化工进展 ›› 2023, Vol. 42 ›› Issue (8): 4076-4092.DOI: 10.16085/j.issn.1000-6613.2023-0291
收稿日期:
2023-02-28
修回日期:
2023-05-10
出版日期:
2023-08-15
发布日期:
2023-09-19
通讯作者:
文秀芳
作者简介:
尹新宇(1991—),男,博士研究生,研究方向为特殊润湿性材料、天然气水合物。E-mail:qqcom1129919@163.com。
基金资助:
YIN Xinyu(), PI Pihui, WEN Xiufang(), QIAN Yu
Received:
2023-02-28
Revised:
2023-05-10
Online:
2023-08-15
Published:
2023-09-19
Contact:
WEN Xiufang
摘要:
天然气水合物是一种绿色化石能源,但是在石油和天然气开采、管道运输过程中,管道内形成的水合物会聚集堵塞管道,对油气管道安全储运带来严峻挑战。首先,本文结合国内外关于防治水合物成核与聚集的实验和分子模拟研究成果,介绍了不同运输体系中天然气水合物成核、聚集过程以及影响因素,回顾了传统防治天然气水合物成核与聚集方法及其利弊。其次,阐述了特殊浸润性材料基本概念以及在油气相关领域的应用,并着重梳理了其在抑制天然气水合物成核与防止天然气水合物黏附聚集管壁等方面的研究进展。分析了不同运输体系中特殊浸润性材料在应对天然气水合物成核与聚集应用过程中存在的挑战,并对其提出针对性解决设想。最后,对特殊浸润性材料应对水合物成核与聚集领域的未来发展趋势进行了展望。
中图分类号:
尹新宇, 皮丕辉, 文秀芳, 钱宇. 特殊浸润性材料在防治油气管道中水合物成核与聚集的应用[J]. 化工进展, 2023, 42(8): 4076-4092.
YIN Xinyu, PI Pihui, WEN Xiufang, QIAN Yu. Application of special wettability materials for anti-hydrate-nucleation and anti-hydrate-adhesion in oil and gas pipelines[J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4076-4092.
基材 | 涂层 | 接触角/(°) | 黏附力 | 降低百分比/% | 参考文献 |
---|---|---|---|---|---|
碳钢 | 蜡 | 170.7±3.1 | (18.4±2.9)kPa | 93.7 | [ |
碳钢 | 聚四氟乙烯 | 164.0±3.1 | (13.1±1.75)kPa | 95.5 | [ |
不锈钢 | pPFDA/pDVB | 157.0±4.5 | (34±12)kPa | 84.5 | [ |
X90无缝钢 | 烷烃涂层修饰的氧化铜 | 160±3.1 | 0.13mN | >91.9 | [ |
X80无缝钢 | CeO2/pDA | 154.7±0.8 | 0.001mN/m | 98.9 | [ |
不锈钢 | 石墨 | 154±7 | 0.85mN/m | 79 | [ |
铜 | 氟化石墨 | 150 | 0.01mN/m | >99.7 | [ |
表1 超疏水材料防环戊烷水合物黏附汇总
基材 | 涂层 | 接触角/(°) | 黏附力 | 降低百分比/% | 参考文献 |
---|---|---|---|---|---|
碳钢 | 蜡 | 170.7±3.1 | (18.4±2.9)kPa | 93.7 | [ |
碳钢 | 聚四氟乙烯 | 164.0±3.1 | (13.1±1.75)kPa | 95.5 | [ |
不锈钢 | pPFDA/pDVB | 157.0±4.5 | (34±12)kPa | 84.5 | [ |
X90无缝钢 | 烷烃涂层修饰的氧化铜 | 160±3.1 | 0.13mN | >91.9 | [ |
X80无缝钢 | CeO2/pDA | 154.7±0.8 | 0.001mN/m | 98.9 | [ |
不锈钢 | 石墨 | 154±7 | 0.85mN/m | 79 | [ |
铜 | 氟化石墨 | 150 | 0.01mN/m | >99.7 | [ |
1 | YU Yisong, ZHANG Xianwei, LIU Jianwu, et al. Natural gas hydrate resources and hydrate technologies: A review and analysis of the associated energy and global warming challenges[J]. Energy & Environmental Science, 2021, 14(11): 5611-5668. |
2 | SUBRAMANIAN S, KINI R A, DEC S F, et al. Evidence of structure Ⅱ hydrate formation from methane+ethane mixtures[J]. Chemical Engineering Science, 2000, 55(11): 1981-1999. |
3 | DAVIES Simon R, BOXALL John A, DIEKER Laura E, et al. Predicting hydrate plug formation in oil-dominated flowlines[J]. Journal of Petroleum Science and Engineering, 2010, 72(3/4): 302-309. |
4 | KHURANA Maninder, YIN Zhenyuan, LINGA Praveen. A review of clathrate hydrate nucleation[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(12): 11176-11203. |
5 | ZHENG Haimin, HUANG Qiyu, WANG Wei, et al. Induction time of hydrate formation in water-in-oil emulsions[J]. Industrial & Engineering Chemistry Research, 2017, 56(29): 8330-8339. |
6 | KNOTT Brandon C, VALERIA Molinero, DOHERTY Michael F, et al. Homogeneous nucleation of methane hydrates: Unrealistic under realistic conditions[J]. Journal of the American Chemical Society, 2012, 134(48): 19544-19547. |
7 | YANG Liang, LI Chunxiao, PEI Junhua, et al. Enhanced clathrate hydrate phase change with open-cell copper foam for efficient methane storage[J]. Chemical Engineering Journal, 2022, 440: 135912. |
8 | SLOAN E Dendy Carolyn A, Carolyn A KOH. Clathrate Hydrates of Natural Gases[M]. Boca Raton: CRC Press, 2007. |
9 | FLORUSSE Louw J, PETERS Cor J, SCHOONMAN Joop, et al. Stable low-pressure hydrogen clusters stored in a binary clathrate hydrate[J]. Science, 2004, 306(5695): 469-471. |
10 | KOGA Tadanori, WONG Johnny, ENDOH Maya K, et al. Hydrate formation at the methane/water interface on the molecular scale[J]. Langmuir, 2010, 26(7): 4627-4630. |
11 | MOON Changman, TAYLOR Paul C, Mark RODGER P. Molecular dynamics study of gas hydrate formation[J]. Journal of the American Chemical Society, 2003, 125(16): 4706-4707. |
12 | TAYLOR Craig J, MILLER Kelly T, Carolyn A KOH, et al. Macroscopic investigation of hydrate film growth at the hydrocarbon/water interface[J]. Chemical Engineering Science, 2007, 62(23): 6524-6533. |
13 | RODGER P M, FORESTER T R, SMITH W. Simulations of the methane hydrate/methane gas interface near hydrate forming conditions conditions[J]. Fluid Phase Equilibria, 1996, 116(1/2): 326-332. |
14 | BOEWER Lars, NASE Julia, PAULUS Michael, et al. On the spontaneous formation of clathrate hydrates at water-guest interfaces[J]. The Journal of Physical Chemistry C, 2012, 116(15): 8548-8553. |
15 | GUO Yong, XIAO Wei, PU Wanfen, et al. CH4 nanobubbles on the hydrophobic solid-water interface serving as the nucleation sites of methane hydrate[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2018, 34(34): 10181-10186. |
16 | BAI Dongsheng, CHEN Guangjin, ZHANG Xianren, et al. Nucleation of the CO2 hydrate from three-phase contact lines[J]. Langmuir, 2012, 28(20): 7730-7736. |
17 | ZHANG Zhengcai, GUO Guangjun. The effects of ice on methane hydrate nucleation: A microcanonical molecular dynamics study[J]. Physical Chemistry Chemical Physics, 2017, 19(29): 19496-19505. |
18 | NGUYEN Andrew H, Matthew A KOC, SHEPHERD Tricia D, et al. Structure of the ice-clathrate interface[J]. The Journal of Physical Chemistry C, 2015, 119(8): 4104-4117. |
19 | ODENDAHL Nathan L, GEISSLER Phillip L. Local ice-like structure at the liquid water surface[J]. Journal of the American Chemical Society, 2022, 144(25): 11178-11188. |
20 | SUN Zhigao, DAI Mengling, ZHU Minggui, et al. Improving THF hydrate formation in the presence of nonanoic acid[J]. Journal of Molecular Liquids, 2020, 299: 112188. |
21 | NASHED Omar, PARTOON Behzad, Bhajan LAL, et al. Review the impact of nanoparticles on the thermodynamics and kinetics of gas hydrate formation[J]. Journal of Natural Gas Science and Engineering, 2018, 55: 452-465. |
22 | WANG Weixing, BRAY Christopher L, ADAMS Dave J, et al. Methane storage in dry water gas hydrates[J]. Journal of the American Chemical Society, 2008, 130(35): 11608-11609. |
23 | LU Yiyu, GE Binbin, ZHONG Dongliang. Investigation of using graphite nanofluids to promote methane hydrate formation: Application to solidified natural gas storage[J]. Energy, 2020, 199: 117424. |
24 | ALIABADI Masoud, RASOOLZADEH Ali, ESMAEILZADEH Feridun, et al. Experimental study of using CuO nanoparticles as a methane hydrate promoter[J]. Journal of Natural Gas Science and Engineering, 2015, 27: 1518-1522. |
25 | LIU Ni, ZHU Hanqi, ZHOU Jiali, et al. Molecular dynamics simulations on formation of CO2 hydrate in the presence of metal particles[J]. Journal of Molecular Liquids, 2021, 331: 115793. |
26 | YANG Liang, LIU Zhenzhen, LIU Daoping, et al. Enhanced natural gas hydrates formation in the suspension with metal particles and fibers[J]. Journal of Molecular Liquids, 2020, 301: 112410. |
27 | PAHLAVANZADEH Hassan, REZAEI Sajjad, KHANLARKHANI Mehrdad, et al. Kinetic study of methane hydrate formation in the presence of copper nanoparticles and CTAB[J]. Journal of Natural Gas Science and Engineering, 2016, 34: 803-810. |
28 | SONG Yuanmei, LIANG Ruquan, WANG Fei, et al. Enhanced methane hydrate formation in the highly dispersed carbon nanotubes-based nanofluid[J]. Fuel, 2021, 285: 119234. |
29 | XIE Yan, LI Rui, WANG Xiaohui, et al. Review on the accumulation behavior of natural gas hydrates in porous sediments[J]. Journal of Natural Gas Science and Engineering, 2020, 83: 103520. |
30 | YANG Liang, FAN Shuanshi, WANG Yanhong, et al. Accelerated formation of methane hydrate in aluminum foam[J]. Industrial & Engineering Chemistry Research, 2011, 50(20): 11563-11569. |
31 | Kim Daeok, LEE Huen. Phase behavior of gas hydrates in nanoporous materials: Review[J]. Korean Journal of Chemical Engineering, 2016, 33(7): 1977-1988. |
32 | QIN Yue, PAN Zhen, LIU Zhiming, et al. Influence of the particle size of porous media on the formation of natural gas hydrate: A review[J]. Energy & Fuels, 2021, 35(15): 11640-11664. |
33 | LIU Xiaowan, TIAN Linqing, CHEN Daoyi, et al. Accelerated formation of methane hydrates in the porous SiC foam ceramic packed reactor[J]. Fuel, 2019, 257: 115858. |
34 | LI Renliang, LIU Daoping, YANG Liang, et al. Rapid methane hydrate formation in aluminum honeycomb[J]. Fuel, 2019, 252: 574-580. |
35 | Stephen J COX, TAYLOR Diana J F, YOUNGS Tristan G A, et al. Formation of methane hydrate in the presence of natural and synthetic nanoparticles[J]. Journal of the American Chemical Society, 2018, 140(9): 3277-3284. |
36 | MIN Juwon, KANG Dong Woo, LEE Wonhyeong, et al. Molecular dynamics simulations of hydrophobic nanoparticle effects on gas hydrate formation[J]. The Journal of Physical Chemistry C, 2020, 124(7): 4162-4171. |
37 | PASIEKA James, COULOMBE Sylvain, SERVIO Phillip. Investigating the effects of hydrophobic and hydrophilic multi-wall carbon nanotubes on methane hydrate growth kinetics[J]. Chemical Engineering Science, 2013, 104: 998-1002. |
38 | MCELLIGOTT Adam, UDDIN Hasan, MEUNIER Jean-Luc, et al. Effects of hydrophobic and hydrophilic graphene nanoflakes on methane hydrate kinetics[J]. Energy & Fuels, 2019, 33(11): 11705-11711. |
39 | LI Huijuan, WANG Liguang. Hydrophobized particles can accelerate nucleation of clathrate hydrates[J]. Fuel, 2015, 140: 440-445. |
40 | DING Lin, SHI Bohui, LV Xiaofang, et al. Hydrate formation and plugging mechanisms in different gas-liquid flow patterns[J]. Industrial & Engineering Chemistry Research, 2017, 56(14): 4173-4184. |
41 | DING Lin, SHI Bohui, WANG Jiaqi, et al. Hydrate deposition on cold pipe walls in water-in-oil (W/O) emulsion systems[J]. Energy & Fuels, 2017, 31(9): 8865-8876. |
42 | AMAN Zachary M, Dendy Sloan E, Amadeu K SUM, et al. Adhesion force interactions between cyclopentane hydrate and physically and chemically modified surfaces[J]. Physical Chemistry Chemical Physics: PCCP, 2014, 16(45): 25121-25128. |
43 | JOSHI Sanjeev V, GRASSO Giovanny A, LAFOND Patrick G, et al. Experimental flowloop investigations of gas hydrate formation in high water cut systems[J]. Chemical Engineering Science, 2013, 97: 198-209. |
44 | RAO Ishan, Carolyn A KOH, SLOAN E Dendy, et al. Gas hydrate deposition on a cold surface in water-saturated gas systems[J]. Industrial & Engineering Chemistry Research, 2013, 52(18): 6262-6269. |
45 | AMAN Zachary M, BROWN Erika P, Dendy Sloan E, et al. Interfacial mechanisms governing cyclopentane clathrate hydrate adhesion/cohesion[J]. Physical Chemistry Chemical Physics, 2011, 13(44): 19796-19806. |
46 | KELLAND Malcolm A. A review of kinetic hydrate inhibitors from an environmental perspective[J]. Energy & Fuels, 2018, 32(12): 12001-12012. |
47 | MOKHATAB S, WILKENS R J, LEONTARITIS K J. A review of strategies for solving gas-hydrate problems in subsea pipelines[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2007, 29(1): 39-45. |
48 | WANG Yanhong, FAN Shuanshi, LANG Xuemei. Reviews of gas hydrate inhibitors in gas-dominant pipelines and application of kinetic hydrate inhibitors in China[J]. Chinese Journal of Chemical Engineering, 2019, 27(9): 2118-2132. |
49 | Carolyn A KOH. Towards a fundamental understanding of natural gas hydrates[J]. Chemical Society Reviews, 2002, 31(3): 157-167. |
50 | ZHAO Xin, QIU Zhengsong, ZHANG Zhen, et al. Relationship between the gas hydrate suppression temperature and water activity in the presence of thermodynamic hydrate inhibitor[J]. Fuel, 2020, 264: 116776. |
51 | YAQUB Sana, Bhajan LAL, PARTOON Behzad, et al. Investigation of the task oriented dual function inhibitors in gas hydrate inhibition: A review[J]. Fluid Phase Equilibria, 2018, 477: 40-57. |
52 | TARIQ Mohammad, ROONEY David, OTHMAN Enas, et al. Gas hydrate inhibition: A review of the role of ionic liquids[J]. Industrial & Engineering Chemistry Research, 2014, 53(46): 17855-17868. |
53 | BAVOH Cornelius B, Bhajan LAL, OSEI Harrison, et al. A review on the role of amino acids in gas hydrate inhibition, CO2 capture and sequestration, and natural gas storage[J]. Journal of Natural Gas Science and Engineering, 2019, 64: 52-71. |
54 | KIM K, Cho Sang-Gyu, Sa Jeong-Hoon. Natural hydrophilic amino acids as environment-friendly gas hydrate inhibitors for carbon capture and sequestration[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(51): 17413-17419. |
55 | WANG Qingyu, WANG Chen, MA Shang, et al. Amphiphilic optimization enables polyaspartamides with effective kinetic inhibition of tetrahydrofuran hydrate formation: Structure-property relationships[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(10): 13532-13542. |
56 | KE Wei, CHEN Daoyi. A short review on natural gas hydrate, kinetic hydrate inhibitors and inhibitor synergists[J]. Chinese Journal of Chemical Engineering, 2019, 27(9): 2049-2061. |
57 | ZHANG Qian, KELLAND Malcolm A, LU Hailong. Non-amide kinetic hydrate inhibitors: A review[J]. Fuel, 2022, 315: 123179. |
58 | GAO Shuqiang. Hydrate risk management at high watercuts with anti-agglomerant hydrate inhibitors[J]. Energy & Fuels, 2009, 23(4): 2118-2121. |
59 | ANDREA Perrin, MUSA Osama M, STEED Jonathan W. The chemistry of low dosage clathrate hydrate inhibitors[J]. Chemical Society Reviews, 2013, 42(5): 1996-2015. |
60 | KELLAND Malcolm A, SVARTAAS Thor M, Jorunn ØVSTHUS, et al. Studies on some alkylamide surfactant gas hydrate anti-agglomerants[J]. Chemical Engineering Science, 2006, 61(13): 4290-4298. |
61 | David SMITH J, MEULER Adam J, BRALOWER Harrison L, et al. Hydrate-phobic surfaces: Fundamental studies in clathrate hydrate adhesion reduction[J]. Physical Chemistry Chemical Physics, 2012, 14(17): 6013-6020. |
62 | AMAN Zachary M, LEITH William J, GRASSO Giovanny A, et al. Adhesion force between cyclopentane hydrate and mineral surfaces[J]. Langmuir, 2013, 29(50): 15551-15557. |
63 | LIU Chenwei, WANG Zhiyuan, TIAN Jinlin, et al. Fundamental investigation of the adhesion strength between cyclopentane hydrate deposition and solid surface materials[J]. Chemical Engineering Science, 2020, 217: 115524. |
64 | ASPENES G, DIEKER L E, AMAN Z M, et al. Adhesion force between cyclopentane hydrates and solid surface materials[J]. Journal of Colloid and Interface Science, 2010, 343(2): 529-536. |
65 | LEE Bo Ram, Amadeu K SUM. Micromechanical cohesion force between gas hydrate particles measured under high pressure and low temperature conditions[J]. Langmuir, 2015, 31(13): 3884-3888. |
66 | ASPENES G, HØILAND S, BARTH T, et al. The influence of petroleum acids and solid surface energy on pipeline wettability in relation to hydrate deposition[J]. Journal of Colloid and Interface Science, 2009, 333(2): 533-539. |
67 | Tai BUI, SICARD Francois, MONTEIRO Deepak, et al. Antiagglomerants affect gas hydrate growth[J]. The Journal of Physical Chemistry Letters, 2018, 9(12): 3491-3496. |
68 | WANG Shutao, LIU Kesong, YAO Xi, et al. Bioinspired surfaces with superwettability: New insight on theory, design, and applications[J]. Chemical Reviews, 2015, 115(16): 8230-8293. |
69 | SU Bin, TIAN Ye, JIANG Lei. Bioinspired interfaces with superwettability: From materials to chemistry[J]. Journal of the American Chemical Society, 2016, 138(6): 1727-1748. |
70 | LIU Mingjie, WANG Shutao, JIANG Lei. Nature-inspired superwettability systems[J]. Nature Reviews Materials, 2017, 2: 17036. |
71 | KREDER Michael J, ALVARENGA Jack, KIM Philseok, et al. Design of anti-icing surfaces: Smooth, textured or slippery?[J]. Nature Reviews Materials, 2016, 1: 15003. |
72 | RAJU KUMAR Gupta, DUNDERDALE Gary J, ENGLAND Matt W, et al. Oil/water separation techniques: A review of recent progresses and future directions[J]. Journal of Materials Chemistry A, 2017, 5(31): 16025-16058. |
73 | XIANG Bin, SUN Qing, ZHONG Qi, et al. Current research situation and future prospect of superwetting smart oil/water separation materials[J]. Journal of Materials Chemistry A, 2022, 10(38): 20190-20217. |
74 | LI Haoyu, ZHONG Qi, SUN Qing, et al. Upcycling waste pine nut shell membrane for highly efficient separation of crude oil-in-water emulsion[J]. Langmuir, 2022, 38(11): 3493-3500. |
75 | LI Jiaqian, ZHOU Xiaofeng, LI Jing, et al. Topological liquid diode[J]. Science Advances, 2017, 3(10): eaao3530. |
76 | WU Yuchen, FENG Jiangang, GAO Hanfei, et al. Superwettability-based interfacial chemical reactions[J]. Advanced Materials, 2019, 31(8): 1800718. |
77 | Sonalee DAS, KUMAR Sudheer, SAMAL Sushanta K, et al. A review on superhydrophobic polymer nanocoatings: Recent development and applications[J]. Industrial & Engineering Chemistry Research, 2018, 57(8): 2727-2745. |
78 | WANG Zhangxin, ELIMELECH Menachem, LIN Shihong. Environmental applications of interfacial materials with special wettability[J]. Environmental Science & Technology, 2016, 50(5): 2132-2150. |
79 | LAURICELLA Marco, CICCOTTI Giovanni, ENGLISH Niall J, et al. Mechanisms and nucleation rate of methane hydrate by dynamical nonequilibrium molecular dynamics[J]. The Journal of Physical Chemistry C, 2017, 121(43): 24223-24234. |
80 | FARHANG Faezeh, NGUYEN Anh V, SEWELL Kim B. Fundamental investigation of the effects of hydrophobic fumed silica on the formation of carbon dioxide gas hydrates[J]. Energy & Fuels, 2014, 28(11): 7025-7037. |
81 | NGUYEN Ngoc N, NGUYEN Anh V, STEEL Karen M, et al. Interfacial gas enrichment at hydrophobic surfaces and the origin of promotion of gas hydrate formation by hydrophobic solid particles[J]. The Journal of Physical Chemistry C, 2017, 121(7): 3830-3840. |
82 | NGUYEN Ngoc N, GALIB Mirza, NGUYEN Anh V. Critical review on gas hydrate formation at solid surfaces and in confined spaces—Why and how does interfacial regime matter?[J]. Energy & Fuels, 2020, 34(6): 6751-6760. |
83 | WANG Jialin, WANG Ruijia, YOON Roe-Hoan, et al. Use of hydrophobic particles as kinetic promoters for gas hydrate formation[J]. Journal of Chemical & Engineering Data, 2015, 60(2): 383-388. |
84 | HU Peng, CHEN Daoyi, ZI Mucong, et al. Effects of carbon steel corrosion on the methane hydrate formation and dissociation[J]. Fuel, 2018, 230: 126-133. |
85 | DENG Ganghua, SHEN Yuneng, CHEN Hailong, et al. Ordered-to-disordered transformation of enhanced water structure on hydrophobic surfaces in concentrated alcohol-water solutions[J]. The Journal of Physical Chemistry Letters, 2019, 10(24): 7922-7928. |
86 | HU Yuanchao, TANAKA Hajime. Revealing the role of liquid preordering in crystallisation of supercooled liquids[J]. Nature Communications, 2022, 13: 4519. |
87 | NGUYEN Ngoc N, NGUYEN Anh V. Hydrophobic effect on gas hydrate formation in the presence of additives[J]. Energy & Fuels, 2017, 31(10): 10311-10323. |
88 | PARK Taehyung, KWON Tae-Hyuk. Effect of electric field on gas hydrate nucleation kinetics: Evidence for the enhanced kinetics of hydrate nucleation by negatively charged clay surfaces[J]. Environmental Science & Technology, 2018, 52(5): 3267-3274. |
89 | NGUYEN Ngoc N, NGUYEN Anh V, DANG Liem X. The inhibition of methane hydrate formation by water alignment underneath surface adsorption of surfactants[J]. Fuel, 2017, 197: 488-496. |
90 | LI Huijuan, STANWIX Paul, AMAN Zachary, et al. Raman spectroscopic studies of clathrate hydrate formation in the presence of hydrophobized particles[J]. The Journal of Physical Chemistry A, 2016, 120(3): 417-424. |
91 | WANG Ren, LIU Tianle, NING Fulong, et al. Effect of hydrophilic silica nanoparticles on hydrate formation: Insight from the experimental study[J]. Journal of Energy Chemistry, 2019, 30: 90-100. |
92 | SONG Yuanmei, WANG Fei, GUO Gang, et al. Amphiphilic-polymer-coated carbon nanotubes as promoters for methane hydrate formation[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(10): 9271-9278. |
93 | WU Yongji, TANG Tianqi, SHI Lei, et al. Rapid hydrate-based methane storage promoted by bilayer surfactant-coated Fe3O4 nanoparticles under a magnetic field[J]. Fuel, 2021, 303: 121248. |
94 | MIN Juwon, KANG Dong Woo, Yun-Ho AHN, et al. Recoverable magnetic nanoparticles as hydrate inhibitors[J]. Chemical Engineering Journal, 2020, 389: 124461. |
95 | WANG Tao, CUI Jing, OUYANG Shenshen, et al. A new approach to understand the Cassie state of liquids on superamphiphobic materials[J]. Nanoscale, 2016, 8(5): 3031-3039. |
96 | LI Fang, DU Miao, ZHENG Qiang. Dopamine/silica nanoparticle assembled, microscale porous structure for versatile superamphiphobic coating[J]. ACS Nano, 2016, 10(2): 2910-2921. |
97 | PARK Juwoon, SHIN Kyuchul, KIM Jakyung, et al. Effect of hydrate shell formation on the stability of dry water[J]. The Journal of Physical Chemistry C, 2015, 119(4): 1690-1699. |
98 | HE Zhongjin, LINGA Praveen, JIANG Jianwen. CH4 hydrate formation between silica and graphite surfaces: Insights from microsecond molecular dynamics simulations[J]. Langmuir, 2017, 33(43): 11956-11967. |
99 | FAN Shuanshi, YANG Liang, WANG Yanhong, et al. Rapid and high capacity methane storage in clathrate hydrates using surfactant dry solution[J]. Chemical Engineering Science, 2014, 106: 53-59. |
100 | MIN Juwon, BAEK Seungjun, SOMASUNDARAN P, et al. Anti-adhesive behaviors between solid hydrate and liquid aqueous phase induced by hydrophobic silica nanoparticles[J]. Langmuir, 2016, 32(37): 9513-9522. |
101 | SAHA Dipendu, DENG Shuguang. Accelerated formation of THF-H2 clathrate hydrate in porous media[J]. Langmuir, 2010, 26(11): 8414-8418. |
102 | LIU Zhiming, PAN Zhen, ZHANG Zhien, et al. Effect of porous media and sodium dodecyl sulphate complex system on methane hydrate formation[J]. Energy & Fuels, 2018, 32(5): 5736-5749. |
103 | CASCO Mirian E, Fernando REY, JORDÁ José Let al. Paving the way for methane hydrate formation on metal-organic frameworks (MOFs)[J]. Chemical Science, 2016, 7(6): 3658-3666. |
104 | KIM Daeok, KIM Dae Woo, Hyung-Kyu LIM, et al. Inhibited phase behavior of gas hydrates in graphene oxide: Influences of surface and geometric constraints[J]. Physical Chemistry Chemical Physics, 2014, 16(41): 22717-22722. |
105 | HALL Jeffrey R, BAURES Paul W. Inhibition of tetrahydrofuran hydrate formation in the presence of polyol-modified glass surfaces[J]. Energy & Fuels, 2017, 31(8): 7816-7823. |
106 | ZHANG Yonglai, WEI Shu, LIU Fujian, et al. Superhydrophobic nanoporous polymers as efficient adsorbents for organic compounds[J]. Nano Today, 2009, 4(2): 135-142. |
107 | CHEN Xiao, WU Yuchen, SU Bin, et al. Terminating marine methane bubbles by superhydrophobic sponges[J]. Advanced Materials, 2012, 24(43): 5884-5889. |
108 | XIE Linhua, LIU Xiaomin, HE Tao, et al. Metal-organic frameworks for the capture of trace aromatic volatile organic compounds[J]. Chem, 2018, 4(8): 1911-1927. |
109 | GONG Yunnan, XIONG Peng, HE Chunting, et al. A lanthanum carboxylate framework with exceptional stability and highly selective adsorption of gas and liquid[J]. Inorganic Chemistry, 2018, 57(9): 5013-5018. |
110 | MASON Jarad A, MIKE Veenstra, LONG Jeffrey R. Evaluating metal-organic frameworks for natural gas storage[J]. Chemical Science, 2014, 5(1): 32-51. |
111 | MILEO Paulo G M, ROGGE Sven M J, HOULLEBERGHS Maarten, et al. Interfacial study of clathrates confined in reversed silica pores[J]. Journal of Materials Chemistry A, 2021, 9(38): 21835-21844. |
112 | FENG Xinjian, ZHAI Jin, JIANG Lei. The fabrication and switchable superhydrophobicity of TiO2 nanorod films[J]. Angewandte Chemie, 2005, 117(32): 5245-5248. |
113 | WANG Shutao, LIU Huajie, LIU Dongsheng, et al. Enthalpy-driven three-state switching of a superhydrophilic/superhydrophobic surface[J]. Angewandte Chemie International Edition, 2007, 46(21): 3915-3917. |
114 | MAHADIK Satish A, KAVALE Mahendra S, MUKHERJEE S K, et al. Transparent Superhydrophobic silica coatings on glass by sol-gel method[J]. Applied Surface Science, 2010, 257(2): 333-339. |
115 | ZHAO Xin, FANG Qingchao, QIU Zhengsong, et al. Experimental investigation on hydrate anti-agglomerant for oil-free systems in the production pipe of marine natural gas hydrates[J]. Energy, 2022, 242: 122973. |
116 | ASADI Fariba, METAXAS Peter J, Vincent W S LIM, et al. Cyclodextrins as eco-friendly nucleation promoters for methane hydrate[J]. Chemical Engineering Journal, 2021, 417: 127932. |
117 | TIAN Linqing, WU Guozhong. Cyclodextrins as promoter or inhibitor for methane hydrate formation?[J]. Fuel, 2020, 264: 116828. |
118 | TANG Cuiping, ZHANG Yanan, LIANG Deqing. Investigation into the inhibition of methane hydrate formation in the presence of hydroxy- and esteryl-terminated poly(N-vinylcaprolactam)[J]. Energy & Fuels, 2022, 36(7): 3848-3856. |
119 | MAO Xiaohui, GONG Lu, XIE Lei, et al. Novel Fe3O4 based superhydrophilic core-shell microspheres for breaking asphaltenes-stabilized water-in-oil emulsion[J]. Chemical Engineering Journal, 2019, 358: 869-877. |
120 | BAEK Seungjun, MIN Juwon, LEE Jae W. Inhibition effects of activated carbon particles on gas hydrate formation at oil-water interfaces[J]. RSC Advances, 2015, 5(72): 58813-58820. |
121 | KAMAL Muhammad Shahzad, HUSSEIN Ibnelwaleed A, SULTAN Abdullah S, et al. Application of various water soluble polymers in gas hydrate inhibition[J]. Renewable and Sustainable Energy Reviews, 2016, 60: 206-225. |
122 | Wilson Adam. Low-adhesion coatings provide novel gas-hydrate-mitigation strategy[J]. Journal of Petroleum Technology, 2017, 69: 72-73. |
123 | SOJOUDI Hossein, WALSH Matthew R, GLEASON Karen K, et al. Designing durable vapor-deposited surfaces for reduced hydrate adhesion[J]. Advanced Materials Interfaces, 2015, 2(6): 1500003. |
124 | HOSSEIN Sojoudi, MCKINLEY Gareth H, GLEASON Karen K. Linker-free grafting of fluorinated polymeric cross-linked network bilayers for durable reduction of ice adhesion[J]. Materials Horizons, 2015, 2(1): 91-99. |
125 | DONG Sanbao, LI Mingzhong, LIU Chenwei, et al. Bio-inspired superhydrophobic coating with low hydrate adhesion for hydrate mitigation[J]. Journal of Bionic Engineering, 2020, 17(5): 1019-1028. |
126 | Arindam DAS, FARNHAM Taylor A, BENGALURU SUBRAMANYAM Srinivas, et al. Designing ultra-low hydrate adhesion surfaces by interfacial spreading of water-immiscible barrier films[J]. ACS Applied Materials & Interfaces, 2017, 9(25): 21496-21502. |
127 | LIU Chenwei, ZENG Xu, YAN Ci, et al. Effects of solid precipitation and surface corrosion on the adhesion strengths of sintered hydrate deposits on pipe walls[J]. Langmuir, 2020, 36(50): 15343-15351. |
128 | HOSSEIN Sojoudi, HADI Arabnejad, ASIF Raiyan, et al. Scalable and durable polymeric icephobic and hydrate-phobic coatings[J]. Soft Matter, 2018, 14(18): 3443-3454. |
129 | ZHANG Wenjuan, FAN Shuanshi, WANG Yanhong, et al. Preparation and performance of biomimetic superhydrophobic coating on X80 pipeline steel for inhibition of hydrate adhesion[J]. Chemical Engineering Journal, 2021, 419: 129651. |
130 | ZHANG Wenjuan, FAN Shuanshi, WANG Yanhong, et al. Development of a composite structured surface for durable anti-hydrate and enhancing thermal conductivity[J]. International Journal of Heat and Mass Transfer, 2022, 192: 122909. |
131 | MA Shang, SUN Li, KELLAND Malcolm A, et al. Hydrophobic hydration affects growth of clathrate hydrate: Insight from an NMR relaxometric and calorimetric study[J]. Chemical Communications, 2019, 55(20): 2936-2939. |
132 | BREDT Aria J, Dor BEN-AMOTZ. Influence of crowding on hydrophobic hydration-shell structure[J]. Physical Chemistry Chemical Physics, 2020, 22(20): 11724-11730. |
133 | Felipe JIMÉNEZ-ÁNGELES, FIROOZABADI Abbas. Hydrophobic hydration and the effect of NaCl salt in the adsorption of hydrocarbons and surfactants on clathrate hydrates[J]. ACS Central Science, 2018, 4(7): 820-831. |
134 | YIN Xinyu, YAN Yuanyang, ZHANG Xiangning, et al. Designing robust superhydrophobic materials for inhibiting nucleation of clathrate hydrates by imitating glass sponges[J]. ACS Central Science, 2023, 9(2): 318-327. |
135 | ZI Mucong, CHEN Daoyi, WU Guozhong. Molecular dynamics simulation of methane hydrate formation on metal surface with oil[J]. Chemical Engineering Science, 2018, 191: 253-261. |
136 | HU Haibao, WEN Jun, BAO Luyao, et al. Significant and stable drag reduction with air rings confined by alternated superhydrophobic and hydrophilic strips[J]. Science Advances, 2017, 3(9): e1603288. |
137 | DENG Zhixia, WANG Yanhong, LANG Xuemei, et al. Fast formation kinetics of methane hydrate promoted by fluorinated graphite[J]. Chemical Engineering Journal, 2022, 431: 133869. |
138 | TANG Yu, YANG Xiaolong, LI Yimin, et al. Robust micro-nanostructured superhydrophobic surfaces for long-term dropwise condensation[J]. Nano Letters, 2021, 21(22): 9824-9833. |
139 | SHARMA Chander Shekhar, COMBE Juliette, GIGER Markus, et al. Growth rates and spontaneous navigation of condensate droplets through randomly structured textures[J]. ACS Nano, 2017, 11(2): 1673-1682. |
140 | LIU Yuyang, CHEN Xianqiong, XIN J H. Can superhydrophobic surfaces repel hot water?[J]. Journal of Materials Chemistry, 2009, 19(31): 5602-5611. |
141 | ZHANG Junping, YU Bo, GAO Ziqian, et al. Durable, transparent, and hot liquid repelling superamphiphobic coatings from polysiloxane-modified multiwalled carbon nanotubes[J]. Langmuir, 2017, 33(2): 510-518. |
142 | LI Bucheng, ZHANG Junping, GAO Ziqian, et al. Semitransparent superoleophobic coatings with low sliding angles for hot liquids based on silica nanotubes[J]. Journal of Materials Chemistry A, 2016, 4(3): 953-960. |
143 | NENAD Miljkovic, RYAN Enright, YOUNGSUK Nam, et al. Jumping-droplet-enhanced condensation on scalable superhydrophobic nanostructured surfaces[J]. Nano Letters, 2013, 13(1): 179-187. |
144 | YU Ting, ZHAO Yiping, ZHENG Pin, et al. Ultra-durable superhydrophobic surfaces from 3D self-similar network via co-spraying of polymer microspheres and nanoparticles[J]. Chemical Engineering Journal, 2021, 410: 128314. |
145 | WAN Fang, YANG Dequan, EDWARD Sacher. Repelling hot water from superhydrophobic surfaces based on carbon nanotubes[J]. Journal of Materials Chemistry A, 2015, 3(33): 16953-16960. |
146 | LIU Yahua, WANG Zuankai. Superhydrophobic porous networks for enhanced droplet shedding[J]. Scientific Reports, 2016, 6: 33817. |
147 | WEN Rongfu, XU Shanshan, MA Xuehu, et al. Three-dimensional superhydrophobic nanowire networks for enhancing condensation heat transfer[J]. Joule, 2018, 2(2): 269-279. |
148 | LIU Zhanjian, WANG Huaiyuan, ZHANG Xiguang, et al. Durable and self-healing superhydrophobic surface with bistratal gas layers prepared by electrospinning and hydrothermal processes[J]. Chemical Engineering Journal, 2017, 326: 578-586. |
149 | MULROE Megan D, SRIJANTO Bernadeta R, Farzad AHMADI S, et al. Tuning superhydrophobic nanostructures to enhance jumping-droplet condensation[J]. ACS Nano, 2017, 11(8): 8499-8510. |
150 | LUO Hu, YIN Shaohui, HUANG Shuai, et al. Fabrication of slippery Zn surface with improved water-impellent, condensation and anti-icing properties[J]. Applied Surface Science, 2019, 470: 1139-1147. |
151 | SHIRI Samira, MURRIZI Armela, BIRD James. Trapping a hot drop on a superhydrophobic surface with rapid condensation or microtexture melting[J]. Micromachines, 2018, 9(11): 566. |
152 | WILKE Kyle L, PRESTON Daniel J, LU Zhengmao, et al. Toward condensation-resistant omniphobic surfaces[J]. ACS Nano, 2018, 12(11): 11013-11021. |
153 | MOUTERDE Timothée, LECOINTRE Pierre, LEHOUCQ Gaëlle, et al. Two recipes for repelling hot water[J]. Nature Communications, 2019, 10: 1410. |
154 | ZHANG Shenxiang, JIANG Gaoshuo, GAO Shoujian, et al. Cupric phosphate nanosheets-wrapped inorganic membranes with superhydrophilic and outstanding anticrude oil-fouling property for oil/water separation[J]. ACS Nano, 2018, 12(1): 795-803. |
155 | YANG Haocheng, XIE Yunsong, CHAN Henry, et al. Crude-oil-repellent membranes by atomic layer deposition: Oxide interface engineering[J]. ACS Nano, 2018, 12(8): 8678-8685. |
156 | WANG Xiaoping, SCHULTZ Arthur J, HALPERN Yuval. Kinetics of methane hydrate formation from polycrystalline deuterated ice[J]. The Journal of Physical Chemistry A, 2002, 106(32): 7304-7309. |
[1] | 张杰, 白忠波, 冯宝鑫, 彭肖林, 任伟伟, 张菁丽, 刘二勇. PEG及其复合添加剂对电解铜箔后处理的影响[J]. 化工进展, 2023, 42(S1): 374-381. |
[2] | 董佳宇, 王斯民. 超声强化对二甲苯结晶特性及调控机理实验[J]. 化工进展, 2023, 42(9): 4504-4513. |
[3] | 王谨航, 何勇, 史伶俐, 龙臻, 梁德青. 气体水合物阻聚剂研究进展[J]. 化工进展, 2023, 42(9): 4587-4602. |
[4] | 李由, 吴越, 钟禹, 林琦璇, 任俊莉. 酸性熔盐水合物预处理麦秆高效制备木糖及其对酶解效率的影响[J]. 化工进展, 2023, 42(9): 4974-4983. |
[5] | 杨莹, 侯豪杰, 黄瑞, 崔煜, 王兵, 刘健, 鲍卫仁, 常丽萍, 王建成, 韩丽娜. 利用煤焦油中酚类物质Stöber法制备碳纳米球用于CO2吸附[J]. 化工进展, 2023, 42(9): 5011-5018. |
[6] | 吴亚, 赵丹, 方荣苗, 李婧瑶, 常娜娜, 杜春保, 王文珍, 史俊. 用于复杂原油乳液的高效破乳剂开发及应用研究进展[J]. 化工进展, 2023, 42(8): 4398-4413. |
[7] | 徐沛瑶, 陈标奇, KANKALA Ranjith Kumar, 王士斌, 陈爱政. 纳米材料用于铁死亡联合治疗的研究进展[J]. 化工进展, 2023, 42(7): 3684-3694. |
[8] | 张凯, 吕秋楠, 李刚, 李小森, 莫家媚. 南海海泥中甲烷水合物的形貌及赋存特性[J]. 化工进展, 2023, 42(7): 3865-3874. |
[9] | 杨竞莹, 施万胜, 黄振兴, 谢利娟, 赵明星, 阮文权. 改性纳米零价铁材料制备的研究进展[J]. 化工进展, 2023, 42(6): 2975-2986. |
[10] | 许春树, 姚庆达, 梁永贤, 周华龙. 氧化石墨烯/碳纳米管对几种典型高分子材料的性能影响[J]. 化工进展, 2023, 42(6): 3012-3028. |
[11] | 杨扬, 孙志高, 李翠敏, 李娟, 黄海峰. 静态条件下表面活性剂OP-13促进HCFC-141b水合物生成[J]. 化工进展, 2023, 42(6): 2854-2859. |
[12] | 张晨宇, 王宁, 徐洪涛, 罗祝清. 纳米颗粒强化传热的多级潜热储热器性能评价[J]. 化工进展, 2023, 42(5): 2332-2342. |
[13] | 陈少华, 王义华, 胡强飞, 胡坤, 陈立爱, 李洁. 电化学修饰电极在检测Cr(Ⅵ)中的研究进展[J]. 化工进展, 2023, 42(5): 2429-2438. |
[14] | 刘佳, 梁德青, 李君慧, 林德才, 吴思婷, 卢富勤. 油水体系水合物浆液流动保障研究进展[J]. 化工进展, 2023, 42(4): 1739-1759. |
[15] | 殷铭, 郭晋, 庞纪峰, 吴鹏飞, 郑明远. 铜催化剂在涉氢反应中的失活机制和稳定策略[J]. 化工进展, 2023, 42(4): 1860-1868. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |