1 |
BAO Jun, YANG Guohui, YONEYAMA Yoshiharu, et al. Significant advances in C1 catalysis: highly efficient catalysts and catalytic reactions[J]. ACS Catalysis, 2019, 9(4): 3026-3053.
|
2 |
ZHOU Wei, CHENG Kang, KANG Jincan, et al. New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels[J]. Chemical Society Reviews, 2019, 48(12): 3193-3228.
|
3 |
巩守龙. 铁基高温费托合成催化剂研究与应用进展[J]. 中国石油和化工标准与质量, 2020, 40(8): 171-172.
|
|
GONG Shoulong. Research and application progress of iron-based high temperature Fischer-Tropsch synthesis catalyst[J]. China Petroleum and Chemical Standard and Quality, 2020, 40(8): 171-172.
|
4 |
OPEYEMI OTUN Kabir, YAO Yali, LIU Xinying, et al. Synthesis, structure, and performance of carbide phases in Fischer-Tropsch synthesis: a critical review[J]. Fuel, 2021, 296: 120689.
|
5 |
LU Fangxu, CHEN Xin, WEN Lixiong, et al. The synergic effects of iron carbides on conversion of syngas to alkenes[J]. Catalysis Letters, 2021, 151(7): 2132-2143.
|
6 |
WANG Di, CHEN Bingxu, DUAN Xuezhi, et al. Iron-based Fischer-Tropsch synthesis of lower olefins: the nature of χ-Fe5C2 catalyst and why and how to introduce promoters[J]. Journal of Energy Chemistry, 2016, 25(6): 911-916.
|
7 |
杨霞珍, 张红, 霍超, 等. Fe1- x O基熔铁催化剂物相及结构变化对其催化合成气制低碳烯烃性能的影响[J]. 石油化工, 2018, 47(8): 775-780.
|
|
YANG Xiazhen, ZHANG Hong, HUO Chao, et al. Effects of phase and structure of Fe1- x O-based fused iron catalyst on its performance for producing light olefins from syngas[J]. Petrochemical Technology, 2018, 47(8): 775-780.
|
8 |
WANG Jian, HUANG Shouying, HOWARD Shaun, et al. Elucidating surface and bulk phase transformation in Fischer-Tropsch synthesis catalysts and their influences on catalytic performance[J]. ACS Catalysis, 2019, 9(9): 7976-7983.
|
9 |
TANG Lei, HE Lei, WANG Yang, et al. Selective fabrication of χ-Fe5C2 by interfering surface reactions as a highly efficient and stable Fischer-Tropsch synthesis catalyst[J]. Applied Catalysis B: Environmental, 2021, 284: 119753.
|
10 |
CHANG Qiang, ZHANG Chenghua, LIU Chengwei, et al. Relationship between iron carbide phases (ε-Fe2C, Fe7C3, and χ-Fe5C2) and catalytic performances of Fe/SiO2 Fischer-Tropsch catalysts[J]. ACS Catalysis, 2018, 8(4): 3304-3316.
|
11 |
LIU Qianyu, SHANG Cheng, LIU Zhipan. In situ active site for CO activation in Fe-catalyzed Fischer-Tropsch synthesis from machine learning [J]. Journal of the American Chemical Society, 2021, 143(29): 11109-11120.
|
12 |
HERRANZ Tirma, ROJAS Sergio, PÉREZ-ALONSO Francisco J, et al. Genesis of iron carbides and their role in the synthesis of hydrocarbons from synthesis gas[J]. Journal of Catalysis, 2006, 243(1): 199-211.
|
13 |
DE SMIT Emiel, BEALE Andrew M, NIKITENKO Sergey, et al. Local and long range order in promoted iron-based Fischer-Tropsch catalysts: a combined in situ X-ray absorption spectroscopy/wide angle X-ray scattering study[J]. Journal of Catalysis, 2009, 262(2): 244-256.
|
14 |
MA Caiping, ZHANG Wei, CHANG Qiang, et al. θ-Fe3C dominated Fe@C core-shell catalysts for Fischer-Tropsch synthesis: roles of θ-Fe3C and carbon shell[J]. Journal of Catalysis, 2021, 393: 238-246.
|
15 |
LIU Yi, LU Fangxu, TANG Yu, et al. Effects of initial crystal structure of Fe2O3 and Mn promoter on effective active phase for syngas to light olefins[J]. Applied Catalysis B: Environmental, 2020, 261: 118219.
|
16 |
ZHANG Juan, ABBAS Mohamed, ZHAO Wentao, et al. Enhanced stability of a fused iron catalyst under realistic Fischer-Tropsch synthesis conditions: insights into the role of iron phases (χ-Fe5C2, θ-Fe3C and α-Fe)[J]. Catalysis Science & Technology, 2022, 12(13): 4217-4227.
|
17 |
LIU Huazhang, YANG Xiazhen, CEN Yaqing, et al. A novel Fe1- x O-based fused iron catalyst for Fischer-Tropsch synthesis with the high olefine selectivity[J]. Advanced Materials Research, 2012, 512-515: 2207-2211.
|
18 |
GECGEL Cihan, SIMSEK Utku Bulut, GOZMEN Belgin, et al. Comparison of MIL-101(Fe) and amine-functionalized MIL-101(Fe) as photocatalysts for the removal of imidacloprid in aqueous solution[J]. Journal of the Iranian Chemical Society, 2019, 16(8): 1735-1748.
|
19 |
邢建东. 晶体定向生长[M]. 西安: 西安交通大学出版社, 2008.
|
|
XING Jiandong. Crystal directional growth[M]. Xi'an: Xi'an Jiaotong University Press, 2008.
|
20 |
LI Juan, WANG Liangjie, LIU Yongqiang, et al. Removal of berberine from wastewater by MIL-101(Fe): performance and mechanism[J]. ACS Omega, 2020, 5(43): 27962-27971.
|
21 |
杨霞珍. 熔铁催化剂费-托合成制低碳烯烃构效关系研究[D]. 杭州: 浙江工业大学, 2018.
|
|
YANG Xiazhen. Study on structure-activity relationship of fused iron catalyst for producing light olefinsvia Fischer-Tropsch synthesis[D]. Hangzhou: Zhejiang University of Technology, 2018.
|
22 |
CHEN Yao, LI Xin, LI Zhenhua, et al. Highly efficient iron based MOFs mediated catalysts for Fischer-Tropsch synthesis: effect of reduction atmosphere[J]. Journal of the Taiwan Institute of Chemical Engineers, 2020, 107: 44-53.
|
23 |
WU Xian, MA Hongfang, ZHANG Haitao, et al. High-temperature Fischer-Tropsch synthesis of light olefins over nano-Fe3O4@MnO2 core-shell catalysts[J]. Industrial & Engineering Chemistry Research, 2019, 58(47): 21350-21362.
|
24 |
LIU Xiaoling, MA Cailian, ZHAO Wentao, et al. Effects of promoters on carburized fused iron catalysts in Fischer-Tropsch synthesis[J]. Journal of Fuel Chemistry and Technology, 2021, 49(10): 1504-1512.
|
25 |
HAN Zhonghao, QIAN Weixin, MA Hongfang, et al. Effects of Sm on Fe-Mn catalysts for Fischer-Tropsch synthesis[J]. RSC Advances, 2019, 9(55): 32240-32246.
|
26 |
HAN Zhonghao, QIAN Weixin, ZHANG Haitao, et al. Effect of rare-earth promoters on precipitated iron-based catalysts for Fischer-Tropsch synthesis[J]. Industrial & Engineering Chemistry Research, 2020, 59(33): 14598-14605.
|