化工进展 ›› 2023, Vol. 42 ›› Issue (6): 2999-3011.DOI: 10.16085/j.issn.1000-6613.2022-1421
刘战剑1(), 付雨欣1, 任丽娜1, 张曦光1, 袁中涛3, 杨楠1, 汪怀远1,2
收稿日期:
2022-07-28
修回日期:
2022-08-22
出版日期:
2023-06-25
发布日期:
2023-06-29
通讯作者:
刘战剑
作者简介:
刘战剑(1990—),男,副教授,硕士生导师,研究方向为仿生界面材料制备及应用。E-mail:liuzhanjian2012@163.com。
基金资助:
LIU Zhanjian1(), FU Yuxin1, REN Lina1, ZHANG Xiguang1, YUAN Zhongtao3, YANG Nan1, WANG Huaiyuan1,2
Received:
2022-07-28
Revised:
2022-08-22
Online:
2023-06-25
Published:
2023-06-29
Contact:
LIU Zhanjian
摘要:
近年来,超疏水涂层在防腐阻垢领域的研究应用受到了广泛的关注。本文以超疏水表面的基本原理为切入点,简单介绍了Young模型、Wenzel模型和CassieBaxter模型,通过综合分析得出了制备人工超疏水表面的两个关键条件——纳微多级结构和低表面能。随后又详细地阐述了超疏水涂层防腐阻垢的相关机理:①特殊纳微结构截留的空气层可以有效地隔绝腐蚀环境并且影响结垢的生长形态;②极低的表面能可以极大降低腐蚀介质和结垢离子的黏附强度。在此基础上,综述了近年来超疏水涂层在防腐阻垢领域的研究进展,针对各项研究成果的原理及其优势进行了总结,并进一步指出了超疏水涂层在实际应用中所面临的问题,包括制备方法复杂、机械耐久性差、化学稳定性不足等。最后,从涂层材料的选取、制备工艺的改进、评价体系的完善等方面对超疏水涂层未来的发展方向进行了展望。
中图分类号:
刘战剑, 付雨欣, 任丽娜, 张曦光, 袁中涛, 杨楠, 汪怀远. 超疏水涂层在防腐阻垢领域研究进展[J]. 化工进展, 2023, 42(6): 2999-3011.
LIU Zhanjian, FU Yuxin, REN Lina, ZHANG Xiguang, YUAN Zhongtao, YANG Nan, WANG Huaiyuan. New research progress of superhydrophobic coatings in the field of anti-corrosion and anti-scaling[J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2999-3011.
1 | MOHAMED A M, ABDULLAH A M, YOUNAN N A. Corrosion behavior of superhydrophobic surfaces: A review[J]. Arabian Journal of Chemistry, 2015, 8(6): 749-765. |
2 | 杨晓娜. Q235碳钢表面超疏水自修复防腐蚀涂层的制备及其性能研究[D]. 长春: 吉林大学, 2021. |
YANG Xiaona. Preparation and properties of self-healing superhydrophobic coating on carbon steel Q235[D]. Changchun: Jilin University, 2021. | |
3 | 陈茜茜. 耐蚀阻垢聚合物基功能涂层的制备与研究[D]. 大庆: 东北石油大学, 2019. |
CHEN Q Q. Preparation and research of corrosion resistant and antiscaling polymer-based functional coatings[D]. Daqing: Northeast Petroleum University, 2019. | |
4 | QIU Xingwu, ZHANG Yunpeng, HE Li, et al. Microstructure and corrosion resistance of AlCrFeCuCo high entropy alloy[J]. Journal of Alloys and Compounds, 2013, 549: 195-199. |
5 | KARKI V, SINGH M. Investigation of corrosion mechanism in Type 304 stainless steel under different corrosive environments: A SIMS study[J]. International Journal of Mass Spectrometry, 2017, 421: 51-60. |
6 | CLOSE D, STEIN N, ALLAIN N, et al. Electrodeposition, microstructural characterization and anticorrosive properties of Zn-Mn alloy coatings from acidic chloride electrolyte containing 4-hydroxybenzaldehyde and ammonium thiocyanate[J]. Surface and Coatings Technology, 2016, 298: 73-82. |
7 | 赵彦, 章立新, 高明, 等. 循环冷却水系统除碳酸钙污垢的研究进展[J]. 精细化工, 2020, 37(12): 2447-2456. |
ZHAO Yan, ZHANG Lixin, GAO Ming, et al. Research progress of removing calcium carbonate fouling in circulating cooling water system[J]. Fine Chemicals, 2020, 37(12): 2447-2456. | |
8 | 王洋洋, 刘庆旺, 范振忠, 等. 油田常用阻垢剂的研究进展[J]. 石油化工, 2021, 50(11): 1222-1228. |
WANG Yangyang, LIU Qingwang, FAN Zhenzhong, et al. Research progress of common scale inhibitors in oilfield[J]. Petrochemical Technology, 2021, 50(11): 1222-1228. | |
78 | ZHU Mingliang, QIAN Huijuan, YUAN Ruixia, et al. EDTA interfacial chelation Ca2+ incorporates superhydrophobic coating for scaling inhibition of CaCO3 in petroleum industry[J]. Petroleum Science, 2021, 18(3): 951-961. |
79 | ZHU Yanji, LI Hongwei, ZHU Mingliang, et al. Dynamic and active antiscaling via scale inhibitor pre-stored superhydrophobic coating[J]. Chemical Engineering Journal, 2021, 403: 126467. |
80 | LIU Zhanjian, ZHANG Congyuan, JING Jing, et al. Bristle worm inspired ultra-durable superhydrophobic coating with repairable microstructures and anti-corrosion/scaling properties[J]. Chemical Engineering Journal, 2022, 436: 135273. |
9 | CUI Mingjun, REN Siming, QIN Songlv, et al. Processable poly(2-butylaniline)/hexagonal boron nitride nanohybrids for synergetic anticorrosive reinforcement of epoxy coating[J]. Corrosion Science, 2018, 131: 187-198. |
10 | ZHANG Tianzhan, WANG Yuefeng, ZHANG Feilong, et al. Bio-inspired superhydrophilic coatings with high anti-adhesion against mineral scales[J]. NPG Asia Materials, 2018, 10(3): e471. |
11 | MARMUR A. The lotus effect: Superhydrophobicity and metastability[J]. Langmuir, 2004, 20(9): 3517-3519. |
12 | ENSIKAT H J, DITSCHE-KURU P, NEINHUIS C, et al. Superhydrophobicity in perfection: The outstanding properties of the lotus leaf[J]. Beilstein Journal of Nanotechnology, 2011, 2: 152-161. |
13 | YOUNG T. An essay on the cohesion of fluids[J]. Philosophical Transactions of the Royal Society of London, 1805, 95: 65-87. |
14 | WENZEL R N. Resistance of solid surfaces to wetting by water[J]. Industrial & Engineering Chemistry, 1936, 28(8): 988-994. |
15 | CASSIE A B D, BAXTER S. Wettability of porous surfaces[J]. Transactions of the Faraday Society, 1944, 40: 546-551. |
16 | BAI Yuxing, ZHANG Haiping, SHAO Yuanyuan, et al. Recent progresses of superhydrophobic coatings in different application fields: An overview[J]. Coatings, 2021, 11(2): 116. |
17 | NGUYEN-TRI P, TRAN H N, PLAMONDON C O, et al. Recent progress in the preparation, properties and applications of superhydrophobic nano-based coatings and surfaces: A review[J]. Progress in Organic Coatings, 2019, 132: 235-256. |
18 | ZHANG Dawei, WANG Luntao, QIAN Hongchang, et al. Superhydrophobic surfaces for corrosion protection: A review of recent progresses and future directions[J]. Journal of Coatings Technology and Research, 2016, 13(1): 11-29. |
19 | KRISHNAN A, KRISHNAN A V, AJITH A, et al. Influence of materials and fabrication strategies in tailoring the anticorrosive property of superhydrophobic coatings[J]. Surfaces and Interfaces, 2021, 25: 101238. |
20 | ZANG Dongmian, ZHU Ruiwen, WU Chunxiao, et al. Fabrication of stable superhydrophobic surface with improved anticorrosion property on magnesium alloy[J]. Scripta Materialia, 2013, 69(8): 614-617. |
21 | LIU Tao, CHEN Shougang, CHENG Sha, et al. Corrosion behavior of super-hydrophobic surface on copper in seawater[J]. Electrochimica Acta, 2007, 52(28): 8003-8007. |
22 | QIAN Huijuan, ZHU Mingliang, SONG Hua, et al. Anti-scaling of superhydrophobic poly(vinylidene fluoride) composite coating: Tackling effect of carbon nanotubes[J]. Progress in Organic Coatings, 2020, 142: 105566. |
23 | BENECKE Jan, ROZOVA Jelena, ERNST Mathias. Anti-scale effects of select organic macromolecules on gypsum bulk and surface crystallization during reverse osmosis desalination[J]. Separation and Purification Technology, 2018, 198: 68-78. |
24 | LIN Lu, JIANG Wenbin, XU Xuesong, et al. A critical review of the application of electromagnetic fields for scaling control in water systems: Mechanisms, characterization, and operation[J]. Npj Clean Water, 2020, 3: 25. |
25 | CHENG Y H, ZOU Y, CHENG L, et al. Effect of the microstructure on the properties of Ni-P deposits on heat transfer surface[J]. Surface and Coatings Technology, 2009, 203(12): 1559-1564. |
26 | WANG Yan, WANG Linlin, LIU Mingyan. Antifouling and enhancing pool boiling by TiO2 coating surface in nanometer scale thickness[J]. AIChE Journal, 2007, 53(12): 3062-3076. |
27 | 陈敬中. 现代晶体化学[M]. 北京: 科学出版社, 2016. |
CHEN Jingzhong. Modern crystal chemistry[M]. Beijing: Science Press, 2016. | |
28 | 谢彩锋, 丘泰球, 陆海勤, 等. 超声作用下碳酸钙晶体的形态变化[J]. 华南理工大学学报(自然科学版), 2007, 35(4): 62-66. |
XIE Caifeng, QIU Taiqiu, LU Haiqin, et al. Morphology variation of calcium carbonate crystal irradiated by ultrasonic[J]. Journal of South China University of Technology (Natural Science Edition), 2007, 35(4): 62-66. | |
29 | LOSTE E, PARK R J, WARREN J, et al. Precipitation of calcium carbonate in confinement[J]. Advanced Functional Materials, 2004, 14(12): 1211-1220. |
30 | 林培滋, 黄世煜, 初惠萍. 温度对碳酸钙结垢过程的影响[J]. 石油与天然气化工, 1999, 28(2): 128-129, 73. |
LIN Peizi, HUANG Shiyu, CHU Huiping. The effect of temperatures on calcium carbonate scale formation[J]. Chemical Engineering of Oil and Gas, 1999, 28(2): 128-129, 73. | |
31 | 李云钊, 宋兴福, 孙玉柱, 等. 反应-萃取-结晶过程制备碳酸钙的晶型转变与结晶机理[J]. 化工学报, 2015, 66(10): 4007-4015. |
LI Yunzhao, SONG Xingfu, SUN Yuzhu, et al. Polymorph transformation and formation mechanism of calcium carbonate during reactive extraction-crystallization process[J]. CIESC Journal, 2015, 66(10): 4007-4015. | |
32 | CAI Yongwei, LIU Mingyan, HUI Longfei. CaCO3 fouling on microscale-nanoscale hydrophobic titania-fluoroalkylsilane films in pool boiling[J]. AIChE Journal, 2013, 59(7): 2662-2678. |
33 | LIU Zhanjian, ZHANG Congyuan, ZHANG Xiguang, et al. Durable superhydrophobic PVDF/FEVE/GO@TiO2 composite coating with excellent anti-scaling and UV resistance properties[J]. Chemical Engineering Journal, 2021, 411: 128632. |
34 | EJENSTAM Lina, OVASKAINEN Louise, Irene RODRIGUEZ-MEIZOSO, et al. The effect of superhydrophobic wetting state on corrosion protection—the AKD example[J]. Journal of Colloid and Interface Science, 2013, 412: 56-64. |
35 | BOINOVICH L B, EMELYANENKO K A, DOMANTOVSKY A G, et al. Laser tailoring the surface chemistry and morphology for wear, scale and corrosion resistant superhydrophobic coatings[J]. Langmuir, 2018, 34(24): 7059-7066. |
36 | CAI Yongwei, QUAN Xuejun, LI Gang, et al. Anticorrosion and scale behaviors of nanostructured ZrO2-TiO2 coatings in simulated geothermal water[J]. Industrial & Engineering Chemistry Research, 2016, 55(44): 11480-11494. |
37 | LI Hao, YU Sirong, HAN Xiangxiang, et al. A stable hierarchical superhydrophobic coating on pipeline steel surface with self-cleaning, anticorrosion, and anti-scaling properties[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 503: 43-52. |
38 | MOMEN G, FARZANEH M. Facile approach in the development of icephobic hierarchically textured coatings as corrosion barrier[J]. Applied Surface Science, 2014, 299: 41-46. |
39 | WANG Peng, ZHANG Dun, LU Zhou. Advantage of super-hydrophobic surface as a barrier against atmospheric corrosion induced by salt deliquescence[J]. Corrosion Science, 2015, 90: 23-32. |
40 | SPARKS B J, HOFF E F, XIONG L, et al. Superhydrophobic hybrid inorganic-organic thiol-ene surfaces fabricated via spray-deposition and photopolymerization[J]. ACS Applied Materials & Interfaces, 2013, 5(5): 1811-1817. |
41 | LEE M W, AN S, LATTHE S S, et al. Electrospun polystyrene nanofiber membrane with superhydrophobicity and superoleophilicity for selective separation of water and low viscous oil[J]. ACS Applied Materials & Interfaces, 2013, 5(21): 10597-10604. |
42 | YANG Zhen, LIU Xianping, TIAN Yanling. Hybrid laser ablation and chemical modification for fast fabrication of bio-inspired super-hydrophobic surface with excellent self-cleaning, stability and corrosion resistance[J]. Journal of Bionic Engineering, 2019, 16(1): 13-26. |
43 | SHE Zuxin, LI Qing, WANG Zhongwei, et al. Researching the fabrication of anticorrosion superhydrophobic surface on magnesium alloy and its mechanical stability and durability[J]. Chemical Engineering Journal, 2013, 228: 415-424. |
44 | KANG Zhixin, ZHANG Junyi, NIU Lei. A one-step hydrothermal process to fabricate superhydrophobic hydroxyapatite coatings and determination of their properties[J]. Surface and Coatings Technology, 2018, 334: 84-89. |
45 | CHU J H, SUN G X, TONG L B, et al. Facile one-step hydrothermal fabrication of allium giganteum-like superhydrophobic coating on Mg alloy with self-cleaning and anti-corrosion properties[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 617: 126370. |
46 | XIANG Yuxin, HE Yi, TANG Wenwen, et al. Fabrication of robust Ni-based TiO2 composite@TTOS superhydrophobic coating for wear resistance and anti-corrosion[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 629: 127394. |
47 | XIN Guoqiang, WU Congyi, LIU Weinan, et al. Anti-corrosion superhydrophobic surfaces of Al alloy based on micro-protrusion array structure fabricated by laser direct writing[J]. Journal of Alloys and Compounds, 2021, 881: 160649. |
48 | WANG Guowei, SONG Dan, QIAO Yanxin, et al. Developing super-hydrophobic and corrosion-resistant coating on magnesium-lithium alloy via one-step hydrothermal processing[J]. Journal of Magnesium and Alloys, 2021. |
49 | ZHANG Binbin, WANG Jia, ZHANG Jie. Bioinspired one step hydrothermal fabricated superhydrophobic aluminum alloy with favorable corrosion resistance[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 589: 124469. |
50 | ZHOU Xin, KONG Junhua, SUN Jiaotong, et al. Stable superhydrophobic porous coatings from hybrid ABC triblock copolymers and their anticorrosive performance[J]. ACS Applied Materials & Interfaces, 2017, 9(35): 30056-30063. |
51 | RAMAN A, JAYAN J S, DEERAJ B D, et al. Electrospun nanofibers as effective superhydrophobic surfaces: A brief review[J]. Surfaces and Interfaces, 2021, 24: 101140. |
52 | YANG Na, LI Jicheng, BAI Ningning, et al. One step phase separation process to fabricate superhydrophobic PVC films and its corrosion prevention for AZ91D magnesium alloy[J]. Materials Science and Engineering: B, 2016, 209: 1-9. |
53 | HAO Zhentao, CHEN Chuchu, SHEN Ting, et al. Slippery liquid-infused porous surface via thermally induced phase separation for enhanced corrosion protection[J]. Journal of Polymer Science, 2020, 58(21): 3031-3041. |
54 | XIANG Tengfei, DING Shibing, LI Cheng, et al. Effect of current density on wettability and corrosion resistance of superhydrophobic nickel coating deposited on low carbon steel[J]. Materials & Design, 2017, 114: 65-72. |
55 | ZHAO Yunyan, XING Cuijuan, ZHANG Zhiming, et al. Superhydrophobic polyaniline/polystyrene micro/nanostructures as anticorrosion coatings[J]. Reactive and Functional Polymers, 2017, 119: 95-104. |
56 | CUI Mengke, XU Changcheng, SHEN Yongqian, et al. Electrospinning superhydrophobic nanofibrous poly(vinylidene fluoride)/stearic acid coatings with excellent corrosion resistance[J]. Thin Solid Films, 2018, 657: 88-94. |
57 | YIN Xingxing, MU Peng, WANG Qingtao, et al. Superhydrophobic ZIF-8-based dual-layer coating for enhanced corrosion protection of Mg alloy[J]. ACS Applied Materials & Interfaces, 2020, 12(31): 35453-35463. |
58 | HAN Bin, WANG Huaiyuan, YUAN Sicheng, et al. Durable and anti-corrosion superhydrophobic coating with bistratal structure prepared by ambient curing[J]. Progress in Organic Coatings, 2020, 149: 105922. |
59 | SEBASTIAN Divine, YAO Chunwei, NIPA Lutfun, et al. Corrosion behavior and mechanical properties of a nanocomposite superhydrophobic coating[J]. Coatings, 2021, 11(6): 652. |
60 | LI Xuewu, YAN Jiayang, YU Teng, et al. Versatile nonfluorinated superhydrophobic coating with self-cleaning, anti-fouling, anti-corrosion and mechanical stability[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 642: 128701. |
61 | DONG Kousuo, BIAN Linsheng, LIU Yuchen, et al. Superhydrophobic coating based on organic/inorganic double component adhesive and functionalized nanoparticles with good durability and anti-corrosion for protection of galvanized steel[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 640: 128360. |
62 | LI Bingfeng, XUE Shuaiya, MU Peng, et al. Robust self-healing graphene oxide-based superhydrophobic coatings for efficient corrosion protection of magnesium alloys[J]. ACS Applied Materials & Interfaces, 2022, 14(26): 30192-30204. |
63 | ZHANG Ping, LIU Yuan, ZHANG Nan, et al. A novel attach-and-release mineral scale control strategy: Laboratory investigation of retention and release of scale inhibitor on pipe surface[J]. Journal of Industrial and Engineering Chemistry, 2019, 70: 462-471. |
64 | HAN Yong, ZHANG Chuanxin, ZHU Lin, et al. Effect of alternating electromagnetic field and ultrasonic on CaCO3 scale inhibitive performance of EDTMPS[J]. Journal of the Taiwan Institute of Chemical Engineers, 2019, 99: 104-112. |
65 | OLDANI V, DEL NEGRO R, BIANCHI C L, et al. Surface properties and anti-fouling assessment of coatings obtained from perfluoropolyethers and ceramic oxides nanopowders deposited on stainless steel[J]. Journal of Fluorine Chemistry, 2015, 180: 7-14. |
66 | 李茂东, 代陈林, 乔越, 等. 一种新型中央空调绿色水处理剂的性能[J]. 腐蚀与防护, 2017, 38(9): 721-726. |
LI Maodong, DAI Chenlin, QIAO Yue, et al. Performance of a newly green water treatment agent for central air conditioner[J]. Corrosion & Protection, 2017, 38(9): 721-726. | |
67 | WANG Chijia, WANG Huaiyuan, HU Yue, et al. Anti-corrosive and scale inhibiting polymer-based functional coating with internal and external regulation of TiO2 whiskers[J]. Coatings, 2018, 8(1): 29. |
68 | 王亦工, 陈华辉, 裴嵩峰, 等. 水性无机硅酸锌防腐涂料的研究进展[J]. 腐蚀科学与防护技术, 2006, 18(1): 41-45. |
WANG Yigong, CHEN Huahui, PEI Songfeng, et al. Development of waterborne inorganic zinc silicate anticorrosion coatings[J]. Corrosion Science and Protection Technology, 2006, 18(1): 41-45. | |
69 | SUN Wei, GONG Qianqian, WANG Wenjie, et al. Research on the reliability of narrow-band frequency-sweep electromagnetic descaling instrument[M]//Intelligent computing in smart grid and electrical vehicles. Berlin, Heidelberg: Springer, 2014: 420-425. |
70 | ZHAO Yan, ZHANG Lixin, ZHAO Xin, et al. Research on descaling characteristics and simulation calculation of a coaxial high-frequency electronic descaling device[J]. Water, 2021, 13(6): 789. |
71 | 吴坤湖, 朱立群, 李卫平, 等. 地热水环境中PTFE/PPS复合涂层的阻垢特性[J]. 复合材料学报, 2010, 27(5): 47-54. |
WU Kunhu, ZHU Liqun, LI Weiping, et al. Anti-scaling characterization of PTFE/PPS composite coating in the geothermal water environment[J]. Acta Materiae Compositae Sinica, 2010, 27(5): 47-54. | |
72 | KE Huizhen, FELDMAN Emma, GUZMAN Plinio, et al. Electrospun polystyrene nanofibrous membranes for direct contact membrane distillation[J]. Journal of Membrane Science, 2016, 515: 86-97. |
73 | YIN Xiaoli, YU Sirong, BI Xiaojian, et al. Robust superhydrophobic 1D Ni3S2 nanorods coating for self-cleaning and anti-scaling[J]. Ceramics International, 2019, 45(18): 24618-24624. |
74 | SOJOUDI H, NEMANI S K, MULLIN K M, et al. Micro-/nanoscale approach for studying scale formation and developing scale-resistant surfaces[J]. ACS Applied Materials & Interfaces, 2019, 11(7): 7330-7337. |
75 | JIANG Wei, HE Jian, XIAO Feng, et al. Preparation and antiscaling application of superhydrophobic anodized CuO nanowire surfaces[J]. Industrial & Engineering Chemistry Research, 2015, 54(27): 6874-6883. |
76 | LI Hao, YU Sirong, HU Jinhui, et al. Modifier-free fabrication of durable superhydrophobic electrodeposited Cu-Zn coating on steel substrate with self-cleaning, anti-corrosion and anti-scaling properties[J]. Applied Surface Science, 2019, 481: 872-882. |
77 | QIAN Huijuan, ZHU Yanji, WANG Huaiyuan, et al. Preparation and antiscaling performance of superhydrophobic poly(phenylene sulfide)/polytetrafluoroethylene composite coating[J]. Industrial & Engineering Chemistry Research, 2017, 56(44): 12663-12671. |
[1] | 王鑫, 王兵兵, 杨威, 徐志明. 金属表面PDA/PTFE超疏水涂层抑垢与耐腐蚀性能[J]. 化工进展, 2023, 42(8): 4315-4321. |
[2] | 陈香李, 李倩倩, 张甜, 李彪, 李康康. 自愈合油水分离膜的研究进展[J]. 化工进展, 2023, 42(7): 3600-3610. |
[3] | 何阳, 李思盈, 李传强, 袁小亚, 郑旭煦. 热还原氧化石墨烯/环氧树脂复合涂层的防腐性能[J]. 化工进展, 2023, 42(4): 1983-1994. |
[4] | 胡锦健, 李龙, 董子靖. 碳纳米材料在PU纱线基柔性应变传感器中的应用[J]. 化工进展, 2023, 42(2): 872-883. |
[5] | 顾海洋, 王冬, 宗永忠, 付少海. 制革污泥蛋白质基生物质棉织物阻燃涂层的制备与阻燃性能[J]. 化工进展, 2023, 42(2): 641-649. |
[6] | 辛华, 彭琪, 李阳帆, 张岩, 陈悦, 李新琦. 含氟聚氨酯二甲基丙烯酸酯为芯材的微胶囊制备及自修复性能[J]. 化工进展, 2023, 42(10): 5406-5413. |
[7] | 路涛, 胡嘉怡, 徐成, 胡鑫琳, 郭庆阳, 李朦. 超疏水海绵的简易制备及其高效油/水分离性能[J]. 化工进展, 2023, 42(10): 5353-5362. |
[8] | 刘洋, 赵恒, 李倩, 辛虎, 李杏涛. 全氟聚醚聚合物及其功能复合材料的研究进展[J]. 化工进展, 2023, 42(1): 321-335. |
[9] | 詹洵, 陈健, 杨兆哲, 吴国民, 孔振武, 沈葵忠. 纳米纤维素构建超疏水材料研究进展[J]. 化工进展, 2022, 41(8): 4303-4313. |
[10] | 朱雪丹, 姚亚丽, 马利利, 王嘉鑫, 杨杰, 彭磊, 何金梅, 屈孟男. 聚氯乙烯基超疏水材料的制备及应用研究进展[J]. 化工进展, 2022, 41(7): 3676-3688. |
[11] | 何美莹, 岳学杰, 张涛, 邱凤仙. 红外辐射调控原理及其在热管理应用中的材料研究进展[J]. 化工进展, 2022, 41(7): 3719-3730. |
[12] | 李博申, 魏铭, 胡瑶瑶, 董月林, 董群锋, 杨立峰. 改性h-BN/聚氨酯丙烯酸酯涂料的制备与性能[J]. 化工进展, 2022, 41(6): 3194-3202. |
[13] | 李正, 牛静东, 何广泽, 张兰河, 张海丰. PVDF-PFTS/SiO2膜制备及抗混合污染性能[J]. 化工进展, 2022, 41(5): 2713-2721. |
[14] | 史慕杨, 芦博慧, 王锦康, 晋阳, 葛明桥. 染料掺杂发光聚氨酯复合材料的制备及性能[J]. 化工进展, 2022, 41(4): 2029-2037. |
[15] | 梁格, 黄翔峰, 刘婉琪, 熊永娇, 彭开铭. 超疏水三维多孔材料在乳化液油水分离中的应用研究进展[J]. 化工进展, 2022, 41(12): 6557-6572. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |