维 | GAC | V0=2.5V;C0=1000mg/L;HRT=24h; T=20℃;D=21cm | >90.0% | [ |
4 | 磺胺甲𫫇唑(SMX) | 不锈钢网 | 钛网 | GAC | V0=1V;C0=4000mg/L;HRT=2.5d; T=28℃±2℃;D=11cm | >99.3% | [ |
5 | 布洛芬 | 钛网 | 不锈钢孔板 | 赤泥 | J0=12.73A/m2;C0=93.2μg/L±5.16μg/L; HRT=3.5h;T=28℃±2℃;pH=7.16±0.13; D=30cm | 93.5% | [ |
6 | 焦化废水 | 钛网 | RuO2-IrO2 | GAC | V0=8V;C0=734mg/L;HRT=20h; pH=6.94;D=10cm | 79.6% | [ |
7 | 四氢呋喃 | Ti-IrO2 | 钛网 | 聚氨酯海绵 填料 | V0=10V;C0=4190mg/L±585mg/L; HRT=24h;pH=6.9;D=15cm | 95.9%±1.6% | [ |
8 | 焦化废水 (中试) | Ti/RuO2-IrO2 | Ti/RuO2-IrO2 | GAC | V0=8V;C0=3160.56mg/L;HRT=6h; pH=10.09;D=28cm | 94.4% | [ |
9 | 焦化废水 | 石墨棒 | 不锈钢网 | GAC | I0=20mA;C0=497mg/L;NH4+-N=418mg/L; HRT=10h;pH=8.99;D=5cm | CODCr=68.5%; NH4+-N=99.0% | [ |
10 | 地塞米松 (DEX) | 钛板 | 钛板 | 聚苯胺负载 活性炭 | I0=3mA;C0=100μg/L;HRT=20h; pH=7.2±0.2;D=5cm | 95.7% | [ |
11 | 高氯酸盐 | 石墨棒 | 钛网 | 活性炭纤维 | I0=20mA;C0=10mg/L;HRT=48h;T=30℃±2℃;pH=7.4~8.4;D=2.5cm | 98.2% | [ |
12 | 四溴双酚A | Ti/RuO2-IrO2 | 不锈钢板 | GAC / 颗粒沸石 | V0=5V;C0=20mg/L;HRT=2h;pH=8; D=10cm | 95.0% | [ |
13 | 十二烷基 硫酸钠(SDS) | 石墨板 | 石墨板 | 石墨颗粒 | I0=1786~1796mA/m3;C0=105mg/L±10mg/L; HRT=38.5h;pH=7.5~7.8;D=10cm | 88.0% | [ |
14 | 甲硝唑(MNZ)混合含氮废水 | 石墨棒 | 活性炭纤维毡缠绕不锈钢 | GAC和玻璃珠 | I0=1mA;C0(MNZ)=10mg/L;NO3--N=35mg/L; HRT=6h;T=25℃±3℃;D=8cm | MNZ=94.4%; NO3--N=82.8% | [ |
15 | 水杨酸 | 不锈钢板 | 钛板 | 锂渣 | I0=0.25~0.40A;C0=110.86μg/L;HRT=6h; T=20℃;pH=7.4~7.5;D=15cm | 85.2% | [ |
16 | 罗丹明B | 不锈钢板 | 钛板 | 钢渣 | I0=1.0A;C0=10mg/L;HRT=3.5h; T=20℃±1℃;pH=7.3~7.4;D=8cm | 91.7±1.3% | [ |
17 | 合成废水 | 碳板 | 碳板 | 陶粒 | V0=0.5V;C0=250mg/L;HRT=6h; T=25℃±1℃;D=10cm | >90.0% | [ |
18 | 有机酸 工业废水 | 碳棒 | 碳棒 | MnO2/TiO2/ g-C3N4@ GAC | V0=0.439V;C0=6500mg/L;HRT=12h; pH=5~6 | CODCr=98.0% | [ |
19 | 磺胺嘧啶(SDZ)、环丙沙星(CIP) | 不锈钢丝网 | 不锈钢丝网 | GAC | V0=0.8V;C0=2mg/L;HRT=36h;D=8cm | SDZ=99.1%; CIP=97.3% | [ |
1 | WANG Hao, WANG Jia, BO Guozhu, et al. Degradation of pollutants in polluted river water using Ti/IrO2-Ta2O5 coating electrode and evaluation of electrode characteristics[J]. Journal of Cleaner Production, 2020, 273: 123019. |
2 | 马承愚. 高浓度难降解有机废水的治理与控制[M]. 2版. 北京: 化学工业出版社, 2011. |
MA Chengyu. Treatment and control of high concentration and refractory organic wastewater[M]. 2nd ed. Beijing: Chemical Industry Press, 2011. | |
3 | WU Zhenyu, XU Juan, WU Lan, et al. Three-dimensional biofilm electrode reactors (3D-BERs) for wastewater treatment[J]. Bioresource Technology, 2022, 344: 126274. |
4 | LIU Fubin, LUO Shuai, WANG Han, et al. Improving wastewater treatment capacity by optimizing hydraulic retention time of dual-anode assembled microbial desalination cell system[J]. Separation and Purification Technology, 2019, 226: 39-47. |
5 | ZHANG Yifeng, ANGELIDAKI Irini. Microbial electrolysis cells turning to be versatile technology: Recent advances and future challenges[J]. Water Research, 2014, 56: 11-25. |
6 | CHEN Dan, WANG Hongyu, YANG Kai. Effective biodegradation of nitrate, Cr(Ⅵ) and p-fluoronitrobenzene by a novel three dimensional bioelectrochemical system[J]. Bioresource Technology, 2016, 203: 370-373. |
7 | FENG Lei, LI Xiuyan, GAN Lihong, et al. Synergistic effects of electricity and biofilm on Rhodamine B (RhB) degradation in three-dimensional biofilm electrode reactors (3D-BERs)[J]. Electrochimica Acta, 2018, 290: 165-175. |
8 | GUO Ning, WANG Yunkun, TONG Tiezheng, et al. The fate of antibiotic resistance genes and their potential hosts during bio-electrochemical treatment of high-salinity pharmaceutical wastewater[J]. Water Research, 2018, 133: 79-86. |
9 | WU Zhenyu, ZHU Weiping, LIU Yang, et al. An integrated three-dimensional electrochemical system for efficient treatment of coking wastewater rich in ammonia nitrogen[J]. Chemosphere, 2020, 246: 125703. |
10 | ZHU Minghan, FAN Jingkai, ZHANG Minglu, et al. Current intensities altered the performance and microbial community structure of a bio-electrochemical system[J]. Chemosphere, 2021, 265: 129069. |
11 | WANG Baoshan, CHEN Xiaojie, XU Yabing, et al. Three-dimensional biofilm electrode reactors with polyurethane sponge carrier for highly efficient treatment of pharmaceuticals wastewater containing tetrahydrofuran[J]. Water, 2022, 14(22): 3792. |
12 | LOVLEY Derek R. Electrically conductive pili: Biological function and potential applications in electronics[J]. Current Opinion in Electrochemistry, 2017, 4(1): 190-198. |
13 | RAHMANI Alireza, LEILI Mostafa, Abdolmotaleb SEID-MOHAMMADI, et al. Improved degradation of diuron herbicide and pesticide wastewater treatment in a three-dimensional electrochemical reactor equipped with PbO2 anodes and granular activated carbon particle electrodes[J]. Journal of Cleaner Production, 2021, 322: 129094. |
14 | MORADI Masoud, VASSEGHIAN Yasser, KHATAEE Alireza, et al. Service life and stability of electrodes applied in electrochemical advanced oxidation processes: A comprehensive review[J]. Journal of Industrial and Engineering Chemistry, 2020, 87: 18-39. |
15 | SARATALE R G, KUPPAM C, MUDHOO A, et al. Bioelectrochemical systems using microalgae — A concise research update[J]. Chemosphere, 2017, 177(1): 35-43. |
16 | ZUO Kuichang, Sergi GARCIA-SEGURA, CERRÓN-CALLE Gabriel A, et al. Electrified water treatment: Fundamentals and roles of electrode materials[J]. Nature Reviews Materials, 2023, 8(7): 472-490. |
17 | LI Xuechuan, LU Sen, ZHANG Guan. Three-dimensional structured electrode for electrocatalytic organic wastewater purification: Design, mechanism and role[J]. Journal of Hazardous Materials, 2023, 445: 130524. |
18 | KONG Weikang, LI Yajie, ZHANG Yuyao, et al. Enhanced degradation of refractory organics by bioelectrochemical systems: A review[J]. Journal of Cleaner Production, 2023: 138675. |
19 | 吴莉娜, 李进, 闫志斌, 等. 三维生物膜电极技术在污水处理中的应用及研究进展[J]. 科学技术与工程, 2021, 21(12): 4769-4777. |
WU Lina, LI Jin, YAN Zhibin, et al. Review on application of three-dimensional biofilm electrode technology in wastewater treatment[J]. Science Technology and Engineering, 2021, 21(12): 4769-4777. | |
20 | ZHANG Qian, LIU Lifen. A microbial fuel cell system with manganese dioxide/titanium dioxide/graphitic carbon nitride coated granular activated carbon cathode successfully treated organic acids industrial wastewater with residual nitric acid[J]. Bioresource Technology, 2020, 304: 122992. |
21 | MOHEBRAD Batoul, GHODS Ghazaleh, REZAEE Abbas. Dairy wastewater treatment using immobilized bacteria on calcium alginate in a microbial electrochemical system[J]. Journal of Water Process Engineering, 2022, 46: 102609. |
22 | LI Xiuyan, PENG Pin, WANG Weikang, et al. Particle electrode materials dependent tetrabromobisphenol A degradation in three-dimensional biofilm electrode reactors[J]. Environmental Research, 2021, 197: 111089. |
23 | WU Shijia, LI Hui, ZHOU Xuechen, et al. A novel pilot-scale stacked microbial fuel cell for efficient electricity generation and wastewater treatment[J]. Water Research, 2016, 98: 396-403. |
24 | MASOOD Ahmad Saud, Md Sajid ALI, MANZAR Mohammad Saood, et al. Current situation of pharmaceutical wastewater around the globe[M]// The Treatment of Pharmaceutical Wastewater. Amsterdam: Elsevier, 2023: 19-52. |
25 | FULLER Samuel J, MCMILLAN Duncan G G, RENZ Marc B, et al. Extracellular electron transport-mediated Fe(Ⅲ) reduction by a community of alkaliphilic bacteria that use flavins as electron shuttles[J]. Applied and Environmental Microbiology, 2014, 80(1): 128-137. |
26 | ZHANG Qian, LIU Lifen. Cathodes of membrane and packed manganese dioxide/titanium dioxide/graphitic carbon nitride/granular activated carbon promoted treatment of coking wastewater in microbial fuel cell[J]. Bioresource Technology, 2021, 321: 124442. |
27 | WANG Y P, XIAO Z J, LIU Y L, et al. Enhanced ferrate(Ⅵ) oxidation of organic pollutants through direct electron transfer[J]. Water Research, 2023, 244: 120506. |
28 | DENG Xiao, OKAMOTO Akihiro. Direct extracellular electron transfer to an indium tin doped oxide electrode via heme redox reactions in Desulfovibrio ferrophilus IS5[J]. Electrochimica Acta, 2023, 453: 142293. |
29 | JI Wenlan, MIAO Xinyu, ZHANG Tian C, et al. Fe-metal-organic-framework/MnO2 nanowire/granular activated carbon nanostructured composites for enhanced As(Ⅲ) removal from aqueous solutions[J]. Applied Surface Science, 2022, 606: 155011. |
30 | LI Cheng, YE Haoran, GE Shengbo, et al. Fabrication and properties of antimicrobial flexible nanocomposite polyurethane foams with in situ generated copper nanoparticles[J]. Journal of Materials Research and Technology, 2022, 19: 3603-3615. |
31 | Özlem TUNA, Şeyda KARADIREK, SIMSEK Esra Bilgin. Deposition of CaFe2O4 and LaFeO3 perovskites on polyurethane filter: A new photocatalytic support for flowthrough degradation of tetracycline antibiotic[J]. Environmental Research, 2022, 205: 112389. |
32 | 张瑞峰, 杨世莲, 杨靖, 等. MnO x 同步除锰氨氮滤池的快速启动及污染物去除机制[J]. 中国环境科学, 2023, 43(1): 197-205. |
ZHANG Ruifeng, YANG Shilian, YANG Jing, et al. Rapid start-up and pollutant removal mechanism of MnO x simultaneous manganese and ammonia nitrogen removal filter[J]. China Environmental Science, 2023, 43(1): 197-205. | |
33 | HUANG Hui, PENG Chong, PENG Pengcheng, et al. Towards the biofilm characterization and regulation in biological wastewater treatment[J]. Applied Microbiology and Biotechnology, 2019, 103(3): 1115-1129. |
34 | 郝晓地, 安兆伟, 孙晓明, 等. 悬浮填料强化污水生物处理的实际作用揭示[J]. 中国给水排水, 2013, 29(8): 5-9. |
HAO Xiaodi, AN Zhaowei, SUN Xiaoming, et al. Effect of suspended carriers on enhancing biological wastewater treatment[J]. China Water & Wastewater, 2013, 29(8): 5-9. | |
35 | 许亚兵, 王宝山, 汪光宗, 等. 生物电化学系统对制药废水中难生化有机物的降解[J]. 化工进展, 2022, 41(9): 5055-5064. |
XU Yabing, WANG Baoshan, WANG Guangzong, et al. Degradation of refractory organics in the pharmaceutical wastewater by bioelectrochemical system[J]. Chemical Industry and Engineering Progress, 2022, 41(9): 5055-5064. | |
36 | SUN Qi, ZHU Guangcan. Enhanced removal of metronidazole from aqueous solutions via bioelectrochemical systems[J]. Journal of Environmental Engineering, 2022, 148(6): 04022025. |
37 | ZHOU Le’an, LI Tian, AN Jingkun, et al. Subminimal inhibitory concentration (sub-MIC) of antibiotic induces electroactive biofilm formation in bioelectrochemical systems[J]. Water Research, 2017, 125: 280-287. |
38 | Antonio CASTELLANO-HINOJOSA, Alejandro GONZÁLEZ-MARTÍNEZ, POZO Clementina, et al. Diversity of electroactive and non-electroactive microorganisms and their potential relationships in microbial electrochemical systems: A review[J]. Journal of Water Process Engineering, 2022, 50: 103199. |
39 | HUBENOVA Yolina, MITOV Mario. Extracellular electron transfer in yeast-based biofuel cells: A review[J]. Bioelectrochemistry, 2015, 106: 177-185. |
40 | FAN Qingwen, FAN Xiaojing, FU Peng, et al. Microbial community evolution, interaction, and functional genes prediction during anaerobic digestion in the presence of refractory organics[J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 107789. |
41 | YUAN Jianqi, HUANG Shaobin, YUAN Haiguang, et al. Effects of chloramphenicol on the bacterial community structure and simultaneous nitrification and denitrification performance in a sequencing biofilm batch reactor[J]. Journal of Water Process Engineering, 2021, 42: 102095. |
42 | 张璐璐, 丁丽丽, 贺雪濛, 等. 直流电场强化活性污泥法处理木质素废水的效能、污泥特性及群落结构研究[J]. 环境科学学报, 2018, 38(1): 160-172. |
ZHANG Lulu, DING Lili, HE Xuemeng, et al. The performance, sludge characteristics and microbial community in lignin wastewater treatment by direct current enhanced activated sludge approach[J]. Acta Scientiae Circumstantiae, 2018, 38(1): 160-172. | |
43 | CETECIOGLU Z, INCE B, ORHON D, et al. Anaerobic sulfamethoxazole degradation is driven by homoacetogenesis coupled with hydrogenotrophic methanogenesis[J]. Water Research, 2016, 90: 79-89. |
44 | ZHU Hongyi, HU Xueli, ZHA Zhengtai, et al. Long-time enrofloxacin processing with microbial fuel cells and the influence of coexisting heavy metals (Cu and Zn)[J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 107965. |
45 | HUBENOVA Yolina, MITOV Mario. Mitochondrial origin of extracelullar transferred electrons in yeast-based biofuel cells[J]. Bioelectrochemistry, 2015, 106: 232-239. |
46 | WANG Zhao, DAI Yu, ZHAO Qun, et al. Nonylphenol biodegradation, functional gene abundance and bacterial community in bioaugmented sediment: Effect of external carbon source[J]. Environmental Science and Pollution Research, 2015, 22(16): 12083-12091. |
47 | KIM Sunah, ROSSMASSLER Karen, BROECKLING Corey D, et al. Impact of inoculum sources on biotransformation of pharmaceuticals and personal care products[J]. Water Research, 2017, 125: 227-236. |
48 | FENG Yan, LONG Yingying, WANG Zhongwei, et al. Performance and microbial community of an electric biological integration reactor (EBIR) for treatment of wastewater containing ibuprofen[J]. Bioresource Technology, 2019, 274: 447-458. |
49 | TANG Hongzhi, YU Hao, LI Qinggang, et al. Genome sequence of pseudomonas putida strain B6-2, a superdegrader of polycyclic aromatic hydrocarbons and dioxin-like compounds[J]. Journal of Bacteriology, 2011, 193(23): 6789-6790. |
50 | FENG Yan, ZHANG Zhijie, ZHAO Youheng, et al. Accelerated Rhodamine B removal by enlarged anode electric biological (EAEB) with electro-biological particle electrode (EPE) made from steel converter slag (SCS)[J]. Bioresource Technology, 2019, 283: 1-9. |
51 | XING Wei, LI Jinlong, LI Peng, et al. Effects of residual organics in municipal wastewater on hydrogenotrophic denitrifying microbial communities[J]. Journal of Environmental Sciences, 2018, 65: 262-270. |
52 | ZHANG Enren, YU Qingling, ZHAI Wenjing, et al. High tolerance of and removal of cefazolin sodium in single-chamber microbial fuel cells operation[J]. Bioresource Technology, 2018, 249: 76-81. |
53 | LIU Xiawei, HUANG Manqi, BAO Shaopan, et al. Nitrate removal from low carbon-to-nitrogen ratio wastewater by combining iron-based chemical reduction and autotrophic denitrification[J]. Bioresource Technology, 2020, 301: 122731. |
54 | VENKATESWAR REDDY M, MAWATARI Yasuteru, YAJIMA Yuka, et al. Production of poly-3-hydroxybutyrate (P3HB) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] from synthetic wastewater using Hydrogenophaga palleronii [J]. Bioresource Technology, 2016, 215: 155-162. |
55 | QIU Linqing, ZHANG Liang, TANG Kai, et al. Removal of sulfamethoxazole (SMX) in sulfate-reducing flocculent and granular sludge systems[J]. Bioresource Technology, 2019, 288: 121592. |
56 | SASAKI Daisuke, SASAKI Kengo, TSUGE Yota, et al. Less biomass and intracellular glutamate in anodic biofilms lead to efficient electricity generation by microbial fuel cells[J]. Biotechnology for Biofuels, 2019, 12: 72. |
57 | LUAN Fubo, LIU Yan, GRIFFIN Aron M, et al. Iron(Ⅲ)-bearing clay minerals enhance bioreduction of nitrobenzene by Shewanella putrefaciens CN32[J]. Environmental Science & Technology, 2015, 49(3): 1418-1426. |
58 | WU Zhenyu, LIU Yang, WANG Siyuan, et al. A novel integrated system of three-dimensional electrochemical reactors (3DERs) and three-dimensional biofilm electrode reactors (3DBERs) for coking wastewater treatment[J]. Bioresource Technology, 2019, 284: 222-230. |
59 | CUI Tao, WANG Yi, WANG Xueye, et al. Enhanced isophthalonitrile complexation-reduction removal using a novel anaerobic fluidized bed reactor in a bioelectrochemical system based on electric field activation (AFBR-EFA)[J]. Bioresource Technology, 2020, 306: 123115. |
60 | LI Hua, SONG Hailiang, XU Han, et al. Effect of the coexposure of sulfadiazine, ciprofloxacin and zinc on the fate of antibiotic resistance genes, bacterial communities and functions in three-dimensional biofilm-electrode reactors[J]. Bioresource Technology, 2020, 296: 122290. |
61 | WANG Xiaofei, AULENTA Federico, PUIG Sebastià, et al. Microbial electrochemistry for bioremediation[J]. Environmental Science and Ecotechnology, 2020, 1: 100013. |
62 | THAPA Bhim Sen, KIM Taeyoung, PANDIT Soumya, et al. Overview of electroactive microorganisms and electron transfer mechanisms in microbial electrochemistry[J]. Bioresource Technology, 2022, 347: 126579. |
63 | ZHOU Qixing, LI Ruixiang, LI Tian, et al. Interactions among microorganisms functionally active for electron transfer and pollutant degradation in natural environments[J]. Eco-Environment & Health, 2023, 2(1): 3-15. |
64 | LI Henan, TIAN Yan, QU Youpeng, et al. A pilot-scale benthic microbial electrochemical system (BMES) for enhanced organic removal in sediment restoration[J]. Scientific Reports, 2017, 7: 39802. |
65 | SMITH Rodney D L, PICKUP Peter G. Novel electroactive surface functionality from the coupling of an aryl diamine to carbon black[J]. Electrochemistry Communications, 2009, 11(1): 10-13. |
66 | COSTA Nazua L, CLARKE Thomas A, PHILIPP Laura-Alina, et al. Electron transfer process in microbial electrochemical technologies: The role of cell-surface exposed conductive proteins[J]. Bioresource Technology, 2018, 255: 308-317. |
67 | JIN Yuting, ZHOU Enze, UEKI Toshiyuki, et al. Accelerated microbial corrosion by magnetite and electrically conductive pili through direct Fe0-to-microbe electron transfer[J]. Angewandte Chemie International Edition, 2023: e202309005. |
68 | LI Zeng, QIU Ye, YU Yanling, et al. Long-term operation of cathode-enhanced ecological floating bed coupled with microbial electrochemical system for urban surface water remediation: From lab-scale research to engineering application[J]. Water Research, 2023, 237: 119967. |
69 | WANG Zhaoyang, QI Jingyao, FENG Yan, et al. Preparation of catalytic particle electrodes from steel slag and its performance in a three-dimensional electrochemical oxidation system[J]. Journal of Industrial and Engineering Chemistry, 2014, 20(5): 3672-3677. |
70 | WANG Siyuan, YANG Xueyuan, MENG Huishan, et al. Enhanced denitrification by nano α-Fe2O3 induced self-assembled hybrid biofilm on particle electrodes of three-dimensional biofilm electrode reactors[J]. Environment International, 2019, 125: 142-151. |
71 | 陈凯, 胡学伟, 赖信可. Mn2+促进载体挂膜的机理研究[J]. 环境科学学报, 2016, 36(7): 2415-2421. |
CHEN Kai, HU Xuewei, LAI Xinke. The promotion mechanism of Mn2+ for biofilm formation on carrier[J]. Acta Scientiae Circumstantiae, 2016, 36(7): 2415-2421. | |
72 | CHENG Ya, ZHANG Yongzhi, XIONG Weiyao, et al. Simultaneous removal of tetracycline and manganese(Ⅱ) ions from groundwater using manganese oxide filters: Efficiency and mechanisms[J]. Journal of Water Process Engineering, 2021, 42: 102158. |
73 | LIU Han, VECITIS Chad D. Reactive transport mechanism for organic oxidation during electrochemical filtration: Mass-transfer, physical adsorption, and electron-transfer[J]. The Journal of Physical Chemistry C, 2012, 116(1): 374-383. |
74 | LI Hongtao, YANG Haitao, CHENG Jiaxin, et al. Three-dimensional particle electrode system treatment of organic wastewater: A general review based on patents[J]. Journal of Cleaner Production, 2021, 308: 127324. |
75 | 王艳艳, 李金成, 石志慧, 等. 三维生物膜电极反应器在水处理中的应用[J]. 青岛理工大学学报, 2022, 43(3): 128-134. |
WANG Yanyan, LI Jincheng, SHI Zhihui, et al. Application of three-dimensional biofilm electrode reactor (3D-BER) in water treatment: A review[J]. Journal of Qingdao University of Technology, 2022, 43(3): 128-134. | |
76 | FELEKE Z, ARAKI K, SAKAKIBARA Y, et al. Selective reduction of nitrate to nitrogen gas in a biofilm-electrode reactor[J]. Water Research, 1998, 32(9): 2728-2734. |
77 | TANG Qi, SHENG Yanqing, LI Changyu, et al. Simultaneous removal of nitrate and sulfate using an up-flow three-dimensional biofilm electrode reactor: Performance and microbial response[J]. Bioresource Technology, 2020, 318: 124096. |
78 | YANG Shumin, HUANG Qingling, FENG Yan, et al. The anode is more beneficial to the advanced treatment of wastewater containing antibiotics by three-dimensional electro-biofilm reactor: Degradation, mechanism and optimization[J]. Bioresource Technology, 2022, 345: 126473. |
79 | GUO Kun, FREGUIA Stefano, DENNIS Paul G, et al. Effects of surface charge and hydrophobicity on anodic biofilm formation, community composition, and current generation in bioelectrochemical systems[J]. Environmental Science & Technology, 2013, 47(13): 7563-7570. |
80 | MOHAMED Abdelrhman, Phuc T HA, PEYTON Brent M, et al. In situ enrichment of microbial communities on polarized electrodes deployed in alkaline hot springs[J]. Journal of Power Sources, 2019, 414: 547-556. |
81 | 张泽玺, 王宝山, 许亚兵, 等. 电-生物耦合技术降解中药提取废水及微生物群落分析[J]. 精细化工, 2021, 38(2): 387-394. |
ZHANG Zexi, WANG Baoshan, XU Yabing, et al. Degradation of wastewater from traditional Chinese medicine extraction by electro-biological technology and analysis of microbial community[J]. Fine Chemicals, 2021, 38(2): 387-394. | |
82 | BESCHKOV V, VELIZAROV S, AGATHOS S N, et al. Bacterial denitrification of waste water stimulated by constant electric field[J]. Biochemical Engineering Journal, 2004, 17(2): 141-145. |
83 | FRIMAN Hen, SCHECHTER Alex, NITZAN Yeshayahu, et al. Phenol degradation in bio-electrochemical cells[J]. International Biodeterioration & Biodegradation, 2013, 84: 155-160. |
84 | 王振, 迟泽旭, 楚焕庆, 等. 膨润土负载纳米零价铁在三维电极技术中的应用、造纸废水处理方法及粒子电极制备方法: CN107032457A[P]. 2017-08-11. |
WANG Zhen, CHI Zexu, CHU Huanqing, et al. Application of bentonite-supported nanoscale zero-valent iron in three-dimensional electrode technology, paper-making wastewater treatment method and particle electrode preparation method: CN107032457A[P]. 2017-08-11. | |
85 | 吴朵而, 陈龙, 马香娟, 等. 基于电活性微生物的芳香烃类污染物转化机制研究进展[J]. 微生物学报, 2023, 63(1): 30-44. |
WU Duoer, CHEN Long, MA Xiangjuan, et al. Research progress on transformation mechanism of aromatic hydrocarbons pollutants based on electroactive microorganisms[J]. Acta Microbiologica Sinica, 2023, 63(1): 30-44. | |
86 | SHEN Dongsheng, ZHANG Xueqin, FENG Huajun, et al. Stimulative mineralization of p-fluoronitrobenzene in biocathode microbial electrolysis cell with an oxygen-limited environment[J]. Bioresource Technology, 2014, 172: 104-111. |
87 | 孙南南, 谢实涛, 李凯, 等. RuO2-IrO2-SnO2/Ti阳极电催化氧化苯酚的研究[J]. 环境污染与防治, 2015, 37(2): 38-41. |
SUN Nannan, XIE Shitao, LI Kai, et al. Electro-catalyticoxidation of phenol with RuO2-IrO2-SnO2/Ti anode[J]. Environmental Pollution & Control, 2015, 37(2): 38-41. | |
88 | ZHANG Hui, LI Yanli, WU Xiaogang, et al. Application of response surface methodology to the treatment landfill leachate in a three-dimensional electrochemical reactor[J]. Waste Management, 2010, 30(11): 2096-2102. |
89 | ZHANG Shuai, SONG Hailiang, YANG Xiaoli, et al. Effect of electrical stimulation on the fate of sulfamethoxazole and tetracycline with their corresponding resistance genes in three-dimensional biofilm-electrode reactors[J]. Chemosphere, 2016, 164: 113-119. |
90 | LIU Shentan, FENG Xiaojuan, GU Feng, et al. Sequential reduction/oxidation of azo dyes in a three-dimensional biofilm electrode reactor[J]. Chemosphere, 2017, 186: 287-294. |
91 | ZHANG Shuai, SONG Hailiang, YANG Xiaoli, et al. A system composed of a biofilm electrode reactor and a microbial fuel cell-constructed wetland exhibited efficient sulfamethoxazole removal but induced sul genes[J]. Bioresource Technology, 2018, 256: 224-231. |
92 | 冯岩, 龙莹莹, 王中伟, 等. 三维电催化曝气生物滤池的构建及降解布洛芬效能[J]. 哈尔滨工业大学学报, 2019, 51(8): 37-45. |
FENG Yan, LONG Yingying, WANG Zhongwei, et al. Construction of three dimensional electrocatalytic biological aerated filter (TDE-BAF) and its degradation efficiency of ibuprofen[J]. Journal of Harbin Institute of Technology, 2019, 51(8): 37-45. | |
93 | LIU Yang, WU Zhenyu, PENG Pin, et al. A pilot-scale three-dimensional electrochemical reactor combined with anaerobic-anoxic-oxic system for advanced treatment of coking wastewater[J]. Journal of Environmental Management, 2020, 258: 110021. |
94 | GUO Yating, RENE Eldon R, HAN Bingyi, et al. Enhanced fluoroglucocorticoid removal from groundwater in a bio-electrochemical system with polyaniline-loaded activated carbon three-dimensional electrodes: Performance and mechanisms[J]. Journal of Hazardous Materials, 2021, 416: 126197. |
95 | HE Li, YANG Qi, ZHONG Yu, et al. Electro-assisted autohydrogenotrophic reduction of perchlorate and microbial community in a dual-chamber biofilm-electrode reactor[J]. Chemosphere, 2021, 264: 128548. |
96 | RADEEF Ahmed Y, ISMAIL Zainab Z. Bioelectrochemical treatment of actual carwash wastewater associated with sustainable energy generation in three-dimensional microbial fuel cell[J]. Bioelectrochemistry, 2021, 142: 107925. |
97 | SUN Qi, ZHU Guangcan. Deciphering the effects of antibiotics on nitrogen removal and bacterial communities of autotrophic denitrification systems in a three-dimensional biofilm electrode reactor[J]. Environmental Pollution, 2022, 315: 120476. |
98 | LI Xinxin, LI Xing, FENG Yan, et al. Production of an electro-biological particle electrode (EBPE) from lithium slag and its removal performance to salicylic acid in a three-dimensional electrocatalytic biological coupling reactor (3D-EBCR)[J]. Chemosphere, 2021, 282: 131020. |
99 | GAO Yilin, HUANG Hui, PENG Chong, et al. Simultaneous nitrogen removal and toxicity reduction of synthetic municipal wastewater by micro-electrolysis and sulfur-based denitrification biofilter[J]. Bioresource Technology, 2020, 316: 123924. |
100 | KHAN Mohammad Danish, SINGH Ankit, KHAN Mohammad Zain, et al. Current perspectives, recent advancements, and efficiencies of various dye-containing wastewater treatment technologies[J]. Journal of Water Process Engineering, 2023, 53: 103579. |
101 | ZOU Haiming, WANG Yan. Azo dyes wastewater treatment and simultaneous electricity generation in a novel process of electrolysis cell combined with microbial fuel cell[J]. Bioresource Technology, 2017, 235: 167-175. |
102 | YANG Shumin, FENG Yan, LIU Na, et al. Enhancement on the removal of Rhodamine B (RhB) by means of the enlarged anode electric biological (EAEB) reactor[J]. Chemosphere, 2020, 245: 125566. |
103 | WEN Qinxue, YANG Shuo, CHEN Zhiqiang. Mesophilic and thermophilic anaerobic digestion of swine manure with sulfamethoxazole and norfloxacin: Dynamics of microbial communities and evolution of resistance genes[J]. Frontiers of Environmental Science & Engineering, 2021, 15(5): 201-212. |
104 | HAN Yuefei, YANG Linyan, CHEN Xueming, et al. Removal of veterinary antibiotics from swine wastewater using anaerobic and aerobic biodegradation[J]. Science of the Total Environment, 2020, 709: 136094. |
105 | WANG Hongyu, Wanlin LYU, HU Xiaoling, et al. Effects of current intensities on the performances and microbial communities in a combined bio-electrochemical and sulfur autotrophic denitrification (CBSAD) system[J]. Science of The Total Environment, 2019, 694: 133775. |
106 | JIN Chunhong, TANG Qi, XU Hengduo, et al. Effects of anode materials on nitrate reduction and microbial community in a three-dimensional electrode biofilm reactor with sulfate[J]. Chemosphere, 2023, 340: 139909. |
107 | ZHAO Wentao, SUI Qian, HUANG Xia. Removal and fate of polycyclic aromatic hydrocarbons in a hybrid anaerobic-anoxic-oxic process for highly toxic coke wastewater treatment[J]. Science of the Total Environment, 2018, 635: 716-724. |
108 | ZHANG Tingting, LIU Yongjun, YANG Lu, et al. Ti-Sn-Ce/bamboo biochar particle electrodes for enhanced electrocatalytic treatment of coking wastewater in a three-dimensional electrochemical reaction system[J]. Journal of Cleaner Production, 2020, 258: 120273. |
[1] | 李莹莹, 刘安, 姜乐妍, 李晖, 陈春钰, 居殿春. 过渡金属硫化物Co9S8的制备及电化学性能研究进展[J]. 化工进展, 2024, 43(6): 3114-3127. |
[2] | 孙悦, 邢宝林, 张耀杰, 冯来宏, 曾会会, 蒋振东, 徐冰, 贾建波, 张传祥, 谌伦建, 张越, 张文豪. B掺杂多孔碳纳米片的制备及其储锂性能[J]. 化工进展, 2024, 43(6): 3209-3220. |
[3] | 万成凤, 李志达, 张春月, 路璐. MXene负载CoP纳米棒高效电催化分解水制氢[J]. 化工进展, 2024, 43(6): 3232-3239. |
[4] | 闫哲, 刘畅, 王丰旭, 周宏旺, 刘樨, 赵雪冰. 耦合生物质氧化转化的CO2电化学还原[J]. 化工进展, 2024, 43(6): 3310-3321. |
[5] | 黄澎, 邹颖, 王宝焕, 王逍妍, 赵勇, 梁鑫, 胡迪. 二氧化碳电催化还原反应制合成气催化剂研究进展[J]. 化工进展, 2024, 43(5): 2760-2775. |
[6] | 周安宁, 江雨寒, 刘墨宣, 赵伟, 李振. 电解煤浆制氢过程中煤阶及矿物的影响与煤结构演化研究进展[J]. 化工进展, 2024, 43(5): 2294-2310. |
[7] | 李思, 陶艺月, 肖振翀, 张亮, 李俊, 朱恂, 廖强. 热再生电池堆-二氧化碳电化学还原池系统耦合特性[J]. 化工进展, 2024, 43(5): 2568-2575. |
[8] | 方峣, 刘雷, 高志华, 黄伟, 左志军. 光辅助直接甲醇燃料电池阳极催化剂的研究进展[J]. 化工进展, 2024, 43(5): 2611-2628. |
[9] | 刘思宇, 杨卷, 陈培, 陈祖田, 闫斌, 刘育红, 邱介山. 富氮多孔碳纳米片的氮掺杂构型调控及其储锌性能[J]. 化工进展, 2024, 43(5): 2673-2683. |
[10] | 丁嘉, 吴文琦, 李鹏程. 两电子水氧化反应抑制掺硼金刚石电极氧化有机物过程中氯酸盐和高氯酸盐的生成[J]. 化工进展, 2024, 43(4): 2183-2190. |
[11] | 陈家一, 高帷韬, 阴亚楠, 王诚, 欧阳鸿武, 毛宗强. 电化学沉积法制备质子交换膜燃料电池催化剂[J]. 化工进展, 2024, 43(4): 1796-1809. |
[12] | 王凯, 叶丁丁, 朱恂, 杨扬, 陈蓉, 廖强. 超亲气泡沫铜纳米线电极电化学还原CO2性能[J]. 化工进展, 2024, 43(3): 1232-1240. |
[13] | 吴剑扬, 申兰耀, 于永利, 王汝娜, 蒋宁, 杨新河, 邱景义, 周恒辉. 锂离子电池高镍正极材料的制备及性能优化[J]. 化工进展, 2024, 43(3): 1387-1394. |
[14] | 娄瑞, 牛涛嫄, 曹启航, 张依依, 雷雯祺, 卢聪敏, 王志伟. δ-MnO2原位负载纳米木质素基分级多孔炭的制备及其电化学性能[J]. 化工进展, 2024, 43(2): 1013-1021. |
[15] | 陈国徽, 王君雷, 李世龙, 李金宇, 徐运飞, 罗俊潇, 王昆. 火焰喷雾热解制备锂离子电池三元正极材料研究进展[J]. 化工进展, 2024, 43(2): 971-983. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |