1 |
DAUD W R W, ROSLI R E, MAJLAN E H, et al. PEM fuel cell system control: A review[J]. Renewable Energy, 2017, 113: 620-638.
|
2 |
PEIGHAMBARDOUST S J, ROWSHANZAMIR S, AMJADI M. Review of the proton exchange membranes for fuel cell applications[J]. International Journal of Hydrogen Energy, 2010, 35(17): 9349-9384.
|
3 |
孙媛媛, 屈树国, 李建隆. 质子交换膜燃料电池用磺化聚醚醚酮膜的研究进展[J]. 化工进展, 2016, 35(9): 2850-2860.
|
|
SUN Yuanyuan, QU Shuguo, LI Jianlong. Research progress of the sulfonated poly(ether ether ketone)s membranes for proton exchange membrane fuel cell[J]. Chemical Industry and Engineering Progress, 2016, 35(9): 2850-2860.
|
4 |
刘闪闪, 侯敬贺, 肖振雨, 等. SPTES-b-PI质子交换膜的制备及表征[J]. 化工进展, 2018, 37(9): 3502-3507.
|
|
LIU Shanshan, HOU Jinghe, XIAO Zhenyu, et al. Preparation and properties of sulfonated poly(arylene thioether sulfone)-b-polyimide block copolymers as proton exchange membrane[J]. Chemical Industry and Engineering Progress, 2018, 37(9): 3502-3507.
|
5 |
TANG Hongying, GENG Kang, HAO Jinkai, et al. Properties and stability of quaternary ammonium-biphosphate ion-pair poly(sulfone)s high temperature proton exchange membranes for H2/O2 fuel cells[J]. Journal of Power Sources, 2020, 475: 228521.
|
6 |
王迎姿, 尚玉明, 冯少广, 等. 磺化聚苯并咪唑/磺化聚醚砜酸碱复合质子交换膜的制备与表征[J]. 化工进展, 2010, 29(5): 843-846.
|
|
WANG Yingzi, SHANG Yuming, FENG Shaoguang, et al. Acid-base composite membranes from sulfonated polybenzimidazole and sulfonated poly(arylene ether sulfone)[J]. Chemical Industry and Engineering Progress, 2010, 29(5): 843-846.
|
7 |
HAIDER Rizwan, WEN Yichan, MA Zifeng, et al. High temperature proton exchange membrane fuel cells: Progress in advanced materials and key technologies[J]. Chemical Society Reviews, 2021, 50(2): 1138-1187.
|
8 |
ATANASOV Vladimir, LEE Albert S, PARK Eun Joo, et al. Synergistically integrated phosphonated poly(pentafluorostyrene) for fuel cells[J]. Nature Materials, 2021, 20(3): 370-377.
|
9 |
卢善富, 徐鑫, 张劲, 等. 燃料电池用磷酸掺杂高温质子交换膜研究进展[J]. 中国科学: 化学, 2017, 47(5): 565-572.
|
|
LU Shanfu, XU Xin, ZHANG Jin, et al. Progress of phosphoric acid doped high temperature proton exchange membrane for fuel cells[J]. Scientia Sinica Chimica, 2017, 47(5): 565-572.
|
10 |
XIAO Lixiang, ZHANG Haifeng, SCANLON Eugene, et al. High-temperature polybenzimidazole fuel cell membranes via a sol⁃gel process[J]. Chemistry of Materials, 2005, 17(21): 5328-5333.
|
11 |
FISHEL K, QIAN G Q, BENICEWICZ B C. PBI membranes via the PPA process[M]//LI Q, ALILI D, HJULER H, et al. High temperature polymer electrolyte membrane fuel cells. Cham: Springer, 2016: 217-238.
|
12 |
KIM Junghwan, KIM Kihyun, Taeyun KO, et al. Polybenzimidazole composite membranes containing imidazole functionalized graphene oxide showing high proton conductivity and improved physicochemical properties[J]. International Journal of Hydrogen Energy, 2021, 46(22): 12254-12262.
|
13 |
XU Chenxi, LIU Xiaoteng, CHENG Jigui, et al. A polybenzimidazole/ionic-liquid-graphite-oxide composite membrane for high temperature polymer electrolyte membrane fuel cells[J]. Journal of Power Sources, 2015, 274: 922-927.
|
14 |
WU Yini, LIU Xiaoting, YANG Fan, et al. Achieving high power density and excellent durability for high temperature proton exchange membrane fuel cells based on crosslinked branched polybenzimidazole and metal-organic frameworks[J]. Journal of Membrane Science, 2021, 630: 119288.
|
15 |
MUKHOPADHYAY Subhabrata, Anupam DAS, JANA Tushar, et al. Fabricating a MOF material with polybenzimidazole into an efficient proton exchange membrane[J]. ACS Applied Energy Materials, 2020, 3(8): 7964-7977.
|
16 |
EREN Enis Oğuzhan, Necati ÖZKAN, Yılser DEVRIM. Preparation of polybenzimidazole/ZIF-8 and polybenzimidazole/UiO-66 composite membranes with enhanced proton conductivity[J]. International Journal of Hydrogen Energy, 2022, 47(45): 19690-19701.
|
17 |
CHEN H, WANG S, LIU F X, et al. Base-acid doped polybenzimidazole with high phosphoric acid retention for HT-PEMFC applications[J]. Journal of Membrane Science, 2020, 596: 117722.
|
18 |
HE Donglin, LIU Guoliang, WANG Ailian, et al. Alkali-free quaternized polybenzimidazole membranes with high phosphoric acid retention ability for high temperature proton exchange membrane fuel cells[J]. Journal of Membrane Science, 2022, 650: 120442.
|
19 |
张琪, 潘丽燕, 徐荣, 等. 氧化石墨烯/磺化聚苯并咪唑高温质子交换膜的制备和表征[J]. 化工进展, 2018, 37(12): 4758-4764.
|
|
ZHANG Qi, PAN Liyan, XU Rong, et al. Preparation and characterization of graphene oxide/sulfonated polybenzimidazole high temperature proton exchange membrane[J]. Chemical Industry and Engineering Progress, 2018, 37(12): 4758-4764.
|
20 |
YUE Zhouying, CAI Yangben, XU Shiai. Phosphoric acid-doped cross-linked sulfonated poly(imide-benzimidazole) for proton exchange membrane fuel cell applications[J]. Journal of Membrane Science, 2016, 501: 220-227.
|
21 |
LIU Fengxiang, WANG Shuang, LI Jinsheng, et al. Novel double cross-linked membrane based on poly (ionic liquid) and polybenzimidazole for high-temperature proton exchange membrane fuel cells[J]. Journal of Power Sources, 2021, 515: 230637.
|
22 |
LIU F X, WANG S, WANG D, et al. Multifunctional poly(ionic liquid)s cross-linked polybenzimidazole membrane with excellent long-term stability for high temperature-proton exchange membranes fuel cells[J]. Journal of Power Sources, 2021, 494: 229732.
|
23 |
MAITY Sudhangshu, SINGHA Shuvra, JANA Tushar. Low acid leaching PEM for fuel cell based on polybenzimidazole nanocomposites with protic ionic liquid modified silica[J]. Polymer, 2015, 66: 76-85.
|
24 |
LEE Kwan-Soo, SPENDELOW Jacob S, CHOE Yoong-Kee, et al. An operationally flexible fuel cell based on quaternary ammonium-biphosphate ion pairs[J]. Nature Energy, 2016, 1: 16120.
|
25 |
YIN Bibo, WU Yingnan, LIU Chunfa, et al. An effective strategy for the preparation of a wide-temperature-range proton exchange membrane based on polybenzimidazoles and polyacrylamide hydrogels[J]. Journal of Materials Chemistry A, 2021, 9(6): 3605-3615.
|
26 |
SUZUKI Kazuhiro, IIZUKA Yusuke, TANAKA Manabu, et al. Phosphoric acid-doped sulfonated polyimide and polybenzimidazole blend membranes: High proton transport at wide temperatures under low humidity conditions due to new proton transport pathways[J]. Journal of Materials Chemistry, 2012, 22(45): 23767-23772.
|
27 |
HUANG Fei, PINGITORE Andrew T, BENICEWICZ Brian C. Electrochemical hydrogen separation from reformate using high-temperature polybenzimidazole (PBI) membranes: The role of chemistry[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(16): 6234-6242.
|
28 |
NI Jiangpeng, HU Meishao, LIU Dong, et al. Synthesis and properties of highly branched polybenzimidazoles as proton exchange membranes for high-temperature fuel cells[J]. Journal of Materials Chemistry C, 2016, 4(21): 4814-4821.
|
29 |
ZHOU Bairui, HUANG Fei, GAO Congjie, et al. The role of ring opening reaction chemistry of sultones/lactones in the direct zwitterionization of polyamide nano-filtration membranes[J]. Journal of Membrane Science, 2022, 641: 119918.
|
30 |
BAN Tao, GUO Maolian, WANG Yajie, et al. High-performance aromatic proton exchange membranes bearing multiple flexible pendant sulfonate groups: Exploring side chain length and main chain polarity[J]. Journal of Membrane Science, 2023, 668: 121255.
|
31 |
LU Y, WEN Y, HUANG F, et al. Rational design and demonstration of a high-performance flexible Zn/V2O5 battery with thin-film electrodes and para-polybenzimidazole electrolyte membrane[J]. Energy Storage Materials, 2020, 27: 418-425.
|
32 |
ZHU Yuan, DING Liang, LIANG Xian, et al. Beneficial use of rotatable-spacer side-chains in alkaline anion exchange membranes for fuel cells[J]. Energy & Environmental Science, 2018, 11(12): 3472-3479.
|
33 |
GE Xiaolin, HE Yubin, LIANG Xian, et al. Thermally triggered polyrotaxane translational motion helps proton transfer[J]. Nature Communications, 2018, 9: 2297.
|
34 |
GE Xiaolin, HE Yubin, ZHANG Kaiyu, et al. Fast bulky anion conduction enabled by free shuttling phosphonium cations[J]. Research, 2021, 2021: 9762709.
|
35 |
TANG Hongying, GENG Kang, WU Lei, et al. Fuel cells with an operational range of -20℃ to 200℃ enabled by phosphoric acid-doped intrinsically ultramicroporous membranes[J]. Nature Energy, 2022, 7(2): 153-162.
|
36 |
KANNAN Ramaiyan, KAGALWALA Husain N, CHAUDHARI Harshal D, et al. Improved performance of phosphonated carbon nanotube-polybenzimidazole composite membranes in proton exchange membrane fuel cells[J]. Journal of Materials Chemistry, 2011, 21(20): 7223-7231.
|
37 |
ZHANG Na, ZHAO Chengji, MA Wenjia, et al. Macromolecular covalently cross-linked quaternary ammonium poly(ether ether ketone) with polybenzimidazole for anhydrous high temperature proton exchange membranes[J]. Polymer Chemistry, 2014, 5(17): 4939-4947.
|
38 |
PENG Jinwu, FU Xianzhu, LUO Jingli, et al. Constructing novel cross-linked polybenzimidazole network for high-performance high-temperature proton exchange membrane[J]. Journal of Membrane Science, 2022, 643: 120037.
|
39 |
LU Shanfu, XIU Ruijie, XU Xin, et al. Polytetrafluoroethylene (PTFE) reinforced poly(ethersulphone)-poly(vinyl pyrrolidone) composite membranefor high temperature proton exchange membrane fuel cells[J]. Journal of Membrane Science, 2014, 464: 1-7.
|
40 |
GUO Zhibin, XU Xin, XIANG Yan, et al. New anhydrous proton exchange membranes for high-temperature fuel cells based on PVDF–PVP blended polymers[J]. Journal of Materials Chemistry A, 2015, 3(1): 148-155.
|
41 |
CHENG Yi, ZHANG Jin, LU Shanfu, et al. High CO tolerance of new SiO2 doped phosphoric acid/polybenzimidazole polymer electrolyte membrane fuel cells at high temperatures of 200—250℃[J]. International Journal of Hydrogen Energy, 2018, 43(49): 22487-22499.
|