化工进展 ›› 2024, Vol. 43 ›› Issue (1): 364-375.DOI: 10.16085/j.issn.1000-6613.2023-0257
• 能源加工与技术 • 上一篇
收稿日期:
2023-02-24
修回日期:
2023-06-01
出版日期:
2024-01-20
发布日期:
2024-02-05
通讯作者:
李洲鹏,汪倩倩
作者简介:
夏银萍(1997—),女,硕士研究生,研究方向为高载量锂硫电池正极设计。E-mail:13282808233@163.com。
基金资助:
XIA Yinping1,2(), LI Zhoupeng1,2(), WANG Qianqian1,2()
Received:
2023-02-24
Revised:
2023-06-01
Online:
2024-01-20
Published:
2024-02-05
Contact:
LI Zhoupeng, WANG Qianqian
摘要:
高载量硫正极是研发高能量密度锂硫电池的必要先决条件。然而,硫载量的提高不可避免地会引起正极导电性不良、多硫化物转化动力学缓慢,穿梭效应加剧等问题。本文从化学工程的角度出发,重点关注高载量硫正极中的传质和反应过程,综述了性能优良的高载量锂硫电池正极设计思路。具体而言,从增强电子传导、改善锂离子传质、优化反应动力学、抑制多硫化物穿梭这四种研究思路出发,对比了不同优化策略之间的优劣性,并提出下一代高硫载量硫正极设计的探索方向。分析表明,基于吸附-催化双重功能的三维高导电正极具有巨大发展前景。从应用层面考虑,本文还关注了高载量正极设计中常被忽视的安全性问题,探讨了削弱正极诱导并从源头降低热失效风险的可行性,旨在为研究人员优化高载量(≥4mg/cm2)正极设计方案时提供实用指导。
中图分类号:
夏银萍, 李洲鹏, 汪倩倩. 高载量锂硫电池正极设计优化[J]. 化工进展, 2024, 43(1): 364-375.
XIA Yinping, LI Zhoupeng, WANG Qianqian. Strategy toward positive electrode design for high-loading lithium-sulfur battery[J]. Chemical Industry and Engineering Progress, 2024, 43(1): 364-375.
25 | CHENG Juanjuan, SONG Hongjia, PAN Yong, et al. 3D copper foam/bamboo charcoal composites as high sulfur loading host for lithium-sulfur batteries[J]. Ionics, 2018, 24(12): 4093-4099. |
26 | SONG Yan, LI Xiuyuan, HE Chaozheng. Porous carbon framework nested nickel foam as freestanding host for high energy lithium sulfur batteries[J]. Chinese Chemical Letters, 2021, 32(3): 1106-1110. |
27 | NAKAMURA Natsuki, YOKOSHIMA Tokihiko, NARA Hiroki, et al. High-rate and high sulfur-loaded lithium-sulfur batteries with a polypyrrole-coated sulfur cathode on a 3D aluminum foam current collector[J]. Materials Letters, 2021, 285: 129115. |
28 | CHUNG Shengheng, CHANG Chihao, MANTHIRAM Arumugam. Robust, ultra-tough flexible cathodes for high-energy Li-S batteries[J]. Small, 2016, 12(7): 939-950. |
29 | ZHANG Yezheng, ZHANG Ze, LIU Sheng, et al. Free-standing porous carbon nanofiber/carbon nanotube film as sulfur immobilizer with high areal capacity for lithium-sulfur battery[J]. ACS Applied Materials & Interfaces, 2018, 10(10): 8749-8757. |
30 | RACHEL Carter, BENJAMIN Davis, LANDON Oakes, et al. A high areal capacity lithium-sulfur battery cathode prepared by site-selective vapor infiltration of hierarchical carbon nanotube arrays[J]. Nanoscale, 2017, 9(39): 15018-15026. |
31 | 张明, 王志勇, 罗琴, 等. 基于高活性碳纳米管海绵体载硫的锂硫电池[J]. 材料研究学报, 2021, 35(1): 65-71. |
ZHANG Ming, WANG Zhiyong, LUO Qin, et al. Highly activated carbon nanotube sponges deposited with sulfur for lithium-sulfur batteries[J]. Chinese Journal of Materials Research, 2021, 35(1): 65-71. | |
32 | CHIOCHAN Poramane, KOSASANG Soracha, MA Nattapol, et al. Confining Li2S6 catholyte in 3D graphene sponge with ultrahigh total pore volume and oxygen-containing groups for lithium-sulfur batteries[J]. Carbon, 2020, 158: 244-255. |
33 | CHENG Qi, YIN Zhouhong, PAN Zhenxiao, et al. Lightweight free-standing 3D nitrogen-doped graphene/TiN aerogels with ultrahigh sulfur loading for high energy density Li-S batteries[J]. ACS Applied Energy Materials, 2021, 4(8): 7599-7610. |
34 | YE Kefen, XIA Yinping, LI Rui, et al. A novel insight into deterioration of heavily sulfur-loaded cathode in Li-S battery[J]. Electrochimica Acta, 2022, 435: 141387. |
35 | YAN Longlong, GAO Xiguang, Joseph Palathinkal Thomas, et al. Ionically cross-linked PEDOT: PSS as a multi-functional conductive binder for high-performance lithium-sulfur batteries[J]. Sustainable Energy & Fuels, 2018, 2(7): 1574-1581. |
36 | YU Heli, BI Mingzhu, ZHANG Cuijuan, et al. Bifunctional hydrogen-bonding cross-linked polymeric binder for high sulfur loading cathodes in lithium/sulfur batteries[J]. Electrochimica Acta, 2022, 428: 140908. |
37 | CHOI Sungsik, KIM Soochan, CHO Misuk, et al. Durable conductive webs as multifunctional binder for the high-performance lithium-sulfur battery[J]. ACS Applied Energy Materials, 2020, 3(8): 7825-7831. |
38 | YUAN Yan, LI Zhengqian, PENG Xiuping, et al. Functional gel cathode strategy to enhance the long-term cyclability of the lithium-polysulfide full cell[J]. Electrochimica Acta, 2022, 410: 140052. |
39 | ZHANG Shijie, ZHANG Yongshang, SHAO Guosheng, et al. Bio-inspired construction of electrocatalyst decorated hierarchical porous carbon nanoreactors with enhanced mass transfer ability towards rapid polysulfide redox reactions[J]. Nano Research, 2021, 14(11): 3942-3951. |
40 | CHEN Wei, LEI Tianyu, Weiqiang LYU, et al. Atomic interlamellar ion path in high sulfur content lithium-montmorillonite host enables high-rate and stable lithium-sulfur battery[J]. Advanced Materials, 2018, 30(40): 1804084. |
41 | ZHANG Hong, HU Xuanhe, ZHANG Yi, et al. 3D-crosslinked tannic acid/poly(ethylene oxide) complex as a three-in-one multifunctional binder for high-sulfur-loading and high-stability cathodes in lithium-sulfur batteries[J]. Energy Storage Materials, 2019, 17: 293-299. |
42 | WANG Hui, YANG Yu, ZHENG Peitao, et al. Water-based phytic acid-crosslinked supramolecular binders for lithium-sulfur batteries[J]. Chemical Engineering Journal, 2020, 395: 124981. |
43 | 张梦迪, 陈蓓, 吴明铂. 石墨烯作为硫载体在锂硫电池中的研究进展[J]. 物理化学学报, 2022, 38(2): 55-67. |
ZHANG Mengdi, CHEN Bei, WU Mingbo. Research progress in graphene as sulfur hosts in lithium-sulfur batteries[J]. Acta Physico-Chimica Sinica, 2022, 38(2): 55-67. | |
44 | NGUYEN T T, BALAMURUGAN J, GO H W, et al. Dual-functional Co5.47N/Fe3N heterostructure interconnected 3D N-doped carbon nanotube-graphene hybrids for accelerating polysulfide conversion in Li-S batteries[J]. Chemical Engineering Journal, 2022, 427: 131774. |
45 | SHEN Jiadong, XU Xijun, LIU Jun, et al. Mechanistic understanding of metal phosphide host for sulfur cathode in high-energy-density lithium-sulfur batteries[J]. ACS Nano, 2019, 13(8): 8986-8996. |
46 | XUE Weijiang, SHI Zhe, SUO Liumin, et al. Intercalation-conversion hybrid cathodes enabling Li-S full-cell architectures with jointly superior gravimetric and volumetric energy densities[J]. Nature Energy, 2019, 4(5): 374-382. |
47 | XU Huifang, JIANG Qingbin, ZHANG Bingkai, et al. Integrating conductivity, immobility, and catalytic ability into high-N carbon/graphene sheets as an effective sulfur host[J]. Advanced Materials, 2020, 32(7): 1906357. |
48 | ZHAO Changxin, LI Xiyao, ZHAO Meng, et al. Semi-immobilized molecular electrocatalysts for high-performance lithium-sulfur batteries[J]. Journal of the American Chemical Society, 2021, 143(47): 19865-19872. |
49 | HU Xuanhe, JIAN Junhua, FANG Zhengsong, et al. Hierarchical assemblies of conjugated ultrathin COF nanosheets for high-sulfur-loading and long-lifespan lithium-sulfur batteries: Fully-exposed porphyrin matters[J]. Energy Storage Materials, 2019, 22: 40-47. |
50 | HU Xuanhe, ZHONG Linfeng, SHU Chenhao, et al. Versatile, aqueous soluble C2N quantum dots with enriched active edges and oxygenated groups[J]. Journal of the American Chemical Society, 2020, 142(10): 4621-4630. |
51 | LI Lu, CHEN Long, MUKHERJEE Sankha, et al. Phosphorene as a polysulfide immobilizer and catalyst in high-performance lithium-sulfur batteries[J]. Advanced Materials, 2017, 29(2): 1602734. |
52 | FAN Qianqian, LI Baohua, SI Yubing, et al. Lowering the charge overpotential of Li2S via the inductive effect of phenyl diselenide in Li-S batteries[J]. Chemical Communications, 2019, 55(53): 7655-7658. |
53 | 王晶晶, 曹贵强, 段瑞贤, 等. 金属单原子催化剂增强硫正极动力学的研究进展[J]. 物理化学学报, 2023, 39(5): 49-66. |
WANG Jingjing, CAO Guiqiang, DUAN Ruixian, et al. Advances in single metal atom catalysts enhancing kinetics of sulfur cathode[J]. Acta Physico-Chimica Sinica, 2023, 39(5): 49-66. | |
54 | LI Yuanjian, WU Jiabin, ZHANG Bao, et al. Fast conversion and controlled deposition of lithium (poly)sulfides in lithium-sulfur batteries using high-loading cobalt single atoms[J]. Energy Storage Materials, 2020, 30: 250-259. |
55 | WANG Li, HU Zhonghao, WAN Xiang, et al. Li2S4 anchoring governs the catalytic sulfur reduction on defective SmMn2O5 in lithium-sulfur battery[J]. Advanced Energy Materials, 2022, 12(20): 2200340. |
56 | ZHOU Fei, LI Zheng, LUO Xuan, et al. Low cost metal carbide nanocrystals as binding and electrocatalytic sites for high performance Li-S batteries[J]. Nano Letters, 2018, 18(2): 1035-1043. |
57 | ZHANG Kun, LI Xing, YANG Yong, et al. High loading sulfur cathodes by reactive-type polymer tubes for high-performance lithium-sulfur batteries [J]. Advanced Functional Materials, 2023, 33: 2212759. |
58 | 金玮. 微孔碳材料修饰的隔膜用于高性能锂硫电池[J]. 化工进展, 2022, 41(8): 4386-4396. |
JIN Wei. Microporous carbon modified separator for high performance lithium sulfur batteries[J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4386-4396. | |
59 | 曾攀, 袁程, 刘根林, 等. 调控电催化剂电子结构促进锂硫电池多硫化物催化转化的研究进展[J]. 催化学报, 2022, 43(12): 2946-2965. |
ZENG Pan, YUAN Cheng, LIU Genlin, et al. Recent progress in electronic modulation of electrocatalysts for high-efficient polysulfide conversion of Li-S batteries[J]. Chinese Journal of Catalysis, 2022, 43(12): 2946-2965. | |
60 | TAN Guoqiang, XU Rui, XING Zhenyu, et al. Burning lithium in CS2 for high-performing compact Li2S-graphene nanocapsules for Li-S batteries[J]. Nature Energy, 2017, 2(7): 1-10. |
61 | SU Yusheng, MANTHIRAM Arumugam. A new approach to improve cycle performance of rechargeable lithium-sulfur batteries by inserting a free-standing MWCNT interlayer[J]. Chemical Communications, 2012, 48(70): 8817-8819. |
62 | QUAY Yeejun, CHUNG Shengheng. Structural and surfacial modification of carbon nanofoam as an interlayer for electrochemically stable lithium-sulfur cells[J]. Nanomaterials, 2021, 11(12): 3342. |
63 | ZUO Yinze, ZHU Yuejin, TANG Xinsong, et al. MnO2 supported on acrylic cloth as functional separator for high-performance lithium-sulfur batteries[J]. Journal of Power Sources, 2020, 464: 228181. |
64 | ZHU Tuyuan, SHA Ying, ZHANG Huiwen, et al. Embedding Fe3C and Fe3N on a nitrogen-doped carbon nanotube as a catalytic and anchoring center for a high-areal-capacity Li-S battery[J]. ACS Applied Materials & Interfaces, 2021, 13(17): 20153-20161. |
65 | YAN Wenqi, GAO Xiangwen, YANG Jinlin, et al. Boosting polysulfide catalytic conversion and facilitating Li+ transportation by ion-selective COFs composite nanowire for Li-S batteries[J]. Small, 2022, 18(11): 2106679. |
66 | RANA Masud, LI Ming, HE Qiu, et al. Separator coatings as efficient physical and chemical hosts of polysulfides for high-sulfur-loaded rechargeable lithium-sulfur batteries[J]. Journal of Energy Chemistry, 2020, 44: 51-60. |
67 | HE Yibo, QIAO Yu, CHANG Zhi, et al. Developing a “polysulfide-phobic” strategy to restrain shuttle effect in lithium-sulfur batteries[J]. Angewandte Chemie, 2019, 131(34): 11900-11904. |
68 | WANG Ziqi, HUANG Weiyuan, HUA Jiachuan, et al. An anionic-MOF-based bifunctional separator for regulating lithium deposition and suppressing polysulfides shuttle in Li-S batteries[J]. Small Methods, 2020, 4(7): 2000082. |
69 | GENG Mengzi, YANG Hangqi, SHANG Chaoqun. The multi-functional effects of CuS as modifier to fabricate efficient interlayer for Li-S batteries[J]. Advanced Science, 2022, 9(35): 2204561. |
70 | 段旭彬, 李庆福, 卫慧凯. 锂硫电池穿梭效应抑制及解决途径的研究进展[J]. 电池, 2019, 49(5): 427-430. |
DUAN Xubin, LI Qingfu, WEI Huikai. Research progress in inhibiting shuttle effect of lithium-sulfur battery and its solving countermeasures[J]. Battery Bimonthly, 2019, 49(5): 427-430. | |
71 | HSIA Tingnan, LU Hsinchun, HSUEH Yuchih, et al. Superdry poly(vinylidene fluoride-co-hexafluoropropylene) coating on a lithium anode as a protective layer and separator for a high-performance lithium-oxygen battery[J]. Journal of Colloid and Interface Science, 2022, 626: 524-534. |
72 | XIANG Xing, ZHANG Yanhua, WANG Huihu, et al. Improving the interfacial contact between Li7La3Zr2O12 and lithium anode by depositing a film of silver[J]. Journal of the Electrochemical Society, 2021, 168(6): 060515. |
73 | HUANG Haifeng, GUI Yina, SUN Fu, et al. In situ formed three-dimensional (3D) lithium-boron (Li-B) alloy as a potential anode for next-generation lithium batteries[J]. Rare Metals, 2021, 40(12): 3494-3500. |
74 | LIANG Xiao, WEN Zhaoyin, LIU Yu, et al. Improved cycling performances of lithium sulfur batteries with LiNO3-modified electrolyte[J]. Journal of Power Sources, 2011, 196(22): 9839-9843. |
75 | LI Rong, YANG Liwen, SONG Lei, et al. A thin LiGa alloy layer from in situ electroreduction to suppress anode dendrite formation in lithium-sulfur pouch cell[J]. Chemical Engineering Journal, 2023, 455: 140707. |
76 | HUANG Xueyan, XUE Jianjun, XIAO Min, et al. Comprehensive evaluation of safety performance and failure mechanism analysis for lithium sulfur pouch cells[J]. Energy Storage Materials, 2020, 30: 87-97. |
77 | HUANG Lang, LU Tao, XU Gaojie, et al. Thermal runaway routes of large-format lithium-sulfur pouch cell batteries[J]. Joule, 2022, 6(4): 906-922. |
78 | JIANG Fengni, YANG Shijie, CHEN Zixian, et al. Higher-order polysulfides induced thermal runaway for 1.0 Ah lithium sulfur pouch cells[J]. Particuology, 2023, 79: 10-17. |
1 | 徐雁波, 张强, 张姗姗, 等. 锂硫电池的研究现状及进展[J]. 电源技术, 2022, 46(3): 233-236. |
XU Yanbo, ZHANG Qiang, ZHANG Shanshan, et al. Research status and progress of lithium-sulfur batteries[J]. Chinese Journal of Power Sources, 2022, 46(3): 233-236. | |
2 | HE Mengxue, LI Yaqi, LIU Songsong, et al. Facile carbon fiber-sewed high areal density electrode for lithium sulfur batteries[J]. Chemical Communications, 2020, 56(73): 10758-10761. |
3 | 刘帅, 姚路, 章琴, 等. 高性能锂硫电池研究进展[J]. 物理化学学报, 2017, 33(12): 2339-2358. |
LIU Shuai, YAO Lu, ZHANG Qin, et al. Advances in high-performance lithium-sulfur batteries[J]. Acta Physico-Chimica Sinica, 2017, 33(12): 2339-2358. | |
4 | HU Yin, CHEN Wei, LEI Tianyu, et al. Strategies toward high-loading lithium-sulfur battery[J]. Advanced Energy Materials, 2020, 10(17): 2000082. |
5 | YUAN Hong, PENG Hongjie, LI Boquan, et al. Conductive and catalytic triple-phase interfaces enabling uniform nucleation in high-rate lithium-sulfur batteries[J]. Advanced Energy Materials, 2019, 9(1): 1802768. |
6 | CHUNG Shengheng, CHANG Chihao, MANTHIRAM Arumugam. Progress on the critical parameters for lithium-sulfur batteries to be practically viable[J]. Advanced Functional Materials, 2018, 28(28): 1801188. |
7 | 韩付超, 李福进, 陈良, 等. CoSe2/C复合电催化材料修饰隔膜对高载量锂硫电池性能的影响[J]. 高等学校化学学报, 2022, 43(8): 161-169. |
HAN Fuchao, LI Fujin, CHEN Liang, et al. Enhance of CoSe2/C composites modified separator on electrochemical performance of Li-S batteries at high sulfur loading[J]. Chemical Journal of Chinese Universities, 2022, 43(8): 161-169. | |
8 | CHUNG Shengheng, MANTHIRAM Arumugam. Current status and future prospects of metal-sulfur batteries[J]. Advanced Materials, 2019, 31(27): e1901125. |
9 | LIU Yatao, LIU Sheng, LI Guoran, et al. Strategy of enhancing the volumetric energy density for lithium-sulfur batteries[J]. Advanced Materials, 2021, 33(8): e2003955. |
10 | YANG Xiaofei, LI Xia, ADAIR Keegan, et al. Structural design of lithium-sulfur batteries: From fundamental research to practical application[J]. Electrochemical Energy Reviews, 2018, 1(3): 239-293. |
11 | 芦涛, 韩鹏献, 张增奇, 等. 高载硫量锂硫电池[J]. 电池工业, 2022, 26(3): 145-154. |
LU Tao, HAN Pengxian, ZHANG Zengqi, et al. Lithium sulfur batteries with high-loading sulfur cathode[J]. Chinese Battery Industry, 2022, 26(3): 145-154. | |
12 | SU Li, ZHANG Jinqiang, CHEN Yi, et al. Cobalt-embedded hierarchically-porous hollow carbon microspheres as multifunctional confined reactors for high-loading Li-S batteries[J]. Nano Energy, 2021, 85: 105981. |
13 | YU Jian, XIAO Jiewen, LI Anran, et al. Enhanced multiple anchoring and catalytic conversion of polysulfides by amorphous MoS3 nanoboxes for high-performance Li-S batteries[J]. Angewandte Chemie International Edition, 2020, 59(31): 13071-13078. |
14 | YAO Weiqi, ZHENG Weizhong, XU Jie, et al. ZnS-SnS@NC heterostructure as robust lithiophilicity and sulfiphilicity mediator toward high-rate and long-life lithium-sulfur batteries[J]. ACS Nano, 2021, 15(4): 7114-7130. |
15 | Suefaye NG, LAU Michelle Yuling, Weejun ONG. Lithium-sulfur battery cathode design: Tailoring metal-based nanostructures for robust polysulfide adsorption and catalytic conversion[J]. Advanced Materials, 2021, 33(50): 2008654. |
16 | YU Chunwei, TSAI Chojen. Ti4O7 as conductive additive in sulfur and graphene-sulfur cathodes for high-performance Lithium-sulfur batteries with a facile preparation method[J]. MRS Energy & Sustainability, 2022, 9(2): 369-377. |
17 | Julian KEY, FENG Yong, SHEN Jiaqi, et al. A highly crosslinked and conductive sulfur-rich copolymer with grafted polyaniline for stable cycling lithium-sulfur batteries[J]. Journal of the Electrochemical Society, 2020, 167(2): 020530. |
18 | 张会双, 李向南, 田栓宝, 等. 导电聚合物膜修饰的锂硫电池及其性能研究[J]. 电源技术, 2018, 42(11): 1646-1648. |
ZHANG Huishuang, LI Xiangnan, TIAN Shuanbao, et al. Conducting polymers membrane modified lithium sulfur batteries and its electrochemical performance[J]. Chinese Journal of Power Sources, 2018, 42(11): 1646-1648. | |
19 | CHENG Zhibin, PAN Hui, WU Ziyuan, et al. Cu-Mo bimetal modulated multifunctional carbon nanofibers promoting the polysulfides conversion for high-sulfur-loading lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(40): 45688-45696. |
20 | 蔡诗怡, 李津瑜, 吴丽霞, 等. 金属有机框架材料在锂硫电池的应用前沿进展[J]. 化工进展, 2021, 40(6): 3046-3057. |
CAI Shiyi, LI Jinyu, WU Lixia, et al. Progress of MOF materials applied in Li-S batteries[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3046-3057. | |
21 | JI X L, LEE K T, NAZAR L F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries[J]. Nature Materials, 2009, 8(6): 500-506. |
22 | ZHAO Meng, PENG Yanqi, LI Boquan, et al. Regulation of carbon distribution to construct high-sulfur-content cathode in lithium-sulfur batteries[J]. Journal of Energy Chemistry, 2021, 56: 203-208. |
23 | 吴强, 张薇, 余创, 等. 高硫含量正极在锂硫电池中的研究进展[J]. 材料导报, 2023, 37(15): 21100175. |
WU Qiang, ZHANG Wei, YU Chuang, et al. Research progress of sulfur cathode with high sulfur content for lithium-sulfur batteries [J]. Materials Reports, 2023, 37(15): 21100175. | |
24 | MAO Heng, LIU Limin, SHI Lei, et al. High loading cotton cellulose-based aerogel self-standing electrode for Li-S batteries[J]. Science Bulletin, 2020, 65(10): 803-811. |
79 | HOU Ruohan, ZHANG Shijie, ZHANG Yongshang, et al. A “three-region” configuration for enhanced electrochemical kinetics and high-areal capacity lithium-sulfur batteries[J]. Advanced Functional Materials, 2022, 32(19): 2200302. |
80 | CHEN Peng, WU Zhen, GUO Tong, et al. Strong chemical interaction between lithium polysulfides and flame-retardant polyphosphazene for lithium-sulfur batteries with enhanced safety and electrochemical performance[J]. Advanced Materials, 2021, 33(9): 2007549. |
81 | ZHU Kaiping, XUE Pan, CHENG Guanjian, et al. Thermo-managing and flame-retardant scaffolds suppressing dendritic growth and polysulfide shuttling toward high-safety lithium-sulfur batteries[J]. Energy Storage Materials, 2021, 43: 130-142. |
[1] | 罗芬, 杨晓琪, 段方麟, 李小江, 吴亮, 徐铜文. 双极膜研究进展及应用展望[J]. 化工进展, 2024, 43(1): 145-163. |
[2] | 于松民, 金洪波, 杨明虎, 余海峰, 江浩. 氟掺杂改性LiMn0.5Fe0.5PO4正极材料及其电化学性能[J]. 化工进展, 2024, 43(1): 302-309. |
[3] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[4] | 胡喜, 王明珊, 李恩智, 黄思鸣, 陈俊臣, 郭秉淑, 于博, 马志远, 李星. 二硫化钨复合材料制备与储钠性能研究进展[J]. 化工进展, 2023, 42(S1): 344-355. |
[5] | 张杰, 白忠波, 冯宝鑫, 彭肖林, 任伟伟, 张菁丽, 刘二勇. PEG及其复合添加剂对电解铜箔后处理的影响[J]. 化工进展, 2023, 42(S1): 374-381. |
[6] | 雷伟, 姜维佳, 王玉高, 和明豪, 申峻. N、S共掺杂煤基碳量子点的电化学氧化法制备及用于Fe3+检测[J]. 化工进展, 2023, 42(9): 4799-4807. |
[7] | 王耀刚, 韩子姗, 高嘉辰, 王新宇, 李思琪, 杨全红, 翁哲. 铜基催化剂电还原二氧化碳选择性的调控策略[J]. 化工进展, 2023, 42(8): 4043-4057. |
[8] | 刘毅, 房强, 钟达忠, 赵强, 李晋平. Ag/Cu耦合催化剂的Cu晶面调控用于电催化二氧化碳还原[J]. 化工进展, 2023, 42(8): 4136-4142. |
[9] | 张亚娟, 徐惠, 胡贝, 史星伟. 化学镀法制备NiCoP/rGO/NF高效电解水析氢催化剂[J]. 化工进展, 2023, 42(8): 4275-4282. |
[10] | 王帅晴, 杨思文, 李娜, 孙占英, 安浩然. 元素掺杂生物质炭材料在电化学储能中的研究进展[J]. 化工进展, 2023, 42(8): 4296-4306. |
[11] | 李海东, 杨远坤, 郭姝姝, 汪本金, 岳婷婷, 傅开彬, 王哲, 何守琴, 姚俊, 谌书. 炭化与焙烧温度对植物基铁碳微电解材料去除As(Ⅲ)性能的影响[J]. 化工进展, 2023, 42(7): 3652-3663. |
[12] | 徐伟, 李凯军, 宋林烨, 张兴惠, 姚舜华. 光催化及其协同电化学降解VOCs的研究进展[J]. 化工进展, 2023, 42(7): 3520-3531. |
[13] | 张鹏, 潘原. 单原子催化剂在电催化氧还原直接合成过氧化氢中的研究进展[J]. 化工进展, 2023, 42(6): 2944-2953. |
[14] | 陈少华, 王义华, 胡强飞, 胡坤, 陈立爱, 李洁. 电化学修饰电极在检测Cr(Ⅵ)中的研究进展[J]. 化工进展, 2023, 42(5): 2429-2438. |
[15] | 李华华, 李逸航, 金北辰, 李隆昕, 成少安. 厌氧氨氧化-生物电化学耦合废水处理系统的研究进展[J]. 化工进展, 2023, 42(5): 2678-2690. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |