1 |
VILLADSEN Sebastian NIS BAY, AHRENSBERG KAAB Malene, PLETH NIELSEN Lars, et al. New electroscrubbing process for desulfurization[J]. Separation and Purification Technology, 2021, 278: 119552.
|
2 |
XUE Shengrong, SONG Jinghui, WANG Xiaojiao, et al. A systematic comparison of biogas development and related policies between China and Europe and corresponding insights[J]. Renewable and Sustainable Energy Reviews, 2020, 117: 109474.
|
3 |
付永猛, 夏亚龙, 雷成军, 等. 乳业废水沼气利用与碳减排的工程探索[J]. 低碳世界, 2022, 12(1): 46-48, 76.
|
|
FU Yongmeng, XIA Yalong, LEI Chengjun, et al. Engineering exploration on biogas utilization and carbon emission reduction of dairy wastewater[J]. Low Carbon World, 2022, 12(1): 46-48, 76.
|
4 |
楼毕觉. 微氧连续导入厌氧发酵系统实现H2S原位脱除的研究[D]. 杭州: 浙江工业大学, 2020.
|
|
LOU Bijue. In-situ removal of H2S by continuous introduction of micro-oxygen into anaerobic fermentation system[D]. Hangzhou: Zhejiang University of Technology, 2020.
|
5 |
闫灏. 基于碱化学吸收法的沼气化学与生物组合脱硫技术研究[D]. 北京: 北京化工大学, 2020.
|
|
YAN Hao. Desulfurization of biogas through alkali chemiscal absorption combined and biological methods[D]. Beijing: Beijing University of Chemical Technology, 2020.
|
6 |
欧阳力. 生物滴滤塔对沼气中硫化氢的去除效能研究[D]. 哈尔滨: 哈尔滨工业大学, 2011.
|
|
OUYANG Li. Research on the removalefficiency of hydrogen sulfide from biogas in the biotrickling filter[D]. Harbin: Harbin Institute of Technology, 2011.
|
7 |
姜茹. 沼气中硫化氢的脱除技术研究[D]. 南京: 南京大学, 2011.
|
|
JIANG Ru. Study on removal technology of H2S in biogas[D]. Nanjing: Nanjing University, 2011.
|
8 |
崔磊. 电化学法脱除溶液中硫离子的研究[D]. 成都: 西南石油大学, 2012.
|
|
CUI Lei. Study on removal of sulfur ions from solution by electrochemical method[D]. Chengdu: Southwest Petroleum University, 2012.
|
9 |
SHEN Hongyan, ZHANG Zhitao, CHEN Zheng, et al. A novel bioelectrochemical strategy for efficient treatment of saline-alkaline and oligotrophic sulfate wastewater mediated by bacterial electron shuttling[J]. Journal of Water Process Engineering, 2023, 51: 103449.
|
10 |
DING Aqiang, YANG Yu, SUN Guodong, et al. Impact of applied voltage on methane generation and microbial activities in an anaerobic microbial electrolysis cell (MEC)[J]. Chemical Engineering Journal, 2016, 283: 260-265.
|
11 |
SULONEN Mira L K, BAEZA Juan Antonio, GABRIEL David, et al. Optimisation of the operational parameters for a comprehensive bioelectrochemical treatment of acid mine drainage[J]. Journal of Hazardous Materials, 2021, 409: 124944.
|
12 |
YUAN Ye, CHENG Haoyi, CHEN Fan, et al. Enhanced methane production by alleviating sulfide inhibition with a microbial electrolysis coupled anaerobic digestion reactor[J]. Environment International, 2020, 136: 105503.
|
13 |
NI Gaofeng, HARNAWAN Pebrianto, SEIDEL Laura, et al. Haloalkaliphilic microorganisms assist sulfide removal in a microbial electrolysis cell[J]. Journal of Hazardous Materials, 2019, 363: 197-204.
|
14 |
DONG Zhishuai, ZHAO Yu, FAN Lei, et al. Simultaneous sulfide removal and hydrogen production in a microbial electrolysis cell[J]. International Journal of Electrochemical Science, 2017, 12(11): 10553-10566.
|
15 |
DYKSTRA Christy M, PAVLOSTATHIS Spyros G. Hydrogen sulfide affects the performance of a methanogenic bioelectrochemical system used for biogas upgrading[J]. Water Research, 2021, 200: 117268.
|
16 |
POZO Guillermo, LU Yang, PONGY Sebastien, et al. Selective cathodic microbial biofilm retention allows a high current-to-sulfide efficiency in sulfate-reducing microbial electrolysis cells[J]. Bioelectrochemistry, 2017, 118: 62-69.
|
17 |
ZEPPILLI Marco, PAIANO Paola, TORRES Cesar, et al. A critical evaluation of the pH split and associated effects in bioelectrochemical processes[J]. Chemical Engineering Journal, 2021, 422: 130155.
|
18 |
KOOMSON Desmond Ato, HUANG Jingyu, LI Guang, et al. Comparative studies of recirculatory microbial desalination cell-microbial electrolysis cell coupled systems[J]. Membranes, 2021, 11(9): 661.
|
19 |
许坤德, 李建昌, 邵琼丽, 等. 初始pH值对MEC阳极膜的产氢性能和微生物群落的影响[J]. 化学研究与应用, 2020, 32(12): 2224-2230.
|
|
XU Kunde, LI Jianchang, SHAO Qiongli, et al. Effect of initial pH on the performance and microbial community of MEC anode biofilms[J]. Chemical Research and Application, 2020, 32(12): 2224-2230.
|
20 |
PATIL Sunil A, HARNISCH Falk, KOCH Christin, et al. Electroactive mixed culture derived biofilms in microbial bioelectrochemical systems: The role of pH on biofilm formation, performance and composition[J]. Bioresource Technology, 2011, 102(20): 9683-9690.
|
21 |
YANG Yuli, QIN Mohan, YANG Xiaoli, et al. Enhancing hydrogen production in microbial electrolysis cells by in situ hydrogen oxidation for self-buffering pH through periodic polarity reversal[J]. Journal of Power Sources, 2017, 347: 21-28.
|
22 |
ZHEN Guangyin, LU Xueqin, KUMAR Gopalakrishnan, et al. Microbial electrolysis cell platform for simultaneous waste biorefinery and clean electrofuels generation: Current situation, challenges and future perspectives[J]. Progress in Energy and Combustion Science, 2017, 63: 119-145.
|
23 |
Joo-Youn NAM, LOGAN Bruce E. Optimization of catholyte concentration and anolyte pHs in two chamber microbial electrolysis cells[J]. International Journal of Hydrogen Energy, 2012, 37(24): 18622-18628.
|
24 |
WANG Yongzhong, ZHANG Lei, XU Tengfei, et al. Influence of initial anolyte pH and temperature on hydrogen production through simultaneous saccharification and fermentation of lignocellulose in microbial electrolysis cell[J]. International Journal of Hydrogen Energy, 2017, 42(36): 22663-22670.
|
25 |
NGUYEN Phan Khanh Thinh, KIM Jihyeon, Gautam DAS, et al. Optimization of simultaneous dark fermentation and microbial electrolysis cell for hydrogen production from macroalgae using response surface methodology[J]. Biochemical Engineering Journal, 2021, 171: 108029.
|
26 |
LUO Shuai, LIU Fubin, FU Boya, et al. Onset investigation on dynamic change of biohythane generation and microbial structure in dual-chamber versus single-chamber microbial electrolysis cells[J]. Water Research, 2021, 201: 117326.
|
27 |
赵玉娇, 朱雨森, 郭美欣, 等. 脱硫MEC的硫价态变化与微生物群落演替规律[J]. 环境工程学报, 2022, 16(1): 264-271.
|
|
ZHAO Yujiao, ZHU Yusen, GUO Meixin, et al. Sulfur valence variety and microbial community succession of desulphurization MEC[J]. Chinese Journal of Environmental Engineering, 2022, 16(1): 264-271.
|
28 |
WANG Bo, LIU Wenzong, ZHANG Yifeng, et al. Bioenergy recovery from wastewater accelerated by solar power: Intermittent electro-driving regulation and capacitive storage in biomass[J]. Water Research, 2020, 175: 115696.
|
29 |
国家环境保护总局. 水质 硫化物的测定 亚甲基蓝分光光度法: [S]. 北京: 中国标准出版社, 1996.
|
|
State Environmental Protection Administration of the People's Republic of China. Water quality-Determination of sulfide-Methylene blue spectrophotometric method: [S]. Beijing: Standards Press of China, 1996.
|
30 |
中华人民共和国环境保护部. 水质 化学需氧量的测定 快速消解分光光度法: [S]. 北京: 中国环境科学出版社, 2008.
|
|
Ministry of Environmental Protection of the People's Republic of China. Water quality-Determination of the chemical oxygen demand-Fast digestion-Spectrophotometric method: [S]. Beijing: China Environmental Science Press, 2008.
|
31 |
YU Jiangnan, HUANG Zhenxing, WU Peng, et al. Performance and microbial characterization of two-stage caproate fermentation from fruit and vegetable waste via anaerobic microbial consortia[J]. Bioresource Technology, 2019, 284: 398-405.
|
32 |
HE Kuanchang, LI Wei, TANG Longxiang, et al. Suppressing methane production to boost high-purity hydrogen production in microbial electrolysis cells[J]. Environmental Science & Technology, 2022, 56(17): 11931-11951.
|
33 |
Enric BLÁZQUEZ, GABRIEL David, BAEZA Juan Antonio, et al. Treatment of high-strength sulfate wastewater using an autotrophic biocathode in view of elemental sulfur recovery[J]. Water Research, 2016, 105: 395-405.
|
34 |
CHENG Shaoan, LOGAN Bruce E. Sustainable and efficient biohydrogen production via electrohydrogenesis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(47): 18871-18873.
|
35 |
ZHANG Shuang, GUAN Weijie, SUN Haishu, et al. Intermittent energization improves microbial electrolysis cell-assisted thermophilic anaerobic co-digestion of food waste and spent mushroom substance[J]. Bioresource Technology, 2023, 370: 128577.
|
36 |
PANG Yao, GU Tianfeng, ZHANG Guijiao, et al. Experimental study on volatile sulfur compound inhibition using a single-chamber membrane-free microbial electrolysis cell[J]. Environmental Science and Pollution Research, 2020, 27(24): 30571-30582.
|
37 |
LUO Haiping, BAI Jiamin, HE Jiajia, et al. Sulfate reduction and elemental sulfur recovery using photoelectric microbial electrolysis cell[J]. Science of the Total Environment, 2020, 728: 138685.
|
38 |
ZHENG Yue, XIAO Yong, YANG Zhaohui, et al. The bacterial communities of bioelectrochemical systems associated with the sulfate removal under different pHs[J]. Process Biochemistry, 2014, 49(8): 1345-1351.
|
39 |
YANG Nuan, ZHAN Guoqiang, WU Tingting, et al. Effect of air-exposed biocathode on the performance of a Thauera-dominated membraneless single-chamber microbial fuel cell (SCMFC)[J]. Journal of Environmental Sciences, 2018, 66: 216-224.
|
40 |
YANG Guiqin, ZHANG Jun, KWON Soon-Wo, et al. Thauera humireducens sp. nov., a humus-reducing bacterium isolated from a microbial fuel cell[J]. International Journal of Systematic and Evolutionary Microbiology, 2013, 63: 873-878.
|
41 |
ZHEN Guangyin, ZHENG Shaojuan, HAN Yule, et al. Semi-continuous anolyte circulation to strengthen CO2 bioelectromethanosynthesis with complex organic matters as the e-/H+ donor for simultaneous biowaste refinery[J]. Chemical Engineering Journal, 2022, 430: 133123.
|