化工进展 ›› 2024, Vol. 43 ›› Issue (6): 3042-3050.DOI: 10.16085/j.issn.1000-6613.2023-0836
• 能源加工与技术 • 上一篇
收稿日期:
2023-05-19
修回日期:
2023-09-25
出版日期:
2024-06-15
发布日期:
2024-07-02
通讯作者:
冯君锋
作者简介:
何世坤(1997—),男,硕士研究生,研究方向为生物质催化转化。E-mail:1502125563@qq.com。
基金资助:
HE Shikun1(), ZHANG Wenhao1, FENG Junfeng1,2(), PAN Hui1,2
Received:
2023-05-19
Revised:
2023-09-25
Online:
2024-06-15
Published:
2024-07-02
Contact:
FENG Junfeng
摘要:
木质纤维生物质是一种存量丰富、绿色的资源,通过利用木质纤维生物质制备高值化的液体燃料和化学品,不但可以缓解社会对化石燃料需求的压力,而且可以改善生态环境,助力“双碳”目标。本研究制备了多种金属负载型固体酸催化剂,用于催化生物质碳水化合物高效转化为乙酰丙酸甲酯。通过表征手段研究所制备催化剂的特性,发现其具备双功能特性(B酸和L酸活性中心)。其中,AlCl3作为L酸供应体,负载到催化剂表面,催化性能最佳。研究反应温度和时间等因素对葡萄糖、木糖同步定向转化为乙酰丙酸甲酯的影响发现:在复合溶剂二甲氧基甲烷/甲醇的质量比1∶1、反应温度200℃、反应时间120min的条件下性能最好,原料的转化率达到了100%,乙酰丙酸/酯的最大收率达到了24.96%。
中图分类号:
何世坤, 张文豪, 冯君锋, 潘晖. 负载金属型固体酸催化木质纤维生物质定向转化为乙酰丙酸甲酯[J]. 化工进展, 2024, 43(6): 3042-3050.
HE Shikun, ZHANG Wenhao, FENG Junfeng, PAN Hui. Directional conversion of lignocellulosic biomass to methyl levulinate over supported metal solid acid[J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3042-3050.
催化剂 | 比表面积/m2·g-1 | 孔容/cm3·g-1 | 孔径/Å |
---|---|---|---|
A15 | 385.94 | 0.63 | 65.70 |
2%AlCl3-A15 | 37.65 | 0.24 | 106.00 |
4%AlCl3-A15 | 77.60 | 0.36 | 184.22 |
6%AlCl3-A15 | 55.70 | 0.34 | 242.49 |
表1 A15及不同负载量Al-A15的表面性质
催化剂 | 比表面积/m2·g-1 | 孔容/cm3·g-1 | 孔径/Å |
---|---|---|---|
A15 | 385.94 | 0.63 | 65.70 |
2%AlCl3-A15 | 37.65 | 0.24 | 106.00 |
4%AlCl3-A15 | 77.60 | 0.36 | 184.22 |
6%AlCl3-A15 | 55.70 | 0.34 | 242.49 |
催化剂 | B酸/mmol·g-1 | L酸/mmol·g-1 | L酸/B酸 |
---|---|---|---|
2%AlCl3-A15 | 0.037 | 0.047 | 1.27 |
4%AlCl3-A15 | 0.058 | 0.068 | 1.17 |
6%AlCl3-A15 | 0.049 | 0.051 | 1.04 |
表2 不同金属负载量催化剂的酸度
催化剂 | B酸/mmol·g-1 | L酸/mmol·g-1 | L酸/B酸 |
---|---|---|---|
2%AlCl3-A15 | 0.037 | 0.047 | 1.27 |
4%AlCl3-A15 | 0.058 | 0.068 | 1.17 |
6%AlCl3-A15 | 0.049 | 0.051 | 1.04 |
催化剂 | 原料转化率/% | 糠醛得率/% | 5-羟甲基糠醛得率/% | 糖苷类得率/% | 乙酰丙酸得率/% | 乙酰丙酸甲酯得率/% | 乙酰丙酸/酯得率/% |
---|---|---|---|---|---|---|---|
6%LiCl/乙醇-A15 | 100 | 0.08 | 1.90 | 1.09 | 3.62 | 14.35 | 17.97 |
6%LiCl/水-A15 | 100 | 0.10 | 3.02 | 0.79 | 8.36 | 15.20 | 23.56 |
6%LiCl/甲醇-A15 | 100 | 0.06 | 1.07 | 0.89 | 1.14 | 13.23 | 14.37 |
表3 不同溶剂制备的催化剂对木质纤维生物质定向转化的影响
催化剂 | 原料转化率/% | 糠醛得率/% | 5-羟甲基糠醛得率/% | 糖苷类得率/% | 乙酰丙酸得率/% | 乙酰丙酸甲酯得率/% | 乙酰丙酸/酯得率/% |
---|---|---|---|---|---|---|---|
6%LiCl/乙醇-A15 | 100 | 0.08 | 1.90 | 1.09 | 3.62 | 14.35 | 17.97 |
6%LiCl/水-A15 | 100 | 0.10 | 3.02 | 0.79 | 8.36 | 15.20 | 23.56 |
6%LiCl/甲醇-A15 | 100 | 0.06 | 1.07 | 0.89 | 1.14 | 13.23 | 14.37 |
催化剂 | 原料转化率/% | 糠醛得率/% | 5-羟甲基糠醛得率/% | 糖苷类得率/% | 乙酰丙酸得率/% | 乙酰丙酸甲酯得率/% | 乙酰丙酸/酯得率/% |
---|---|---|---|---|---|---|---|
2%Al(NO3)3-A15 | 99.90 | — | 4.09 | 0.016 | 1.34 | 7.07 | 8.41 |
4%Al(NO3)3-A15 | 99.90 | 0.08 | 2.64 | 0.69 | 3.58 | 13.91 | 17.49 |
6%Al(NO3)3-A15 | 99.90 | 0.07 | 1.85 | 0.43 | 5.95 | 13.47 | 19.42 |
2%AlCl3-A15 | 100 | — | 1.83 | — | 3.61 | 11.84 | 15.45 |
4%AlCl3-A15 | 100 | 0.09 | 1. 88 | 0.76 | 7.36 | 17.59 | 24.96 |
6%AlCl3-A15 | 100 | 0.08 | 1.82 | 0.36 | 5.09 | 18.07 | 23.17 |
表4 不同金属盐酸根制备的催化剂对木质纤维生物质定向转化过程的影响
催化剂 | 原料转化率/% | 糠醛得率/% | 5-羟甲基糠醛得率/% | 糖苷类得率/% | 乙酰丙酸得率/% | 乙酰丙酸甲酯得率/% | 乙酰丙酸/酯得率/% |
---|---|---|---|---|---|---|---|
2%Al(NO3)3-A15 | 99.90 | — | 4.09 | 0.016 | 1.34 | 7.07 | 8.41 |
4%Al(NO3)3-A15 | 99.90 | 0.08 | 2.64 | 0.69 | 3.58 | 13.91 | 17.49 |
6%Al(NO3)3-A15 | 99.90 | 0.07 | 1.85 | 0.43 | 5.95 | 13.47 | 19.42 |
2%AlCl3-A15 | 100 | — | 1.83 | — | 3.61 | 11.84 | 15.45 |
4%AlCl3-A15 | 100 | 0.09 | 1. 88 | 0.76 | 7.36 | 17.59 | 24.96 |
6%AlCl3-A15 | 100 | 0.08 | 1.82 | 0.36 | 5.09 | 18.07 | 23.17 |
催化剂 | 原料转化率/% | 糠醛得率/% | 5-羟甲基糠醛得率/% | 糖苷类得率/% | 乙酰丙酸得率/% | 乙酰丙酸甲酯得率/% | 乙酰丙酸/酯得率/% |
---|---|---|---|---|---|---|---|
A15 | 100 | — | — | — | — | 1.65 | 1.65 |
2%LiCl-A15 | 100 | — | 2.89 | — | 2.88 | 3.32 | 6.20 |
4%LiCl-A15 | 100 | — | 3.16 | — | 7.20 | 10.58 | 17.78 |
6%LiCl-A15 | 100 | 0.10 | 3.02 | 0.79 | 8.36 | 14.35 | 22.71 |
2%CrCl3-A15 | 100 | — | 3.44 | — | 2.68 | 5.18 | 7.86 |
4%CrCl3-A15 | 100 | 0.06 | 1.68 | 0.21 | 5.29 | 16.00 | 21.29 |
6%CrCl3-A15 | 100 | 0.05 | 1.64 | 0.47 | 5.17 | 16.78 | 21.95 |
2%AlCl3-A15 | 100 | — | 1.83 | — | 3.61 | 11.84 | 15.45 |
4%AlCl3-A15 | 100 | 0.09 | 1.88 | 0.76 | 7.36 | 17.59 | 24.96 |
6%AlCl3-A15 | 100 | 0.08 | 1.82 | 0.36 | 5.09 | 18.07 | 23.17 |
表5 不同金属盐催化剂对木质纤维生物质定向转化过程的影响
催化剂 | 原料转化率/% | 糠醛得率/% | 5-羟甲基糠醛得率/% | 糖苷类得率/% | 乙酰丙酸得率/% | 乙酰丙酸甲酯得率/% | 乙酰丙酸/酯得率/% |
---|---|---|---|---|---|---|---|
A15 | 100 | — | — | — | — | 1.65 | 1.65 |
2%LiCl-A15 | 100 | — | 2.89 | — | 2.88 | 3.32 | 6.20 |
4%LiCl-A15 | 100 | — | 3.16 | — | 7.20 | 10.58 | 17.78 |
6%LiCl-A15 | 100 | 0.10 | 3.02 | 0.79 | 8.36 | 14.35 | 22.71 |
2%CrCl3-A15 | 100 | — | 3.44 | — | 2.68 | 5.18 | 7.86 |
4%CrCl3-A15 | 100 | 0.06 | 1.68 | 0.21 | 5.29 | 16.00 | 21.29 |
6%CrCl3-A15 | 100 | 0.05 | 1.64 | 0.47 | 5.17 | 16.78 | 21.95 |
2%AlCl3-A15 | 100 | — | 1.83 | — | 3.61 | 11.84 | 15.45 |
4%AlCl3-A15 | 100 | 0.09 | 1.88 | 0.76 | 7.36 | 17.59 | 24.96 |
6%AlCl3-A15 | 100 | 0.08 | 1.82 | 0.36 | 5.09 | 18.07 | 23.17 |
催化剂 | 反应溶剂 | 原料转化率 /% | 糠醛得率 /% | 5-羟甲基糠醛得率 /% | 糖苷类得率 /% | 乙酰丙酸得率 /% | 乙酰丙酸甲酯得率 /% | 乙酰丙酸/酯得率 /% |
---|---|---|---|---|---|---|---|---|
6%CrCl3-A15 | 水 | 100 | — | 1.04 | 2.33 | 16.90 | — | 16.90 |
6%CrCl3-A15 | 甲醇 | 100 | 0.05 | 1.64 | 0.47 | 5.17 | 16.78 | 21.95 |
A15 | 水 | 100 | — | 0.65 | 0.54 | 9.33 | — | 9.33 |
A15 | 甲醇 | 100 | 0.08 | — | — | — | 1.65 | 1.65 |
表6 不同反应溶剂对木质纤维生物质定向转化过程的影响
催化剂 | 反应溶剂 | 原料转化率 /% | 糠醛得率 /% | 5-羟甲基糠醛得率 /% | 糖苷类得率 /% | 乙酰丙酸得率 /% | 乙酰丙酸甲酯得率 /% | 乙酰丙酸/酯得率 /% |
---|---|---|---|---|---|---|---|---|
6%CrCl3-A15 | 水 | 100 | — | 1.04 | 2.33 | 16.90 | — | 16.90 |
6%CrCl3-A15 | 甲醇 | 100 | 0.05 | 1.64 | 0.47 | 5.17 | 16.78 | 21.95 |
A15 | 水 | 100 | — | 0.65 | 0.54 | 9.33 | — | 9.33 |
A15 | 甲醇 | 100 | 0.08 | — | — | — | 1.65 | 1.65 |
1 | TIAN Yijun, ZHANG Fangfang, WANG Jieni, et al. A review on solid acid catalysis for sustainable production of levulinic acid and levulinate esters from biomass derivatives[J]. Bioresource Technology, 2021,342: 125977. |
2 | PENG Qingpo, JIANG Yongjun, XU Beibei, et al. Zr oxo cluster for cascade conversion of furfural to alkyl levulinates[J]. ChemCatChem, 2023,15(5): e202201352. |
3 | BESSON Michèle, GALLEZOT Pierre, PINEL Catherine. Conversion of biomass into chemicals over metal catalysts[J]. Chemical Reviews, 2014, 114(3): 1827-1870. |
4 | 王磊, 徐天晓, 韩燕絮, 等. Ru/有机改性蛭石催化乙酰丙酸甲酯加氢性能的研究[J]. 燃料化学学报, 2020, 48(1): 100-107. |
WANG Lei, XU Tianxiao, HAN Yanxu, et al. Study on the catalytic hydrogenation of methyl levulinate over Ru/organic modified vermiculite[J]. Journal of Fuel Chemistry and Technology, 2020, 48(1): 100-107. | |
5 | 徐漓, 吴玉锋, 张元甲, 等. “双碳”背景下广东农林废弃物综合利用技术进展[J]. 化工进展, 2023, 42(11): 5648-5660. |
XU Li, WU Yufeng, ZHANG Yuanjia, et al. The progress of comprehensive utilization technology of agricultural and forestry wastes in Guangdong under the background of “carbon peaking and carbon neutrality”[J]. Chemical Industry and Engineering Progress, 2023, 42(11): 5648-5660. | |
6 | IMYEN Thidarat, SAENLUANG Kachaporn, DUGKHUNTOD Pannida, et al. Investigation of ZSM-12 nanocrystals evolution derived from aluminosilicate nanobeads for sustainable production of ethyl levulinate from levulinic acid esterification with ethanol[J]. Microporous and Mesoporous Materials, 2021, 312: 110768. |
7 | 曾媛, 王允圃, 张淑梅, 等. 生物质微波热解制备液体燃料和化学品的研究进展[J]. 化工进展, 2021, 40(6): 3151-3162. |
ZENG Yuan, WANG Yunpu, ZHANG Shumei, et al. Research progress in preparation of liquid fuels and chemicals by microwave pyrolysis of biomass[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3151-3162. | |
8 | JIANG Linyun, ZHOU Lipeng, CHAO Jinyun, et al. Direct catalytic conversion of carbohydrates to methyl levulinate: Synergy of solid Brønsted acid and Lewis acid[J]. Applied Catalysis B: Environmental, 2018, 220: 589-596. |
9 | CIPTONUGROHO Wirawan, MENSAH Joel B, Ghith AL-SHAAL, et al. WO x /ZrO2 catalysts for the conversion of α-angelica lactone with butanol to butyl levulinates[J]. Chemical Papers, 2023, 77(7): 3769-3778. |
10 | PENG Lincai, LIN Lu, LI Hui, et al. Conversion of carbohydrates biomass into levulinate esters using heterogeneous catalysts[J]. Applied Energy, 2011, 88(12): 4590-4596. |
11 | TANG Ge, DENG Kuaqian, LI Panyang, et al. One-pot method of recyclable lipase-nanocatalyst based on chitosan magnetic nanomaterial for ethyl levulinate synthesis[J]. Composites Science and Technology, 2023, 236: 110002. |
12 | Cristhian CAñON, SANCHEZ Nestor, COBO Martha. Sustainable production of ethyl levulinate by levulinic acid esterification obtained from Colombian rice straw[J]. Journal of Cleaner Production, 2022, 377: 134276. |
13 | 徐杨杨, 祝慧敏, 李辰, 等. 竹材纤维定向醇解转化制备乙酰丙酸甲酯的研究[J]. 燃料化学学报, 2021, 49(12): 1889-1897. |
XU Yangyang, ZHU Huimin, LI Chen, et al. Study on preparation of methyl levulinate by directional alcoholysis of bamboo biomass[J]. Journal of Fuel Chemistry and Technology, 2021, 49(12): 1889-1897. | |
14 | DU Xinyuan, LU Xuebin, BAI Hui, et al. Mesoporous molecular sieves solid superacid as a catalyst for alcoholysis of fructose into methyl levulinate[J]. Biomass and Bioenergy, 2022, 166: 106627. |
15 | ZHANG Luxin, TIAN Lu, XU Ziyuan, et al. Direct production of ethyl levulinate from carbohydrates and biomass waste catalyzed by modified porous silica with multiple acid sites[J]. Process Biochemistry, 2022, 121: 152-162. |
16 | TIWARI Manishkumar S, GAWADE Anil B, YADAV Ganapati D. Magnetically separable sulfated zirconia as highly active acidic catalysts for selective synthesis of ethyl levulinate from furfuryl alcohol[J]. Green Chemistry, 2017, 19(4): 963-976. |
17 | GAUTAM Priyanka, BARMAN Sanghamitra, Amjad ALI. A comparative study on the performance of acid catalysts in the synthesis of levulinate ester using biomass-derived levulinic acid: A review[J]. Biofuels, Bioproducts and Biorefining, 2022, 16(4): 1095-1115. |
18 | CHAOWAMALEE Supphathee, YAN Ning, NGAMCHARUSSRIVICHAI Chawalit. Propylsulfonic acid-functionalized mesostructured natural rubber/silica nanocomposites as promising hydrophobic solid catalysts for alkyl levulinate synthesis[J]. Nanomaterials, 2022, 12(4): 604. |
19 | CHHABRA Tripti, ROHILLA Jyoti, KRISHNAN Venkata. Nanoarchitectonics of phosphomolybdic acid supported on activated charcoal for selective conversion of furfuryl alcohol and levulinic acid to alkyl levulinates[J]. Molecular Catalysis, 2022, 519: 112135. |
20 | RUSSO Vincenzo, ROSSANO Carmelina, SALUCCI Emiliano, et al. Intraparticle diffusion model to determine the intrinsic kinetics of ethyl levulinate synthesis promoted by Amberlyst-15[J]. Chemical Engineering Science, 2020, 228: 115974. |
21 | BADGUJAR Kirtikumar C, BADGUJAR Vivek C, BHANAGE Bhalchandra. M. A review on catalytic synthesis of energy rich fuel additive levulinate compounds from biomass derived levulinic acid [J]. Fuel Processing Technology, 2020, 197: 106213. |
22 | MELFI Diego Trevisan, DOS SANTOS Kallynca Carvalho, RAMOS Luiz Pereira, et al. Supercritical CO2 as solvent for fatty acids esterification with ethanol catalyzed by Amberlyst-15[J]. The Journal of Supercritical Fluids, 2020, 158: 104736. |
23 | WANG Zixin, XIE Chao, LI Xun, et al. Amberlyst-15 supported zirconium sulfonate as an efficient catalyst for Meerwein-Ponndorf-Verley reductions[J]. Chemical Communications, 2022, 58(25): 4067-4070. |
24 | XU Siquan, YIN Chunyu, PAN Donghui, et al. Efficient conversion of glucose into 5-hydroxymethylfurfural using a bifunctional Fe3+ modified Amberlyst-15 catalyst[J]. Sustainable Energy & Fuels, 2019, 3(2): 390-395. |
25 | 周硕, 王辉, 王苏宁, 等. 硅铝比对Cu/SSZ-13分子筛低温催化性能的影响[J].化学工程, 2021, 49(7): 61-66. |
ZHOU Shuo, WANG Hui, WANG Suning, et al. Effect of Si/Al ratio on catalytic reduction performance of Cu/SSZ-13 zeolite for NH3-SCR at low temperature[J]. Chemical Engineering, 2021, 49(7): 61-66. | |
26 | ÖZGÜR Derya Öncel, Tayyibe ŞIMŞEK, Göksel ÖZKAN, et al. The Hydroloysis of ammonia borane by using Amberlyst-15 supported catalysts for hydrogen generation[J]. International Journal of Hydrogen Energy, 2018, 43(23): 10765-10772. |
27 | XING Xinyi, SHI Xian, HU Rui, et al. Hf-β zeolites as highly efficient catalysts for the production of 5-hydroxymethylfurfural from cellulose in biphasic system[J]. International Journal of Biological Macromolecules, 2022, 222: 3014-3023. |
28 | 彭林才, 林鹿, 李辉. 生物质转化合成新能源化学品乙酰丙酸酯[J].化学进展, 2012, 24(5): 801-809. |
PENG Lincai, LIN Lu, LI Hui. Conversion of biomass into levulinate esters as novel energy chemicals[J]. Progress in Chemistry, 2012, 24(5): 801-809. | |
29 | KASAR Gayatri B, DATE Nandan S, BHOSALE P N, et al. Steering the ester and γ-valerolactone selectivities in levulinic acid hydrogenation[J]. Energy & Fuels, 2018, 32(6): 6887-6900. |
30 | WU Xiaoyu, FU Jie, LU Xiuyang. One-pot preparation of methyl levulinate from catalytic alcoholysis of cellulose in near-critical methanol[J]. Carbohydrate Research 2012, 358: 37-39. |
31 | RAVASCO Joao M J M, COELHO Jaime A S, SIMEONOV Svilen P, et al. Bifunctional Cr3+ modified ion exchange resins as efficient reusable catalysts for the production and isolation of 5-hydroxymethylfurfural from glucose[J]. RSC Advances, 2017, 7(13): 7555-7559. |
[1] | 吴达, 蒋淑娇, 魏强, 袁胜华, 杨刚, 张成. 能源转型中渣油高效利用技术的研究进展[J]. 化工进展, 2024, 43(5): 2343-2353. |
[2] | 桂鑫, 陈汇勇, 白柏杨, 贾永梁, 马晓迅. Mo掺杂改性NiC/Al-MCM-41的芘催化加氢性能[J]. 化工进展, 2024, 43(5): 2386-2395. |
[3] | 丁思佳, 蒋淑娇, 杨占林, 彭绍忠, 蒋乾民. 基于氮化物结构与加氢行为关系设计重油加氢脱氮催化剂[J]. 化工进展, 2024, 43(5): 2436-2448. |
[4] | 段翔, 田野, 董文威, 宋松, 李新刚. 苯酐合成的反应网络及催化反应机制研究现状与展望[J]. 化工进展, 2024, 43(5): 2587-2599. |
[5] | 方峣, 刘雷, 高志华, 黄伟, 左志军. 光辅助直接甲醇燃料电池阳极催化剂的研究进展[J]. 化工进展, 2024, 43(5): 2611-2628. |
[6] | 张金鹏, 屈婷, 荆洁颖, 李文英. 吸附强化水气变换制氢复合催化剂研究进展[J]. 化工进展, 2024, 43(5): 2629-2644. |
[7] | 李娜, 赵婉彤, 凌丽霞, 王宝俊, 章日光. RhCu催化剂中限域环境调控合成气转化生成CH x 反应性能[J]. 化工进展, 2024, 43(5): 2684-2695. |
[8] | 冯勇强, 王洁茹, 王超娴, 李芳, 苏婉婷, 孙宇, 赵彬然. γ-Al2O3 负载的Ni、Fe、Cu对介质阻挡放电等离子体转化CO2/CH4的影响[J]. 化工进展, 2024, 43(5): 2705-2713. |
[9] | 周运桃, 王洪星, 李新刚, 崔丽凤. CeO2载体在CO2加氢制甲醇中的应用和研究进展[J]. 化工进展, 2024, 43(5): 2723-2738. |
[10] | 黄澎, 邹颖, 王宝焕, 王逍妍, 赵勇, 梁鑫, 胡迪. 二氧化碳电催化还原反应制合成气催化剂研究进展[J]. 化工进展, 2024, 43(5): 2760-2775. |
[11] | 卢欣欣, 蔡东仁, 詹国武. 基于固体前体构建集成催化剂及CO2加氢研究进展[J]. 化工进展, 2024, 43(5): 2786-2802. |
[12] | 李海鹏, 吴桐, 王琪, 郜时旺, 王晓龙, 李旭, 高新华, 年佩, 魏逸彬. 透水NaA分子筛膜强化的CO2加氢高效制甲醇[J]. 化工进展, 2024, 43(5): 2834-2842. |
[13] | 刘若璐, 汤海波, 何翡翡, 罗凤盈, 王金鸽, 杨娜, 李洪伟, 张锐明. 液态有机储氢技术研究现状与展望[J]. 化工进展, 2024, 43(4): 1731-1741. |
[14] | 王红妍, 马子然, 李歌, 马静, 赵春林, 周佳丽, 王磊, 彭胜攀. 燃煤耦合可再生燃料烟气多污染物协同催化脱除研究进展[J]. 化工进展, 2024, 43(4): 1783-1795. |
[15] | 陈家一, 高帷韬, 阴亚楠, 王诚, 欧阳鸿武, 毛宗强. 电化学沉积法制备质子交换膜燃料电池催化剂[J]. 化工进展, 2024, 43(4): 1796-1809. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |