化工进展 ›› 2024, Vol. 43 ›› Issue (1): 490-500.DOI: 10.16085/j.issn.1000-6613.2023-0253
• 资源与环境化工 • 上一篇
杨梦茹1(), 彭琴1, 常玉龙1,2, 邱淑兴3, 张溅波3, 江霞1,2()
收稿日期:
2023-02-24
修回日期:
2023-06-12
出版日期:
2024-01-20
发布日期:
2024-02-05
通讯作者:
江霞
作者简介:
杨梦茹(1998—),女,硕士研究生,研究方向为生物炭功能材料。E-mail:987099724@qq.com。
基金资助:
YANG Mengru1(), PENG Qin1, CHANG Yulong1,2, QIU Shuxing3, ZHANG Jianbo3, JIANG Xia1,2()
Received:
2023-02-24
Revised:
2023-06-12
Online:
2024-01-20
Published:
2024-02-05
Contact:
JIANG Xia
摘要:
钢铁行业是能源消耗和碳排放大户,因此在碳中和背景下寻求可替代传统煤的零碳原料是钢铁行业重点发展的碳减排技术。生物炭具有碳中性特征,碳含量和热值与煤接近,是煤粉和焦炭理想的替代原料。本文系统介绍了生物炭在炼焦、烧结、高炉炼铁中的潜在利用途径,并进一步聚焦生物炭应用于高炉炼铁时所需具备的理化特性,阐述了生物炭碱金属、强度、粒度与比表面积在替煤代焦时的影响及机理。针对碱金属降低焦炭强度等问题,介绍了酸洗等脱矿方法降低生物炭碱金属含量;针对生物炭机械强度差难以入炉问题,总结了焦炭强度形成机理和生物炭成型增强工艺;针对生物炭导致炼焦煤混合物流动性变差问题,通过调控生物炭粒度和比表面积以降低对焦炭的负面影响。最后,总结了生物炭替代煤粉和焦炭高炉炼铁的国内外进展及预期CO2减排效果。通过分析生物炭替煤代焦目前工业应用中存在的挑战以及生命周期评价的相关研究情况,为未来钢铁行业实现碳中和提供技术支撑。
中图分类号:
杨梦茹, 彭琴, 常玉龙, 邱淑兴, 张溅波, 江霞. 生物炭替代煤粉/焦炭高炉炼铁碳减排技术研究进展[J]. 化工进展, 2024, 43(1): 490-500.
YANG Mengru, PENG Qin, CHANG Yulong, QIU Shuxing, ZHANG Jianbo, JIANG Xia. Research progress of carbon emission reduction technology with biochar replacing pulverized coal/coke for blast furnace ironmaking[J]. Chemical Industry and Engineering Progress, 2024, 43(1): 490-500.
生物炭应用途径 | 常规原料添加量/kg·t-1 | 生物炭替代率/% | 生物炭添加量/kg·t-1 | 净减排量/t·t-1 | 净减排量CO2排放/% |
---|---|---|---|---|---|
炼焦 | 480~560 | 2~10 | 9.6~56 | 0.02~0.11 | 1~5 |
烧结固体原料 | 76.5~102 | 50~100 | 38.3~102 | 0.12~0.32 | 5~15 |
高炉喷吹原料 | 150~200 | 0~100 | 0~200 | 0.41~0.55 | 19~25 |
高炉块焦 | 45 | 50~100 | 22.5~45 | 0.08~0.16 | 3~7 |
总计 | 751.5~907 | 0~100 | 70.4~403 | 0.63~1.14 | 28~52 |
表1 钢铁生产过程中生物炭利用情况及预期CO2减排量[27]
生物炭应用途径 | 常规原料添加量/kg·t-1 | 生物炭替代率/% | 生物炭添加量/kg·t-1 | 净减排量/t·t-1 | 净减排量CO2排放/% |
---|---|---|---|---|---|
炼焦 | 480~560 | 2~10 | 9.6~56 | 0.02~0.11 | 1~5 |
烧结固体原料 | 76.5~102 | 50~100 | 38.3~102 | 0.12~0.32 | 5~15 |
高炉喷吹原料 | 150~200 | 0~100 | 0~200 | 0.41~0.55 | 19~25 |
高炉块焦 | 45 | 50~100 | 22.5~45 | 0.08~0.16 | 3~7 |
总计 | 751.5~907 | 0~100 | 70.4~403 | 0.63~1.14 | 28~52 |
生物炭类型 | 处理条件 | 工业分析/% | 元素分析/% | 原子比 | 热值/MJ·kg-1 | 参考文献 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
水分 | 固定碳 | 挥发分 | 灰分 | C | H | O | N | S | H/C | O/C | ||||
小麦秸秆炭 | 热解炭化 | — | 54.29 | 18.43 | 27.28 | 55.60 | 1.75 | 14.04 | 0.60 | 0.74 | 0.38 | 0.19 | 20.71 | [ |
小麦秸秆炭 | 水热炭化 | — | 48.12 | 49.13 | 2.76 | 69.52 | 5.34 | 23.98 | 0.98 | 0.18 | 0.92 | 0.26 | 28.32 | [ |
玉米秸秆炭 | 热解炭化 | — | 60.30 | 16.95 | 22.75 | 61.47 | 1.87 | 13.00 | 0.70 | 0.21 | 0.37 | 0.16 | 21.64 | [ |
玉米秸秆炭 | 水热炭化 | — | 46.86 | 48.39 | 4.75 | 71.84 | 5.46 | 20.72 | 1.60 | 0.38 | 0.91 | 0.22 | 29.78 | [ |
棉花秸秆炭 | 热解炭化 | — | 68.66 | 16.56 | 14.78 | 72.27 | 2.07 | 9.09 | 1.42 | 0.38 | 0.34 | 0.09 | 33.94 | [ |
水稻秸秆炭 | 热解炭化 | — | 43.23 | 22.06 | 34.71 | 46.40 | 2.19 | 15.31 | 0.72 | 0.67 | 0.57 | 0.25 | 21.17 | [ |
无花果炭 | 热解炭化 | — | 76.59 | 21.04 | 2.37 | 88.81 | 5.34 | 5.12 | 0.62 | 0.10 | 0.72 | 0.04 | 36.00 | [ |
杨木炭 | 热解炭化 | 1.44 | 83.79 | 12.22 | 2.55 | 87.89 | 2.23 | 5.08 | 0.71 | 0.10 | 0.30 | 0.04 | 32.73 | [ |
桦木炭 | 热解炭化 | — | 87.80 | 11.00 | 1.20 | 89.90 | 3.07 | 5.30 | 0.54 | 0.01 | 0.41 | 0.04 | 34.50 | [ |
核桃壳炭 | 热解炭化 | 3.82 | 74.52 | 18.71 | 2.59 | 77.97 | 3.22 | 17.69 | 1.12 | — | 0.50 | 0.17 | 29.30 | [ |
竹炭 | 热解炭化 | — | 67.62 | 29.22 | 3.16 | 73.12 | 3.63 | 22.78 | 0.47 | — | 0.60 | 0.23 | 26.60 | [ |
花生壳炭 | 热解炭化 | 2.26 | 81.51 | 13.89 | 2.34 | 83.48 | 3.69 | 7.01 | 1.04 | 0.18 | 0.53 | 0.06 | 29.08 | [ |
甜菜浆炭 | 水热炭化 | 3.95 | 28.34 | 66.71 | 1.00 | 60.08 | 5.86 | 26.30 | 2.09 | 0.00 | 1.17 | 0.33 | 25.36 | [ |
无烟煤 | — | — | 74.20 | 9.49 | 11.58 | 82.70 | 3.26 | 1.04 | 1.13 | 0.29 | 0.47 | 0.01 | 32.37 | [ |
烟煤 | — | — | 52.28 | 40.41 | 7.31 | 63.10 | 3.14 | 9.86 | 0.88 | 1.03 | 0.59 | 0.12 | 21.68 | [ |
表2 生物炭与煤的基本性质比较
生物炭类型 | 处理条件 | 工业分析/% | 元素分析/% | 原子比 | 热值/MJ·kg-1 | 参考文献 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
水分 | 固定碳 | 挥发分 | 灰分 | C | H | O | N | S | H/C | O/C | ||||
小麦秸秆炭 | 热解炭化 | — | 54.29 | 18.43 | 27.28 | 55.60 | 1.75 | 14.04 | 0.60 | 0.74 | 0.38 | 0.19 | 20.71 | [ |
小麦秸秆炭 | 水热炭化 | — | 48.12 | 49.13 | 2.76 | 69.52 | 5.34 | 23.98 | 0.98 | 0.18 | 0.92 | 0.26 | 28.32 | [ |
玉米秸秆炭 | 热解炭化 | — | 60.30 | 16.95 | 22.75 | 61.47 | 1.87 | 13.00 | 0.70 | 0.21 | 0.37 | 0.16 | 21.64 | [ |
玉米秸秆炭 | 水热炭化 | — | 46.86 | 48.39 | 4.75 | 71.84 | 5.46 | 20.72 | 1.60 | 0.38 | 0.91 | 0.22 | 29.78 | [ |
棉花秸秆炭 | 热解炭化 | — | 68.66 | 16.56 | 14.78 | 72.27 | 2.07 | 9.09 | 1.42 | 0.38 | 0.34 | 0.09 | 33.94 | [ |
水稻秸秆炭 | 热解炭化 | — | 43.23 | 22.06 | 34.71 | 46.40 | 2.19 | 15.31 | 0.72 | 0.67 | 0.57 | 0.25 | 21.17 | [ |
无花果炭 | 热解炭化 | — | 76.59 | 21.04 | 2.37 | 88.81 | 5.34 | 5.12 | 0.62 | 0.10 | 0.72 | 0.04 | 36.00 | [ |
杨木炭 | 热解炭化 | 1.44 | 83.79 | 12.22 | 2.55 | 87.89 | 2.23 | 5.08 | 0.71 | 0.10 | 0.30 | 0.04 | 32.73 | [ |
桦木炭 | 热解炭化 | — | 87.80 | 11.00 | 1.20 | 89.90 | 3.07 | 5.30 | 0.54 | 0.01 | 0.41 | 0.04 | 34.50 | [ |
核桃壳炭 | 热解炭化 | 3.82 | 74.52 | 18.71 | 2.59 | 77.97 | 3.22 | 17.69 | 1.12 | — | 0.50 | 0.17 | 29.30 | [ |
竹炭 | 热解炭化 | — | 67.62 | 29.22 | 3.16 | 73.12 | 3.63 | 22.78 | 0.47 | — | 0.60 | 0.23 | 26.60 | [ |
花生壳炭 | 热解炭化 | 2.26 | 81.51 | 13.89 | 2.34 | 83.48 | 3.69 | 7.01 | 1.04 | 0.18 | 0.53 | 0.06 | 29.08 | [ |
甜菜浆炭 | 水热炭化 | 3.95 | 28.34 | 66.71 | 1.00 | 60.08 | 5.86 | 26.30 | 2.09 | 0.00 | 1.17 | 0.33 | 25.36 | [ |
无烟煤 | — | — | 74.20 | 9.49 | 11.58 | 82.70 | 3.26 | 1.04 | 1.13 | 0.29 | 0.47 | 0.01 | 32.37 | [ |
烟煤 | — | — | 52.28 | 40.41 | 7.31 | 63.10 | 3.14 | 9.86 | 0.88 | 1.03 | 0.59 | 0.12 | 21.68 | [ |
原料 | 热解 温度/℃ | 脱矿溶液 | Na质量分数/% | Na去除率/% | K质量分数/% | K去除率/% |
---|---|---|---|---|---|---|
FWF | 300 | — | 1.65 | — | 1.55 | — |
水 | 1.06 | 35.76 | 1.14 | 26.45 | ||
CO2饱和水溶液 | 0.70 | 57.58 | 0.78 | 49.68 | ||
400 | — | 2.04 | — | 1.94 | — | |
水 | 1.47 | 27.94 | 1.48 | 23.71 | ||
CO2饱和水溶液 | 0.89 | 56.37 | 0.93 | 37.16 | ||
500 | — | 2.81 | — | 2.97 | — | |
水 | 1.41 | 49.82 | 1.30 | 56.23 | ||
CO2饱和水溶液 | 0.86 | 69.40 | 0.94 | 68.35 | ||
FWC | 300 | — | 1.11 | — | 0.99 | — |
水 | 0.08 | 92.79 | 0.09 | 90.90 | ||
CO2饱和水溶液 | 0.09 | 91.89 | 0.11 | 88.89 | ||
400 | — | 1.35 | — | 1.51 | — | |
水 | 0.52 | 61.48 | 0.61 | 59.60 | ||
CO2饱和水溶液 | 0.35 | 74.07 | 0.45 | 70.20 | ||
500 | — | 2.08 | — | 2.04 | — | |
水 | 0.97 | 53.37 | 1.06 | 48.04 | ||
CO2饱和水溶液 | 0.50 | 75.96 | 0.60 | 70.59 |
表3 不同热解温度及脱矿方法下生物炭的Na、K脱除情况[56]
原料 | 热解 温度/℃ | 脱矿溶液 | Na质量分数/% | Na去除率/% | K质量分数/% | K去除率/% |
---|---|---|---|---|---|---|
FWF | 300 | — | 1.65 | — | 1.55 | — |
水 | 1.06 | 35.76 | 1.14 | 26.45 | ||
CO2饱和水溶液 | 0.70 | 57.58 | 0.78 | 49.68 | ||
400 | — | 2.04 | — | 1.94 | — | |
水 | 1.47 | 27.94 | 1.48 | 23.71 | ||
CO2饱和水溶液 | 0.89 | 56.37 | 0.93 | 37.16 | ||
500 | — | 2.81 | — | 2.97 | — | |
水 | 1.41 | 49.82 | 1.30 | 56.23 | ||
CO2饱和水溶液 | 0.86 | 69.40 | 0.94 | 68.35 | ||
FWC | 300 | — | 1.11 | — | 0.99 | — |
水 | 0.08 | 92.79 | 0.09 | 90.90 | ||
CO2饱和水溶液 | 0.09 | 91.89 | 0.11 | 88.89 | ||
400 | — | 1.35 | — | 1.51 | — | |
水 | 0.52 | 61.48 | 0.61 | 59.60 | ||
CO2饱和水溶液 | 0.35 | 74.07 | 0.45 | 70.20 | ||
500 | — | 2.08 | — | 2.04 | — | |
水 | 0.97 | 53.37 | 1.06 | 48.04 | ||
CO2饱和水溶液 | 0.50 | 75.96 | 0.60 | 70.59 |
生物炭类型 | 热化学转化技术 | 生物炭喷吹量/kg·t-1 | CO2理论减排量/kg·t-1 | 国家 | 年份 | 参考文献 |
---|---|---|---|---|---|---|
木炭 | — | 200 | 420 | 西班牙 | 2009 | [ |
木炭 | — | 150 | 457 | 芬兰 | 2013 | [ |
木炭 | 热解炭化 | 176~208 | 280~590 | 澳大利亚 | 2014 | [ |
木炭 | — | 180 | 502 | 澳大利亚 | 2014 | [ |
木炭 | — | 200~220 | 600 | 澳大利亚 | 2014 | [ |
木炭 | 热解炭化 | 150~200 | 410~550 | 澳大利亚 | 2015 | [ |
木炭 | 热解炭化 | 100 | 315 | 瑞典 | 2021 | [ |
木炭 | 深度烘焙 | 100 | 221 | 瑞典 | 2021 | [ |
木炭 | 浅度烘焙 | 100 | 132 | 瑞典 | 2021 | [ |
木炭 | 热解炭化 | 140 | 约410 | 瑞典 | 2021 | [ |
锯末炭 | 热解炭化 | 137.5 | 432.3 | 瑞典 | 2022 | [ |
秸秆炭 | 热解炭化 | 14.8 | 47.9 | 中国 | 2013 | [ |
秸秆炭 | 热解炭化 | 11.37 | 65.7 | 中国 | 2017 | [ |
秸秆炭 | 水热炭化 | 90 | 145.7 | 中国 | 2022 | [ |
棕榈壳炭 | 热解炭化 | 30 | 84.65 | 中国 | 2018 | [ |
表4 生物炭替代喷吹煤粉研究情况
生物炭类型 | 热化学转化技术 | 生物炭喷吹量/kg·t-1 | CO2理论减排量/kg·t-1 | 国家 | 年份 | 参考文献 |
---|---|---|---|---|---|---|
木炭 | — | 200 | 420 | 西班牙 | 2009 | [ |
木炭 | — | 150 | 457 | 芬兰 | 2013 | [ |
木炭 | 热解炭化 | 176~208 | 280~590 | 澳大利亚 | 2014 | [ |
木炭 | — | 180 | 502 | 澳大利亚 | 2014 | [ |
木炭 | — | 200~220 | 600 | 澳大利亚 | 2014 | [ |
木炭 | 热解炭化 | 150~200 | 410~550 | 澳大利亚 | 2015 | [ |
木炭 | 热解炭化 | 100 | 315 | 瑞典 | 2021 | [ |
木炭 | 深度烘焙 | 100 | 221 | 瑞典 | 2021 | [ |
木炭 | 浅度烘焙 | 100 | 132 | 瑞典 | 2021 | [ |
木炭 | 热解炭化 | 140 | 约410 | 瑞典 | 2021 | [ |
锯末炭 | 热解炭化 | 137.5 | 432.3 | 瑞典 | 2022 | [ |
秸秆炭 | 热解炭化 | 14.8 | 47.9 | 中国 | 2013 | [ |
秸秆炭 | 热解炭化 | 11.37 | 65.7 | 中国 | 2017 | [ |
秸秆炭 | 水热炭化 | 90 | 145.7 | 中国 | 2022 | [ |
棕榈壳炭 | 热解炭化 | 30 | 84.65 | 中国 | 2018 | [ |
生物炭类型 | 生物炭替代 焦炭量/kg·t-1 | CO2理论 减排量/kg·t-1 | 国家 | 年份 | 参考文献 |
---|---|---|---|---|---|
木炭 | 55 | 193 | 加拿大 | 2009 | [ |
木炭 | 86 | 300 | 法国 | 2013 | [ |
木炭 | 20 | 64 | 芬兰 | 2014 | [ |
木炭 | 6~35 | 20~110 | 澳大利亚 | 2015 | [ |
木炭 | 21 | 50 | 瑞典 | 2021 | [ |
表5 生物炭替代焦炭研究情况
生物炭类型 | 生物炭替代 焦炭量/kg·t-1 | CO2理论 减排量/kg·t-1 | 国家 | 年份 | 参考文献 |
---|---|---|---|---|---|
木炭 | 55 | 193 | 加拿大 | 2009 | [ |
木炭 | 86 | 300 | 法国 | 2013 | [ |
木炭 | 20 | 64 | 芬兰 | 2014 | [ |
木炭 | 6~35 | 20~110 | 澳大利亚 | 2015 | [ |
木炭 | 21 | 50 | 瑞典 | 2021 | [ |
1 | 张凡, 王树众, 李艳辉, 等. 中国制造业碳排放问题分析与减排对策建议[J]. 化工进展, 2022, 41(3): 1645-1653. |
ZHANG Fan, WANG Shuzhong, LI Yanhui, et al. Analysis of CO2 emission and countermeasures and suggestions for emission reduction in Chinese manufacturing[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1645-1653. | |
2 | IEA. Iron and steel technology roadmap[EB/OL]. (2020-10-01) [2023-03-01]. . |
3 | 上官方钦, 周继程, 王海风, 等. 气候变化与钢铁工业脱碳化发展[J]. 钢铁, 2021, 56(5): 1-6. |
SHANGGUAN Fangqin, ZHOU Jicheng, WANG Haifeng, et al. Climate change and decarbonization development of steel industry[J]. Iron & Steel, 2021, 56(5): 1-6. | |
4 | 姚同路, 吴伟, 杨勇, 等. “双碳”目标下中国钢铁工业的低碳发展分析[J]. 钢铁研究学报, 2022, 34(6): 505-513. |
YAO Tonglu, WU Wei, YANG Yong, et al. Analysis on low-carbon development of China’s steel industry under “dual-carbon” goal[J]. Journal of Iron and Steel Research, 2022, 34(6): 505-513. | |
5 | 邵远敬, 徐蕾, 刘校平, 等. 中国钢铁生产“碳中和”解决方案探讨[J]. 中国冶金, 2022, 32(4): 1-8. |
SHAO Yuanjing, XU Lei, LIU Xiaoping, et al. Discussion on solution of “carbon neutrality” in China’s steel production[J]. China Metallurgy, 2022, 32(4): 1-8. | |
6 | 鲁雄刚, 张玉文, 祝凯, 等. 氢冶金的发展历程与关键问题[J]. 自然杂志, 2022, 44(4): 251-266. |
LU Xionggang, ZHANG Yuwen, ZHU Kai, et al. Development and key problems of hydrogen metallurgy[J]. Chinese Journal of Nature, 2022, 44(4): 251-266. | |
7 | 中国产业发展促进协会. 3060零碳生物质能发展潜力蓝皮书[EB/OL]. (2021-09-14) [2023-03-01]. . |
China Industrial Development Association. 3060 Blue book of zero-carbon biomass development potential[EB/OL]. (2021-09-14) [2023-03-01]. . | |
8 | 朱家华, 穆立文, 蒋管聪, 等. 生物质协同流程工业节能、降污、减碳路径思考[J]. 化工进展, 2022, 41(3): 1111-1114. |
ZHU Jiahua, MU Liwen, JIANG Guancong, et al. Biomass integrated industrial processes for system energy conservation, pollution reduction and carbon dioxide mitigation[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1111-1114. | |
9 | 王博, 宋永一, 王鑫, 等. 有机固体废弃物热化学制氢研究进展[J]. 化工进展, 2021, 40(2): 709-721. |
WANG Bo, SONG Yongyi, WANG Xin, et al. Hydrogen production from organic solid waste by thermochemical conversion process: A review[J]. Chemical Industry and Engineering Progress, 2021, 40(2): 709-721. | |
10 | 谭天伟, 陈必强, 张会丽, 等. 加快推进绿色生物制造助力实现“碳中和”[J]. 化工进展, 2021, 40(3): 1137-1141. |
TAN Tianwei, CHEN Biqiang, ZHANG Huili, et al. Accelerate promotion of green bio-manufacturing to help achieve “carbon neutrality”[J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1137-1141. | |
11 | 毛炜炜, 张磊, 尹庆蓉, 等. 微藻固碳光合作用强化策略及展望[J]. 洁净煤技术, 2022, 28(9): 30-43. |
MAO Weiwei, ZHANG Lei, YIN Qingrong, et al. Strategies and prospect of photosynthesis mechanism intensification of microalgae CO2 fixation[J]. Clean Coal Technology, 2022, 28(9): 30-43. | |
12 | SHUKLA I. Potential of renewable agricultural wastes in the smart and sustainable steelmaking process[J]. Journal of Cleaner Production, 2022, 370: 133422. |
13 | 师晓鹏, 张忠峰, 王小茹, 等. 炭基催化剂应用于热转化过程的研究进展[J]. 生物质化学工程, 2022, 56(5): 72-78. |
SHI Xiaopeng, ZHANG Zhongfeng, WANG Xiaoru, et al. Research progress of carbon-based catalysts applied in thermal conversion process[J]. Biomass Chemical Engineering, 2022, 56(5): 72-78. | |
14 | 郝松涛, 宋长忠, 贾相如, 等. 烘焙生物质与煤矸石混合燃烧特性及协同作用分析[J]. 洁净煤技术, 2021, 27(S2): 375-381. |
HAO Songtao, SONG Changzhong, JIA Xiangru, et al. Mixed combustion characteristics and synergistic effect of torrefaction biomass and coal gangue[J]. Clean Coal Technology, 2021, 27(S2): 375-381. | |
15 | 闫思佳, 胡建杭, 刘泽伟, 等. 温度和低氧条件对成型生物质炭孔结构影响的实验研究[J]. 化工进展, 2018, 37(8): 3100-3106. |
YAN Sijia, HU Jianhang, LIU Zewei, et al. Experimental study on the effect of temperature and low oxygen conditions on pore structure of molding biochar[J]. Chemical Industry and Engineering Progress, 2018, 37(8): 3100-3106. | |
16 | 张淑会, 邵建男, 兰臣臣, 等. 生物质能在炼铁领域应用的研究现状及展望[J]. 钢铁, 2022, 57(12): 13-22. |
ZHANG Shuhui, SHAO Jiannan, LAN Chenchen, et al. Application status and prospect of biomass energy in ironmaking process[J]. Iron & Steel, 2022, 57(12): 13-22. | |
17 | CHEN Xiye, LIU Li, ZHANG Linyao, et al. Pyrolysis characteristics and kinetics of coal-biomass blends during co-pyrolysis[J]. Energy & Fuels, 2019, 33(2): 1267-1278. |
18 | 张玉洁, 王焦飞, 白永辉, 等. 共热解过程中煤与生物质相互作用的研究进展[J]. 化工进展, 2021, 40(7): 3693-3702. |
ZHANG Yujie, WANG Jiaofei, BAI Yonghui, et al. Investigation progress on the interaction between coal and biomass during co-pyrolysis[J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3693-3702. | |
19 | WU Zhiqiang, LI Yaowu, XU Donghai, et al. Co-pyrolysis of lignocellulosic biomass with low-quality coal: Optimal design and synergistic effect from gaseous products distribution[J]. Fuel, 2019, 236: 43-54. |
20 | WU Zhiqiang, ZHANG Jie, FAN Yingjie, et al. Synergistic effects from co-pyrolysis of lignocellulosic biomass with low-rank coal: A perspective based on the interaction of organic components[J]. Fuel, 2021, 306: 121648. |
21 | PATTANAYAK S, HAUCHHUM L, LOHA C, et al. Thermal performance and synergetic behaviour of co-pyrolysis of North East Indian bamboo biomass with coal using thermogravimetric analysis[J]. Biomass Conversion and Biorefinery, 2023, 13(13): 11755-11768. |
22 | CHEN Xiye, LIU Li, ZHANG Linyao, et al. A review on the properties of copyrolysis char from coal blended with biomass[J]. Energy & Fuels, 2020, 34(4): 3996-4005. |
23 | WU Zhiqiang, YANG Wangcai, TIAN Xueyu, et al. Synergistic effects from co-pyrolysis of low-rank coal and model components of microalgae biomass[J]. Energy Conversion and Management, 2017, 135: 212-225. |
24 | CHEN Xiye, LIU Li, ZHANG Linyao, et al. Thermogravimetric analysis and kinetics of the co-pyrolysis of coal blends with corn stalks[J]. Thermochimica Acta, 2018, 659: 59-65. |
25 | WU Zhiqiang, WANG Shuzhong, ZHAO Jun, et al. Thermochemical behavior and char morphology analysis of blended bituminous coal and lignocellulosic biomass model compound co-pyrolysis: Effects of cellulose and carboxymethylcellulose sodium[J]. Fuel, 2016, 171: 65-73. |
26 | MONTIANO M G, DÍAZ-FAES E, BARRIOCANAL C. Kinetics of co-pyrolysis of sawdust, coal and tar[J]. Bioresource Technology, 2016, 205: 222-229. |
27 | MOUSA E, WANG Chuan, RIESBECK J, et al. Biomass applications in iron and steel industry: An overview of challenges and opportunities[J]. Renewable and Sustainable Energy Reviews, 2016, 65: 1247-1266. |
28 | NIESLER M, STECKO J, STELMACH S, et al. Biochars in iron ores sintering process: Effect on sinter quality and emission[J]. Energies, 2021, 14(13): 3749. |
29 | JI Zhiyun, FAN Xiaohui, GAN Min, et al. Assessment on the application of commercial medium-grade charcoal as a substitute for coke breeze in iron ore sintering[J]. Energy & Fuels, 2016, 30(12): 10448-10457. |
30 | 甘敏, 李浩锐, 范晓慧, 等. 果核生物质炭燃烧特性及其应用于烧结的减排行为[J]. 烧结球团, 2022, 47(1): 65-69. |
GAN Min, LI Haorui, FAN Xiaohui, et al. Combustion characteristics of kernel biomass char and its emission reduction behavior applied to sintering[J]. Sintering and Pelletizing, 2022, 47(1): 65-69. | |
31 | 李贺, 刘超, 王辉, 等. 生物质复合烧结燃料制备机理分析[J]. 烧结球团, 2020, 45(2): 46-50. |
LI He, LIU Chao, WANG Hui, et al. Mechanism analysis of preparation for biomass composite sintering fuel[J]. Sintering and Pelletizing, 2020, 45(2): 46-50. | |
32 | 张安煜, 陈贺, 王东, 等. 生物质部分替代焦粉的烧结过程温度场模拟仿真[J]. 烧结球团, 2019, 44(4): 13-17. |
ZHANG Anyu, CHEN He, WANG Dong, et al. Simulation of temperature field in sintering process of substituting part of coke breeze with biomass[J]. Sintering and Pelletizing, 2019, 44(4): 13-17. | |
33 | 王朋. 生物质半焦应用于高炉喷吹的基础研究[D]. 北京: 北京科技大学, 2019. |
WANG Peng. Fundamental research on the injection of biomass char into blast furnace[D]. Beijing: University of Science and Technology Beijing, 2019. | |
34 | YE Lian, ZHANG Jianliang, XU Runsheng, et al. Co-combustion kinetic analysis of biomass hydrochar and anthracite in blast furnace injection[J]. Fuel, 2022, 316: 123299. |
35 | 王颖钰, 潘建, 朱德庆, 等. 高炉喷吹用秸秆炭性能表征[J]. 钢铁研究学报, 2017, 29(11): 892-899. |
WANG Yingyu, PAN Jian, ZHU Deqing, et al. Performance characterization of straw charcoal used for blast furnace injection[J]. Journal of Iron and Steel Research, 2017, 29(11): 892-899. | |
36 | 郑朋超, 张建良, 刘征建, 等. 碱金属对焦炭热性能的影响[J]. 中国冶金, 2017, 27(5): 19-26. |
ZHENG Pengchao, ZHANG Jianliang, LIU Zhengjian, et al. Effect of alkali metals on thermal properties of coke[J]. China Metallurgy, 2017, 27(5): 19-26. | |
37 | 华志宇, 杨春旺, 陈旭, 等. 矿热炉用生物质炭研究[J]. 有色金属设计, 2022, 49(1): 36-39. |
HUA Zhiyu, YANG Chunwang, CHEN Xu, et al. Study on biochar for submerged arc furnace[J]. Nonferrous Metals Design, 2022, 49(1): 36-39. | |
38 | NWACHUKWU C M, WANG Chuan, WETTERLUND E. Exploring the role of forest biomass in abating fossil CO2 emissions in the iron and steel industry—The case of Sweden[J]. Applied Energy, 2021, 288: 116558. |
39 | 周晓玉. 高炉喷吹煤粉粒度对流动性和喷流性的影响[J]. 中国钢铁业, 2017(1): 32-35. |
ZHOU Xiaoyu. Effect of pulverized coal particle size injected into blast furnace on fluidity and spoutability[J]. China Steel, 2017(1): 32-35. | |
40 | NING Xiaojun, LIANG Wang, WANG Guangwei, et al. Effect of pyrolysis temperature on blast furnace injection performance of biochar[J]. Fuel, 2022, 313: 122648. |
41 | 郑伟成, XU Chunbao C, 魏汝飞, 等. 高炉喷吹生物炭研究进展[J]. 钢铁研究学报, 2021, 33(1): 1-8. |
ZHENG Weicheng, XU Chunbao C, WEI Rufei, et al. Injection of biochar into blast furnace: Progress and prospects[J]. Journal of Iron and Steel Research, 2021, 33(1): 1-8. | |
42 | 梁淼, 张明建, 鲁端峰, 等. 热解温度对竹粉炭理化结构及燃烧性能的影响[J]. 化工进展, 2020, 39(1): 278-286. |
LIANG Miao, ZHANG Mingjian, LU Duanfeng, et al. Effect of pyrolysis temperature on the physiochemical structure and combustion property of bamboo biochar[J]. Chemical Industry and Engineering Progress, 2020, 39(1): 278-286. | |
43 | SUOPAJÄRVI H, KEMPPAINEN A, HAAPAKANGAS J, et al. Extensive review of the opportunities to use biomass-based fuels in iron and steelmaking processes[J]. Journal of Cleaner Production, 2017, 148: 709-734. |
44 | LIU Wujun, LI Wenwei, JIANG Hong, et al. Fates of chemical elements in biomass during its pyrolysis[J]. Chemical Reviews, 2017, 117(9): 6367-6398. |
45 | SONG Tengfei, ZHANG Jianliang, WANG Guangwei, et al. Effect of carbonization conditions on the property and structure of bamboo char for injection in blast furnace[J]. ISIJ International, 2019, 59(3): 442-449. |
46 | 李冲. 花生壳生物炭用作高炉喷吹燃料的实验研究[D]. 武汉: 武汉科技大学, 2018. |
LI Chong. Experimental research of peanut shell biomass charcoal for blast furnace fuel injection[D]. Wuhan: Wuhan University of Science and Technology, 2018. | |
47 | WILK M, ŚLIZ M, GAJEK M. The effects of hydrothermal carbonization operating parameters on high-value hydrochar derived from beet pulp[J]. Renewable Energy, 2021, 177: 216-228. |
48 | ZAFAR M H, KAZMI M, TABISH A N, et al. An investigation on the impact of demineralization of lignocellulosic corncob biomass using leaching agents for its utilization in industrial boilers[J]. Biomass Conversion and Biorefinery, 2020, 10(4): 1035-1041. |
49 | JEONG Yoonah, LEE Ye-Eun, SHIN Dong-Chul, et al. Demineralization of food waste biochar for effective alleviation of alkali and alkali earth metal species[J]. Processes, 2020, 9(1): 47. |
50 | 王洋, 董长青. 生物质燃烧和热解中钾的释放规律研究进展[J]. 化工进展, 2020, 39(4): 1292-1301. |
WANG Yang, DONG Changqing. Release of K during biomass combustion and pyrolysis: A review[J]. Chemical Industry and Engineering Progress, 2020, 39(4): 1292-1301. | |
51 | WANG Guangwei, ZHANG Jianliang, LEE Jui-Yuan, et al. Hydrothermal carbonization of maize straw for hydrochar production and its injection for blast furnace[J]. Applied Energy, 2020, 266: 114818. |
52 | GAO Yaxin, DING Lizhi, LI Xian, et al. Na&Ca removal from Zhundong coal by a novel CO2-water leaching method and the ashing behavior of the leached coal[J]. Fuel, 2017, 210: 8-14. |
53 | WANG Guangwei, REN Shan, ZHANG Jianliang, et al. Influence mechanism of alkali metals on CO2 gasification properties of metallurgical coke[J]. Chemical Engineering Journal, 2020, 387: 124093. |
54 | DASTIDAR M G, BHATTACHARYYA A, SARKAR B K, et al. The effect of alkali on the reaction kinetics and strength of blast furnace coke[J]. Fuel, 2020, 268: 117388. |
55 | 陈涛, 张书平, 李弯, 等. 酸洗-烘焙预处理对生物质热解产物的影响[J]. 化工进展, 2017, 36(2): 506-512. |
CHEN Tao, ZHANG Shuping, LI Wan, et al. Effect of acid washing and torrefaction on pyrolysis products of biomass[J]. Chemical Industry and Engineering Progress, 2017, 36(2): 506-512. | |
56 | LEE Ye-Eun, JEONG Yoonah, SHIN Dong-Chul, et al. Effects of demineralization on food waste biochar for co-firing: Behaviors of alkali and alkaline earth metals and chlorine[J]. Waste Management, 2022, 137: 190-199. |
57 | 田妍. 平遥焦炭微观结构的分子动力学研究[D]. 唐山: 华北理工大学, 2020. |
TIAN Yan. Molecular dynamics study on microstructure of Pingyao coke[D]. Tangshan: North China University of Science and Technology, 2020. | |
58 | TIAN Yan, LI Guangyue, ZHANG Hang, et al. Molecular basis for coke strength: Stacking-fault structure of wrinkled carbon layers[J]. Carbon, 2020, 162: 56-65. |
59 | 杨永斌, 董寅瑞, 钟强, 等. 高温煤焦油沥青黏结剂碳化固结作用在炭质型材中的应用与研究进展[J]. 化工进展, 2022, 41(12): 6419-6429. |
YANG Yongbin, DONG Yinrui, ZHONG Qiang, et al. Application and research progress of carbonization consolidation of high temperature coal tar pitch binder in formed carbon material[J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6419-6429. | |
60 | 曹忠耀, 张守玉, 黄小河, 等. 生物质预处理制成型燃料研究进展[J]. 洁净煤技术, 2019, 25(1): 12-20. |
CAO Zhongyao, ZHANG Shouyu, HUANG Xiaohe, et al. Research progress on the briquette prepared from pretreated biomass[J]. Clean Coal Technology, 2019, 25(1): 12-20. | |
61 | 宋冰腾. 生物质炭化成型燃料制备及燃烧特性研究[D]. 唐山: 华北理工大学, 2018. |
SONG Bingteng. Study on the preparation and combustion characteristics of biomass carbonized fuel[D]. Tangshan: North China University of Science and Technology, 2018. | |
62 | 崔旭阳, 杨俊红, 雷万宁, 等. 生物质成型燃料制备及燃烧过程添加剂应用及研究进展[J]. 化工进展, 2017, 36(4): 1247-1257. |
CUI Xuyang, YANG Junhong, LEI Wanning, et al. Recent progress in research and application of DBBF additive in preparation and combustion process[J]. Chemical Industry and Engineering Progress, 2017, 36(4): 1247-1257. | |
63 | 刘守军, 演康, 常志伟, 等. 黏结剂对长焰煤制备民用洁净焦炭强度的影响[J]. 化工进展, 2021, 40(4): 2145-2151. |
LIU Shoujun, YAN Kang, CHANG Zhiwei, et al. Effect of binder on the strength of long-flame coal for civil clean coke[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 2145-2151. | |
64 | 胡强. 生物炭成型过程机理及成型炭的气化/还原特性研究[D]. 武汉: 华中科技大学, 2018. |
HU Qiang. Study on the mechanism of biochar densification and the properties of gasification/reduction of biochar pellet[D]. Wuhan: Huazhong University of Science and Technology, 2018. | |
65 | 杨婷, 白世刚, 王振平, 等. 成型活性半焦的制备工艺与应用进展[J]. 化工进展, 2020, 39(S1): 180-185. |
YANG Ting, BAI Shigang, WANG Zhenping, et al. Research progress in preparation and application of actived semi-coke monolith[J]. Chemical Industry and Engineering Progress, 2020, 39(S1): 180-185. | |
66 | YE Lei, PENG Zhiwei, WANG Liancheng, et al. Use of biochar for sustainable ferrous metallurgy[J]. JOM, 2019, 71(11): 3931-3940. |
67 | DOHI Y, FUKADA K, YAMAMOTO T, et al. Effective utilization technique for coal having high fluidity and long maximum permeation distance by coal size adjustment[J]. ISIJ International, 2020, 60(5): 887-897. |
68 | GUERRERO A, DIEZ M A, BORREGO A G. Influence of charcoal fines on the thermoplastic properties of coking coals and the optical properties of the semicoke[J]. International Journal of Coal Geology, 2015, 147/148: 105-114. |
69 | 沈宏武. 粉煤流动性及其影响因素探究[D]. 淮南: 安徽理工大学, 2017. |
SHEN Hongwu. Study on flowability of coal powders and their influencing factors[D]. Huainan: Anhui University of Science & Technology, 2017. | |
70 | 黄鲁华. 表面改性对细粒低阶煤脱水效果影响的试验研究[D]. 徐州: 中国矿业大学, 2019. |
HUANG Luhua. Experimental study on the effect of surface modification on fine low-rank coal dehydration[D]. Xuzhou: China University of Mining and Technology, 2019. | |
71 | 谭厚章, 刘洋, 王学斌, 等. 生物质成型燃料规模化掺烧技术及应用分析[J]. 洁净煤技术, 2021, 27(S2): 272-277. |
TAN Houzhang, LIU Yang, WANG Xuebin, et al. High-efficiency and large-scale biomass briquette co-firing and its application[J]. Clean Coal Technology, 2021, 27(S2): 272-277. | |
72 | FIRSBACH F, SENK D, BABICH A. Multi-step recycling of BF slag heat via biomass for CO2 mitigation[J]. Minerals, 2022, 12(2): 136. |
73 | MOUSA E, SJÖBLOM K. Modeling and optimization of biochar injection into blast furnace to mitigate the fossil CO2 emission[J]. Sustainability, 2022, 14(4): 2393. |
74 | 王国强. 高炉喷吹秸秆生物质燃烧特性分析[J]. 山东冶金, 2021, 43(2): 53-55. |
WANG Guoqiang. Analysis of combustion characteristics of blast furnace injected straw biomass[J]. Shandong Metallurgy, 2021, 43(2): 53-55. | |
75 | 王臣, 朱仁良, 王广伟. 高炉喷吹生物质水热炭的可行性分析[J]. 钢铁, 2022, 57(5): 22-30. |
WANG Chen, ZHU Renliang, WANG Guangwei. Feasibility analysis of biomass hydrochar injection for blast furnace[J]. Iron & Steel, 2022, 57(5): 22-30. | |
76 | HANROT F, SERT D, DELINCHANT J, et al. CO2 mitigation for steelmaking using charcoal and plastics wastes as reducing agents and secondary raw materials[C]// 1st Spanish National Conference on Advances in Materials Recycling and Eco-Energy. 2009: 12-13. |
77 | SUOPAJÄRVI H, FABRITIUS T. Towards more sustainable ironmaking-An analysis of energy wood availability in Finland and the economics of charcoal production[J]. Sustainability, 2013, 5(3): 1188-1207. |
78 | FELICIANO-BRUZUAL C. Charcoal injection in blast furnaces (Bio-PCI): CO2 reduction potential and economic prospects[J]. Journal of Materials Research and Technology, 2014, 3(3): 233-243. |
79 | FELICIANO-BRUZUAL C. Technological, ecological and economic assessment of the coke based blast furnace operation with charcoal injection[C]// International Conference on Metallurgy and Materials. Tanger Ltd., 2014. |
80 | FELICIANO-BRUZUAL C, MATHEWS J A. BIO-PCI, charcoal injection in blast furnaces: State of the art and economic perspectives[J]. Revista De Metalurgia, 2013, 49(6): 458-468. |
81 | MATHIESON J G, SOMERVILLE M A, DEEV A, et al. Utilization of biomass as an alternative fuel in ironmaking[M]// Iron Ore. Amsterdam: Elsevier, 2015: 581-613. |
82 | ORRE J, ÖKVIST L S, BODÉN A, et al. Understanding of blast furnace performance with biomass introduction[J]. Minerals, 2021, 11(2): 157. |
83 | ÖKVIST L S, LUNDGREN M. Experiences of bio-coal applications in the blast furnace process-Opportunities and limitations[J]. Minerals, 2021, 11(8): 863. |
84 | 王国强. 高炉喷吹农林废弃物的应用基础研究[D]. 武汉: 武汉科技大学, 2013. |
WANG Guoqiang. Applied fundamental research of injecting agricultural and forestry residues into blast furnace[D]. Wuhan: Wuhan University of Science and Technology, 2013. | |
85 | MACPHEE J A, GRANSDEN J F, GIROUX L, et al. Possible CO2 mitigation via addition of charcoal to coking coal blends[J]. Fuel Processing Technology, 2009, 90(1): 16-20. |
86 | FICK G, MIRGAUX O, NEAU P, et al. Using biomass for pig iron production: A technical, environmental and economical assessment[J]. Waste and Biomass Valorization, 2014, 5(1): 43-55. |
87 | 刘含笑, 吴黎明, 林青阳, 等. 碳足迹评估技术及其在重点工业行业的应用[J]. 化工进展, 2023, 42(5): 2201-2218. |
LIU Hanxiao, WU Liming, LIN Qingyang, et al. Carbon footprint assessment technology and its application in key industries[J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2201-2218. | |
88 | LIANG Tian, WANG Shanshan, LU Chunyang, et al. Environmental impact evaluation of an iron and steel plant in China: Normalized data and direct/indirect contribution[J]. Journal of Cleaner Production, 2020, 264: 121697. |
89 | LIANG Wang, WANG Guangwei, XU Runsheng, et al. Life cycle assessment of blast furnace ironmaking processes: A comparison of fossil fuels and biomass hydrochar applications[J]. Fuel, 2023, 345: 128138. |
[1] | 于笑笑, 巢艳红, 刘海燕, 朱文帅, 刘植昌. D-A共轭聚合强化光电性能及光催化CO2转化[J]. 化工进展, 2024, 43(1): 292-301. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 郑谦, 官修帅, 靳山彪, 张长明, 张小超. 铈锆固溶体Ce0.25Zr0.75O2光热协同催化CO2与甲醇合成DMC[J]. 化工进展, 2023, 42(S1): 319-327. |
[4] | 戴欢涛, 曹苓玉, 游新秀, 徐浩亮, 汪涛, 项玮, 张学杨. 木质素浸渍柚子皮生物炭吸附CO2特性[J]. 化工进展, 2023, 42(S1): 356-363. |
[5] | 孙玉玉, 蔡鑫磊, 汤吉海, 黄晶晶, 黄益平, 刘杰. 反应精馏合成甲基丙烯酸甲酯工艺优化及节能[J]. 化工进展, 2023, 42(S1): 56-63. |
[6] | 杨寒月, 孔令真, 陈家庆, 孙欢, 宋家恺, 王思诚, 孔标. 微气泡型下向流管式气液接触器脱碳性能[J]. 化工进展, 2023, 42(S1): 197-204. |
[7] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[8] | 舒斌, 陈建宏, 熊健, 吴其荣, 喻江涛, 杨平. 碳中和目标下推动绿色甲醇发展的必要性分析[J]. 化工进展, 2023, 42(9): 4471-4478. |
[9] | 王浩然, 殷全玉, 方明, 侯建林, 李军, 何斌, 张明月. 近临界水处理废弃烟梗工艺优化[J]. 化工进展, 2023, 42(9): 5019-5027. |
[10] | 王耀刚, 韩子姗, 高嘉辰, 王新宇, 李思琪, 杨全红, 翁哲. 铜基催化剂电还原二氧化碳选择性的调控策略[J]. 化工进展, 2023, 42(8): 4043-4057. |
[11] | 刘毅, 房强, 钟达忠, 赵强, 李晋平. Ag/Cu耦合催化剂的Cu晶面调控用于电催化二氧化碳还原[J]. 化工进展, 2023, 42(8): 4136-4142. |
[12] | 黄玉飞, 李子怡, 黄杨强, 金波, 罗潇, 梁志武. 光催化CO2和CH4重整催化剂研究进展[J]. 化工进展, 2023, 42(8): 4247-4263. |
[13] | 王帅晴, 杨思文, 李娜, 孙占英, 安浩然. 元素掺杂生物质炭材料在电化学储能中的研究进展[J]. 化工进展, 2023, 42(8): 4296-4306. |
[14] | 姜晶, 陈霄宇, 张瑞妍, 盛光遥. 载锰生物炭制备及其在环境修复中应用研究进展[J]. 化工进展, 2023, 42(8): 4385-4397. |
[15] | 吴亚, 赵丹, 方荣苗, 李婧瑶, 常娜娜, 杜春保, 王文珍, 史俊. 用于复杂原油乳液的高效破乳剂开发及应用研究进展[J]. 化工进展, 2023, 42(8): 4398-4413. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |