化工进展 ›› 2024, Vol. 43 ›› Issue (1): 353-363.DOI: 10.16085/j.issn.1000-6613.2023-2152
• 专栏:化工过程强化 • 上一篇
收稿日期:
2023-12-04
修回日期:
2023-12-25
出版日期:
2024-01-20
发布日期:
2024-02-05
通讯作者:
姜红
作者简介:
裴文艺(1998—),女,硕士研究生,研究方向为膜材料的设计与制备。E-mail:515202108@qq.com。
基金资助:
PEI Wenyi(), CHEN Ziyang, ZHAO Meng, JIANG Hong(), CHEN Rizhi
Received:
2023-12-04
Revised:
2023-12-25
Online:
2024-01-20
Published:
2024-02-05
Contact:
JIANG Hong
摘要:
膜分散是制备微气泡的有效手段之一。在膜分散过程中,膜表面润湿性对气泡的分散过程起着关键作用。通过不对称化学修饰法调节膜的润湿性,在亲水改性前引入预润湿处理经疏水改性过的陶瓷膜,制备了具有不对称润湿性的Janus陶瓷膜。研究了不同预润湿剂对Janus陶瓷膜结构、表面性质及化学组成的影响,并研究其在CO2-NaOH体系中的气体分散与传质性能。结果表明,经预润湿处理制备的Janus陶瓷膜的亲水侧的润湿效果和亲水层的均匀程度均受到预润湿剂的表面张力和水溶性的影响。预润湿剂表面张力的减小,有利于Janus陶瓷膜上均匀的亲水层的沉积以及膜表面亲水性的增强。与未润湿处理相比,经乙醇预润湿制备的Janus陶瓷膜分散制备得到的气泡平均尺寸最小且分布最窄,传质效果也最优。
中图分类号:
裴文艺, 陈子阳, 赵萌, 姜红, 陈日志. 预润湿对Janus陶瓷膜制备及布气性能的影响[J]. 化工进展, 2024, 43(1): 353-363.
PEI Wenyi, CHEN Ziyang, ZHAO Meng, JIANG Hong, CHEN Rizhi. Effect of pre-wetting on preparation and gas distribution performance of Janus ceramic membrane[J]. Chemical Industry and Engineering Progress, 2024, 43(1): 353-363.
1 | TSUGE H. Micro- and nanobubbles: Fundamentals and applications[J]. CRC Press, 2014, 11(1): 3-18. |
2 | Hao LYU, Iu-Fan Chen Oscar, Hanikel Nikita, et al. Carbon dioxide capture chemistry of amino acid functionalized metal-organic frameworks in humid flue gas[J]. Journal of the American Chemical Society, 2022, 144(5): 2387-2396. |
3 | HUANG Pimiao, WANG Zhirong, SHI Yue, et al. Deodorizing effects of rosemary extract on silver carp (hypophthalmichthys molitrix) and determination of its deodorizing components[J]. Journal of Food Science, 2022, 87(2): 636-650. |
4 | RAJAPAKSE Nalaka, ZARGAR Masoumeh, Tushar SEN, et al. Effects of influent physicochemical characteristics on air dissolution, bubble size and rise velocity in dissolved air flotation: A review[J]. Separation and Purification Technology, 2022, 289: 120772. |
5 | LE Nam Nguyen Hai, SUGAI Yuichi, Hung VO-THANH, et al. Experimental investigation on plugging performance of CO2 microbubbles in porous media[J]. Journal of Petroleum Science and Engineering, 2022, 211: 110187. |
6 | WANG Qiaozhi, QIN Yan, XUE Chunlong, et al. Facile fabrication of bubbles-enhanced flexible bioaerogels for efficient and recyclable oil adsorption[J]. Chemical Engineering Journal, 2020, 402: 126240. |
7 | LEE SungHo, QIN Lusha, LI Oi Lun. Reducing sugar production from spent coffee grounds using microbubble-assisted synthesis of silica acid catalyst[J]. Catalysis Today, 2022, 388/389: 3-11. |
8 | SOYLUOGLU Meryem, KIM Daekyun, ZAKER Yeakub, et al. Removal mechanisms of geosmin and MIB by oxygen nanobubbles during water treatment[J]. Chemical Engineering Journal, 2022, 443: 136535. |
9 | LI Xi, LAN Huachun, ZHANG Gong, et al. Systematic design of a flow-through titanium electrode-based device with strong oil droplet rejection property for superior oil-in-water emulsion separation performance[J]. Environmental Science & Technology, 2022, 56(7): 4151-4161. |
10 | MAKUTA Toshinori, TAKEMURA Fumio, HIHARA Eiji, et al. Generation of micro gas bubbles of uniform diameter in an ultrasonic field[J]. Journal of Fluid Mechanics, 2006, 548: 113-131. |
11 | TSUGE Hideki, OGAWA Takamasa, OHMASA Ryushin. Microbubble formation by electrolysis using a new mixing equipment with low frequency vibratory fins[J]. Journal of Chemical Engineering of Japan, 2008, 41(7): 557-561. |
12 | LEE S, SUTOMO W, LIU C, et al. Micro-fabricated electrolytic micro-bubblers[J]. International Journal of Multiphase Flow, 2005, 31(6): 706-722. |
13 | ZHENG C, TAN J, WANG K, et al. Stability and pressure drop of gas-liquid micro-dispersion flows through a capillary[J]. Chemical Engineering Science, 2016, 140: 134-143. |
14 | TAN J, SHAO H W, XU J H, et al. Development of a membrane dispersion micro-absorber for CO2 capture[J]. Journal of Membrane Science, 2011, 385/386: 123-131. |
15 | ZHAO Yan, WANG Hongxia, ZHOU Hua, et al. Directional fluid transport in thin porous materials and its functional applications[J]. Small, 2017, 13(4): 10.1002/smll.201601070. |
16 | CHARCOSSET Catherine. Preparation of emulsions and particles by membrane emulsification for the food processing industry[J]. Journal of Food Engineering, 2009, 92(3): 241-249. |
17 | LIU Yucheng, QI Zaidong, ZHAO Meng, et al. Kinetics of liquid-phase phenol hydrogenation enhanced by membrane dispersion[J]. Chemical Engineering Science, 2022, 249: 117346. |
18 | LIU Yucheng, XU Ziqing, ZHANG Jiuxuan, et al. Control of pressurized microbubble generation by multi-channel membranes: Experiments and modeling[J]. Chemical Engineering and Processing-Process Intensification, 2023, 189: 109413. |
19 | LIU Yucheng, ZHU Hang, JIANG Hong, et al. Liquid-phase hydrogenation of phenol in an advanced gas-liquid concurrent upflow fixed-bed reactor with membrane dispersion[J]. Industrial & Engineering Chemistry Research, 2022, 61(41): 15202-15214. |
20 | LIU Yefei, HAN Yang, LI Xiaoli, et al. Controlling microbubbles in alcohol solutions by using a multi-channel ceramic membrane distributor[J]. Journal of Chemical Technology & Biotechnology, 2018, 93(8): 2456-2463. |
21 | LIU Yefei, HAN Yang, LI Xiaoli, et al. Efficient control of microbubble properties by alcohol shear flows in ceramic membrane channels[J]. Chemical Engineering & Technology, 2018, 41(1): 168-174. |
22 | HAN Yang, LIU Yefei, JIANG Hong, et al. Large scale preparation of microbubbles by multi-channel ceramic membranes: Hydrodynamics and mass transfer characteristics[J]. The Canadian Journal of Chemical Engineering, 2017, 95(11): 2176-2185. |
23 | LI Xiaoli, JIANG Hong, HOU Miaomiao, et al. Enhanced phenol hydrogenation for cyclohexanone production by membrane dispersion[J]. Chemical Engineering Journal, 2020, 386: 120744. |
24 | LI Xiaoli, LIU Yefei, JIANG Hong, et al. Computational fluid dynamics simulation of a novel membrane distributor of bubble columns for generating microbubbles[J]. Industrial & Engineering Chemistry Research, 2019, 58(2): 1087-1094. |
25 | SHI Haojie, JIANG Hong, LIU Yefei, et al. Bubble dynamics and mass transfer characteristics from an immersed orifice plate[J]. Journal of Chemical Technology & Biotechnology, 2020, 95(6): 1729-1738. |
26 | TANG Jianping, ZHANG Yachao, YAO Yansheng, et al. High-performance ultrafine bubble aeration on Janus aluminum foil prepared by laser microfabrication[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2021, 37(23): 6947-6952. |
27 | AHMADI Rouhollah, OKAWA Tomio. Influence of surface wettability on bubble behavior and void evolution in subcooled flow boiling[J]. International Journal of Thermal Sciences, 2015, 97: 114-125. |
28 | YANG Haocheng, HOU Jingwei, WAN Lingshu, et al. Janus membranes with asymmetric wettability for fine bubble aeration[J]. Advanced Materials Interfaces, 2016, 3(9): 1500774. |
29 | WANG Guojun, WU Baiheng, XU Zhikang, et al. Janus polymer membranes prepared by single-side polydopamine deposition for dye adsorption and fine bubble aeration[J]. Materials Chemistry Frontiers, 2019, 3(10): 2102-2109. |
30 | WANG Yaxin, YUAN Can, ZHOU Ke, et al. Construction of Janus silicon carbide membranes with asymmetric wettability for enhanced antifouling in water-in-oil emulsification process[J]. Journal of Membrane Science, 2023, 671: 121389. |
31 | CUI Qiufang, SHANG Yu, FEI Zhengxin, et al. Hydrophobic-hydrophilic Janus ceramic membrane for enhancing the waste heat recovery from the stripped gas in the carbon capture process[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(12): 3817-3828. |
32 | CUI Qiufang, GUTIERREZ Leonardo, LI Fushuai, et al. Waste heat recovery enhancement in the CO2 chemical absorption process by hydrophobic-hydrophilic composite ceramic membranes[J]. Journal of Membrane Science, 2023, 676: 121606. |
33 | DING Dong, MAO Hengyang, CHEN Xianfu, et al. Underwater superoleophobic-underoil superhydrophobic Janus ceramic membrane with its switchable separation in oil/water emulsions[J]. Journal of Membrane Science, 2018, 565: 303-310. |
34 | ZHAO Meng, LIU Yucheng, ZHANG Jiuxuan, et al. Janus ceramic membranes with asymmetric wettability for high-efficient microbubble aeration[J]. Journal of Membrane Science, 2023, 671: 121418. |
35 | LIU Qian, YAN Jiabao, ZHANG Tianyue, et al. Multiphase media superwettability regulated by coexisting prewetting phase[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 641: 128505. |
36 | WONG Tak-Sing, KANG Sung Hoon, TANG Sindy K Y, et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity[J]. Nature, 2011, 477: 443-447. |
37 | LIANG Yuanzhen, LI Changyang, WANG Peng, et al. Fabrication of a robust slippery liquid infused porous surface on Q235 carbon steel for inhibiting microbiologically influenced corrosion[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 631: 127696. |
38 | RAO Qingqing, LU Yulin, SONG Lina, et al. Highly efficient self-repairing slippery liquid-infused surface with promising anti-icing and anti-fouling performance[J]. ACS Applied Materials & Interfaces, 2021, 13(33): 40032-40041. |
39 | LONG Yifei, YIN Xingxing, MU Peng, et al. Slippery liquid-infused porous surface (SLIPS) with superior liquid repellency, anti-corrosion, anti-icing and intensified durability for protecting substrates[J]. Chemical Engineering Journal, 2020, 401: 126137. |
40 | LIU Mingming, HOU Yuanyuan, LI Jing, et al. Transparent slippery liquid-infused nanoparticulate coatings[J]. Chemical Engineering Journal, 2018, 337: 462-470. |
41 | REKIEL Edyta, ZDZIENNICKA Anna, Bronisław JAŃCZUK. Effect of ethanol on wetting and adhesion properties of rhamnolipid[J]. International Journal of Adhesion and Adhesives, 2021, 110: 102955. |
42 | SHIRZAD Somayyeh, SADEGHI Rahmat. Effects of addition of short-chain alcohol solvents on micellization and thermodynamic properties of anionic surfactants sodium dodecyl sulfate and sodium dodecyl sulfonate in aqueous solutions[J]. Journal of the Iranian Chemical Society, 2018, 15(6): 1365-1375. |
43 | WANG Tengfang, HU Jun, PENG Changjun, et al. Effects of short-chain alcohol on the micellization of gemini surfactant C16-6-16·2Br in aqueous solution[J]. Journal of Dispersion Science and Technology, 2007, 28(8): 1169-1172. |
44 | FLEISCHER Claus, BECKER Stefan, EIGENBERGER Gerhart. Detailed modeling of the chemisorption of CO2 into NaOH in a bubble column[J]. Chemical Engineering Science, 1996, 51(10): 1715-1724. |
45 | WANG Baorong, HE Renke, CHEN Meisi, et al. Intensification on mass transfer between gas and liquid in fine bubble jet reactor[J]. Journal of Environmental Chemical Engineering, 2021, 9(1): 104718. |
46 | HIKITA H, ASAI S, TAKATSUKA T. Absorption of carbon dioxide into aqueous sodium hydroxide and sodium carbonate-bicarbonate solutions[J]. The Chemical Engineering Journal, 1976, 11(2): 131-141. |
47 | WEN Jianping, NA Ping, HUANG Lin, et al. Local overall gas-liquid mass transfer coefficient in a gas-liquid-solid reversed flow jet loop reactor[J]. Chemical Engineering Journal, 2002, 88(1/2/3): 209-213. |
48 | DOUBLE K L, ZECCA L, COSTI P, et al. Structural characteristics of human substantia nigra neuromelanin and synthetic dopamine melanins[J]. Journal of Neurochemistry, 2000, 75(6): 2583-2589. |
49 | PAN Fusheng, JIA Huiping, QIAO Shizhang, et al. Bioinspired fabrication of high performance composite membranes with ultrathin defect-free skin layer[J]. Journal of Membrane Science, 2009, 341(1/2): 279-285. |
50 | YANG Haocheng, LIAO Kunjian, HUANG He, et al. Mussel-inspired modification of a polymer membrane for ultra-high water permeability and oil-in-water emulsion separation[J]. Journal of Materials Chemistry A, 2014, 2(26): 10225-10230. |
51 | XI Zhenyu, XU Youyi, ZHU Liping, et al. A facile method of surface modification for hydrophobic polymer membranes based on the adhesive behavior of poly(DOPA) and poly(dopamine)[J]. Journal of Membrane Science, 2009, 327(1/2): 244-253. |
52 | LIU Xiao, Say Leong ONG, How Yong NG. Fabrication of mesh-embedded double-skinned substrate membrane and enhancement of its surface hydrophilicity to improve anti-fouling performance of resultant thin-film composite forward osmosis membrane[J]. Journal of Membrane Science, 2016, 511: 40-53. |
53 | YAN Zhongsen, ZHANG Yuehua, YANG Haiyang, et al. Mussel-inspired polydopamine modification of polymeric membranes for the application of water and wastewater treatment: A review[J]. Chemical Engineering Research and Design, 2020, 157: 195-214. |
54 | WANG Hongxia, ZHOU Hua, YANG Weidong, et al. Selective, spontaneous one-way oil-transport fabrics and their novel use for gauging liquid surface tension[J]. ACS Applied Materials & Interfaces, 2015, 7(41): 22874-22880. |
55 | WANG Zijie, WANG Yu, LIU Guojun. Rapid and efficient separation of oil from oil-in-water emulsions using a Janus cotton fabric[J]. Angewandte Chemie (International Ed in English), 2016, 55(4): 1291-1294. |
56 | HILL Gordon A. Measurement of overall volumetric mass transfer coefficients for carbon dioxide in a well-mixed reactor using a pH probe[J]. Industrial & Engineering Chemistry Research, 2006, 45(16): 5796-5800. |
57 | JANG Nulee, LEE Mungyu, YASIN Muhammad, et al. Behavior of CO-water mass transfer coefficient in membrane sparger-integrated bubble column for synthesis gas fermentation[J]. Bioresource Technology, 2020, 311: 123594. |
[1] | 苏梦军, 刘剑, 辛靖, 陈禹霏, 张海洪, 韩龙年, 朱元宝, 李洪宝. 气液混合强化在固定床加氢过程中的应用进展[J]. 化工进展, 2024, 43(1): 100-110. |
[2] | 翟霖晓, 崔怡洲, 李成祥, 石孝刚, 高金森, 蓝兴英. 微气泡发生器的研究与应用进展[J]. 化工进展, 2024, 43(1): 111-123. |
[3] | 田时泓, 郭磊, 李娜, 宇文超, 许磊, 郭胜惠, 巨少华. 微波加热强化闪蒸工艺的科学基础及发展趋势[J]. 化工进展, 2024, 43(1): 135-144. |
[4] | 罗芬, 杨晓琪, 段方麟, 李小江, 吴亮, 徐铜文. 双极膜研究进展及应用展望[J]. 化工进展, 2024, 43(1): 145-163. |
[5] | 盖宏伟, 张辰君, 屈晶莹, 孙怀禄, 脱永笑, 王斌, 金旭, 张茜, 冯翔, CHEN De. 有机液体储氢技术催化脱氢过程强化研究进展[J]. 化工进展, 2024, 43(1): 164-185. |
[6] | 张梁, 马骥, 贺高红, 姜晓滨, 肖武. 膜调控的头孢呋辛钠溶析-冷却耦合结晶成核介稳区测定及分析[J]. 化工进展, 2024, 43(1): 260-268. |
[7] | 钟丁磊, 黄铎, 应翔, 邱守添, 汪勇. 熔纺-选择性溶胀制备嵌段共聚物多通道中空纤维膜[J]. 化工进展, 2024, 43(1): 269-278. |
[8] | 李蕴琪, 谢函霏, 崔丽瑞, 卢善富. 图案化微米线阵列Nafion膜制备及燃料电池性能[J]. 化工进展, 2024, 43(1): 320-327. |
[9] | 孙崇正, 李玉星, 许洁, 韩辉, 宋光春, 卢晓. 浮式氢能储运过程中FLH2通道管外降膜流动的海上适应性强化机理[J]. 化工进展, 2024, 43(1): 338-352. |
[10] | 袁谅, 从海峰, 李鑫钢. 微通道内气液流动与传质特性的研究进展[J]. 化工进展, 2024, 43(1): 34-48. |
[11] | 张祚群, 高扬, 白超杰, 薛立新. 二次界面聚合同步反扩散原位生长ZIF-8纳米粒子制备聚酰胺混合基质反渗透(RO)膜[J]. 化工进展, 2023, 42(S1): 364-373. |
[12] | 王莹, 韩云平, 李琳, 李衍博, 李慧丽, 颜昌仁, 李彩侠. 城市污水厂病毒气溶胶逸散特征研究现状与未来展望[J]. 化工进展, 2023, 42(S1): 439-446. |
[13] | 邵博识, 谭宏博. 锯齿波纹板对挥发性有机物低温脱除过程强化模拟分析[J]. 化工进展, 2023, 42(S1): 84-93. |
[14] | 盛维武, 程永攀, 陈强, 李小婷, 魏嘉, 李琳鸽, 陈险峰. 微气泡和微液滴双强化脱硫反应器操作分析[J]. 化工进展, 2023, 42(S1): 142-147. |
[15] | 黄益平, 李婷, 郑龙云, 戚傲, 陈政霖, 史天昊, 张新宇, 郭凯, 胡猛, 倪泽雨, 刘辉, 夏苗, 主凯, 刘春江. 三级环流反应器中气液流动与传质规律[J]. 化工进展, 2023, 42(S1): 175-188. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |