化工进展 ›› 2023, Vol. 42 ›› Issue (5): 2566-2576.DOI: 10.16085/j.issn.1000-6613.2022-1277
陈飞1,2(), 刘成宝1,2,3(), 陈丰1,2,3, 钱君超1,2,3, 邱永斌4, 孟宪荣5, 陈志刚1,2,3
收稿日期:
2022-07-07
修回日期:
2022-08-29
出版日期:
2023-05-10
发布日期:
2023-06-02
通讯作者:
刘成宝
作者简介:
陈飞(1997—),男,硕士研究生,研究方向为g-C3N4基超级电容器电极材料的设计合成及其储能机理。E-mail:18020270742@ 163.com。
基金资助:
CHEN Fei1,2(), LIU Chengbao1,2,3(), CHEN Feng1,2,3, QIAN Junchao1,2,3, QIU Yongbin4, MENG Xianrong5, CHEN Zhigang1,2,3
Received:
2022-07-07
Revised:
2022-08-29
Online:
2023-05-10
Published:
2023-06-02
Contact:
LIU Chengbao
摘要:
超级电容器由于具有功率密度大、储放电速度快、循环寿命长等优点受到储能领域的极大关注,电极材料是其性能优劣的关键所在。而具有较高含氮量、活性位点多且形貌与稳定性良好的g-C3N4作为一种优秀的超级电容器电极材料受到研究者的青睐。本文综述了g-C3N4基超级电容器的结构特征以及储能机理,重点阐述了g-C3N4基复合材料的性能提升策略,最后梳理了g-C3N4基超级电容器电极材料的性能提升研究进展,明确了g-C3N4基复合材料具有优秀的超级电容器电极材料应用前景。
中图分类号:
陈飞, 刘成宝, 陈丰, 钱君超, 邱永斌, 孟宪荣, 陈志刚. g-C3N4基超级电容器用电极材料的研究进展[J]. 化工进展, 2023, 42(5): 2566-2576.
CHEN Fei, LIU Chengbao, CHEN Feng, QIAN Junchao, QIU Yongbin, MENG Xianrong, CHEN Zhigang. Research progress on graphitic carbon nitride based materials for supercapacitor[J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2566-2576.
1 | WANG Haofan, TANG Cheng, WANG Bin, et al. Bifunctional transition metal hydroxysulfides: Room-temperature sulfurization and their applications in Zn-air batteries[J]. Advanced Materials, 2017, 29(35): 1702327. |
2 | YAN Minglei, YAO Yadong, WEN Jiqiu, et al. Construction of a hierarchical NiCo2S4@PPy core-shell heterostructure nanotube array on Ni foam for a high-performance asymmetric supercapacitor[J]. ACS Applied Materials & Interfaces, 2016, 8(37): 24525-24535. |
3 | 邹才能, 赵群, 张国生, 等. 能源革命: 从化石能源到新能源[J]. 天然气工业, 2016, 36(1): 1-10. |
ZOU Caineng, ZHAO Qun, ZHANG Guosheng, et al. Energy revolution: From a fossil energy era to a new energy era[J]. Natural Gas Industry, 2016, 36(1): 1-10. | |
4 | WANG Guoping, ZHANG Lei, ZHANG Jiujun. A review of electrode materials for electrochemical supercapacitors[J]. Chemical Society Reviews, 2012, 41(2): 797-828. |
5 | LI Chen, ZHANG Xiong, WANG Kai, et al. Recent advances in carbon nanostructures prepared from carbon dioxide for high-performance supercapacitors[J]. Journal of Energy Chemistry, 2021, 54: 352-367. |
6 | GONZALEZ Ander, GOIKOLEA Eider, BARRENA Jon Andoni, et al. Review on supercapacitors: Technologies and materials[J]. Renewable and Sustainable Energy Reviews, 2016, 58: 1189-1206. |
7 | 鲁浩天, 陈怡沁, 周静红, 等. 电化学双电层电容器动态模拟: 离子尺寸及扩散系数的优化[J]. 化工学报, 2019, 70(10): 4021-4031. |
LU Haotian, CHEN Yiqin, ZHOU Jinghong, et al. Simulation and optimization of electrochemical double layer capacitors: Effects of ion size and diffusion coefficient[J]. CIESC Journal, 2019, 70(10): 4021-4031. | |
8 | 陈斌, 张剑荣, 姜立萍, 等. 氧化钌在法拉第准电容器中的应用研究进展[J]. 电子元件与材料, 2001, 20(5): 28-29, 34. |
CHEN Bin, ZHANG Jianrong, JIANG Liping, et al. The development of the study on application of ruthenium oxide to Faraday pseudocapacitor[J]. Electronic Components & Materials, 2001, 20(5): 28-29, 34. | |
9 | 吕鉴名, 邢瑞光, 张邦文. 三维石墨烯/过渡金属氧化物超级电容器复合材料的研究进展[J]. 材料科学研究, 2016, 5(1): 20-31. |
Jianming LYU, XING Ruiguang, ZHANG Bangwen. Research advances in three dimensional graphene/transition metal oxide composite in supercapacitors[J]. Research of Materials Science, 2016(1): 20-31. | |
10 | 张海涛, 向翠丽, 邹勇进, 等. 纳米导电聚合物超级电容器研究进展[J]. 传感器与微系统, 2016, 35(8): 1-3, 7. |
ZHANG Haitao, XIANG Cuili, ZOU Yongjin, et al. Research progress on supercapacitors based on conducting nanopolymers[J]. Transducer and Microsystem Technologies, 2016, 35(8): 1-3, 7. | |
11 | 陈秀芳. 石墨相氮化碳的制备、表征及其光催化性能研究[D]. 福州: 福州大学, 2011. |
CHEN Xiufang. Preparation, characterization and photocatalytic properties of graphitie phase carbon nitride[D]. Fuzhou: Fuzhou University, 2011. | |
12 | 郭继鹏, 王敬锋, 林琳, 等. 不同形貌的g-C3N4的制备研究进展[J]. 材料导报, 2019, 33(S1):1-7. |
GUO Jipeng, WANG Jingfeng, LIN Lin, et al. Progress in preparation of g-C3N4 with different morphologies[J]. Materials Reports, 2019, 33(S1): 1-7. | |
13 | ZHANG Yanjun, CHANG Liu, CHANG Xiaokai, et al. Combining in situ sedimentation and carbon-assisted synthesis of Co3O4/g-C3N4 nanocomposites for improved supercapacitor performance[J]. Diamond and Related Materials, 2021, 111: 108165. |
14 | JIANG Deli, XU Qing, MENG Suci, et al. Construction of cobalt sulfide/graphitic carbon nitride hybrid nanosheet composites for high performance supercapacitor electrodes[J].Journal of Alloys and Compounds, 2017, 706: 41-47. |
15 | VIVEK E, ARULRAJ A, KHALID M, et al. Facile synthesis of 2D Ni(OH)2 anchored g-C3N4 as electrode material for high-performance supercapacitor[J]. Inorganic Chemistry Communications, 2021, 130: 108704. |
16 | ASAITHAMBI S, SAKTHIVEL P, KARUPPAIAH M, et al. The bifunctional performance analysis of synthesized Ce doped SnO2/ g-C3N4 composites for asymmetric supercapacitor and visible light photocatalytic applications[J]. Journal of Alloys and Compounds, 2021, 866: 158807. |
17 | KUMAR Arun, KHANUJA Manika. Template-free graphitic carbon nitride nanosheets coated with polyaniline nanofibers as an electrode material for supercapacitor applications[J]. Renewable Energy, 2021, 171: 1246-1256. |
18 | MA Jie, TAO Xueyu, ZHOU Shixiang, et al. Facile fabrication of Ag/PANI/g-C3N4 composite with enhanced electrochemical performance as supercapacitor electrode[J]. Journal of Electroanalytical Chemistry, 2019, 835: 346-353. |
19 | LIU Minmin, HE Nating, GUO Hongxu, al et,Microwave pyrolysis and electrochemical supercapacitor of S-doped g-C 3N4 nanoparticles[J].Chinese Journal of Structural Chemistry, 2021, 40(6): 806-810. |
20 | BUTT F K, HAUENSTEIN P, KOSIAHN M, et al. An innovative microwave-assisted method for the synthesis of mesoporous two dimensional g-C3N4: A revisited insight into a potential electrode material for supercapacitors[J]. Microporous and Mesoporous Materials, 2020, 294: 109853. |
21 | DONG Bitao, LI Mingyan, CHEN Sheng, et al. Formation of g-C3N4@Ni(OH)2 honeycomb nanostructure and asymmetric supercapacitor with high energy and power density[J]. ACS Applied Materials & Interfaces, 2017, 9(21): 17890-17896. |
22 | XU Jing, HUANG Zefeng, JI Hao, et al. G-C3N4 anchored with MoS2 ultrathin nanosheets as high performance anode material for supercapacitor[J]. Materials Letters, 2019, 241: 35-38. |
23 | LIU Minmin, NIU Baitong, GUO Hongxu, et al. Simple preparation of g-C3N4@Ni3C nanosheets and its application in supercapacitor electrode materials, hydrogengeneration via NaBH4 hydrolysis and reduction of p-nitrophenol[J]. Inorganic Chemistry Communications, 2021, 130: 108687. |
24 | VINOTHA S, SUBRAMANI K, ONG W J, et al. CoS2 engulfed ultra-thin S-doped g-C3N4 and its enhanced electrochemical performance in hybrid asymmetric supercapacitor[J]. Journal of Colloid and Interface Science, 2021, 584: 204-215. |
25 | RAGUPATHI Veena, PANIGRAHI Puspamitra, Ganapathi SUBRAMANIAM N. G-C3N4 doped MnS as high performance electrode material for supercapacitor application[J]. Materials Letters, 2019, 246: 88-91. |
26 | PALANIVEL B, MUDISOODUM P S D, MAIYALAGAN T, et al. Rational design of ZnFe2O4/g-C3N4 nanocomposite for enhanced photo-Fenton reaction and supercapacitor performance[J]. Applied Surface Science, 2019, 498: 143807. |
27 | CHEN A Y, ZHANG T T, QIU Y J, et al. Construction of nanoporous gold/g-C3N4 heterostructure for electrochemical supercapacitor[J]. Electrochimica Acta, 2019, 294: 260-267. |
28 | SOLTANI Hamed, BAHIRAEI Hamed, GHASEMI Shahnaz. Effect of electrodeposition time on the super-capacitive performance of electrodeposited MnO2 on g-C3N4 nanosheets[J]. Journal of Alloys and Compounds, 2022, 904: 163565. |
29 | XU Liang, LU Yun. One-step synthesis of a cobalt sulfide/reduced graphene oxide composite used as an electrode material for supercapacitors[J]. RSC Advances, 2015, 5(83): 67518-67523. |
30 | XU Yingxi, ZHOU Yafang, GUO Jianyu, et al. Preparation of SnS2/ g-C3N4 composite as the electrode material for Supercapacitor[J]. Journal of Alloys and Compounds, 2019, 806: 343-349. |
31 | DAI Meizhen, ZHAO Depeng, WU Xiang. Research progress on transition metal oxide based electrode materials for asymmetric hybrid capacitors[J]. Chinese Chemical Letters, 2020, 31(9): 2177-2188. |
32 | GURENKO V E, POPKOV V I, LOBINSKY A A. Synthesis of NiO granular nanospheres as a novel material for high-performance supercapacitors[J]. Materials Letters, 2020, 279: 128478. |
33 | LU Yuan, DENG Binglu, LIU Yangbiao, et al. Nanostructured Co3O4 for achieving high-performance supercapacitor[J]. Materials Letters, 2021, 285: 129101. |
34 | GUAN Yuzhu, JI Peiyuan, WAN Jing, et al. Ag-modified Fe2O3 nanoparticles on a carbon cloth as an anode material for high-performance supercapacitors[J]. Nanotechnology, 2020, 31(12): 125405. |
35 | ZHAO Jing, ZHU Botao, YANG Guijin, et al. Vacuum annealed MnO2 ultra-thin nanosheets with oxygen defects for high performance supercapacitors[J]. Journal of Physics and Chemistry of Solids, 2021, 150: 109856. |
36 | GUPTA S P, MORE M A, LATE D J, et al. Highly ordered nano-tunnel structure of hydrated tungsten oxide nanorods for superior flexible quasi-solid-state hybrid supercapacitor[J]. Applied Surface Science, 2021, 545: 149044. |
37 | KHAN A J, HANIF M, JAVED M S, et al. Energy storage properties of hydrothermally processed, nanostructured, porous CeO2 nanoparticles[J]. Journal of Electroanalytical Chemistry, 2020, 865: 114158. |
38 | XU Yingxi, WANG Li, ZHOU Yafang, et al. Synthesis of heterostructure SnO2/graphitic carbon nitride composite for high-performance electrochemical supercapacitor[J]. Journal of Electroanalytical Chemistry, 2019, 852: 113507. |
39 | ZHU Honglin, ZHENG Yueqing. Mesoporous Co3O4 anchored on the graphitic carbon nitride for enhanced performance supercapacitor[J]. Electrochimica Acta, 2018, 265: 372-378. |
40 | LI Dongwei, ZHU Sha, GAO Xiang, et al. Anchoring Sea-urchin-like Co(OH)2 microspheres on nickel foam as three-dimensional free-standing electrode for high-performance supercapacitors[J]. Ionics, 2021, 27(2): 789-799. |
41 | WANG Dawei, GUAN Bing, LI Yu, et al. Morphology-controlled synthesis of hierarchical mesoporous α-Ni(OH)2 microspheres for high-performance asymmetric supercapacitors[J]. Journal of Alloys and Compounds, 2018, 737: 238-247. |
42 | KAVYASHREE S S, RAUT B R, SANKAPAL S N, et al. Tuberose surface architecture of Sr(OH)2 film as supercapacitive electrode[J]. Electrochimica Acta, 2017, 258: 34-42. |
43 | FAN Yuqian, WANG Lumeng, MA Zhipeng, et al. The in situ synthesis of Fe(OH)3 film on Fe foam as efficient anode of alkaline supercapacitor based on a promising Fe3+/Fe0 energy storage mechanism[J]. Particle & Particle Systems Characterization, 2018, 35(6): 1700484. |
44 | HE Dong, WANG Guanda, LIU Guolong, et al. Facile route to achieve mesoporous Cu(OH)2 nanorods on copper foam for high-performance supercapacitor electrode[J]. Journal of Alloys and Compounds, 2017, 699: 706-712. |
45 | SHI Lei, ZHANG Jinglin, LIU Huidi, et al. Flower-like Ni(OH)2 hybridized g-C3N4 for high-performance supercapacitor electrode material[J]. Materials Letters, 2015, 145: 150-153. |
46 | MOHANTY A, JAIHINDH D P, FU Y P, et al. An extensive review on three dimension architectural Metal-Organic Frameworks towards supercapacitor application[J]. Journal of Power Sources, 2021, 488: 229444. |
47 | AZAM M A, RAMLI N S N, NOR N A, et al. Recent advances in biomass-derived carbon, mesoporous materials, and transition metal nitrides as new electrode materials for supercapacitor: A short review[J]. International Journal of Energy Research, 2021, 45(6): 8335-8346. |
48 | ZHOU Huijie, LI Xiaxia, LI Yan, et al. Applications of M x Se y (M=Fe, Co, Ni) and their composites in electrochemical energy storage and conversion[J]. Nano-Micro Letters, 2019, 11(1): 40. |
49 | EL-GENDY D M, ABDEL H R M, AL-ENIZI A M, et al. Synthesis and characterization of WC@GNFs as an efficient supercapacitor electrode material in acidic medium[J]. Ceramics International, 2020, 46(17): 27437-27445. |
50 | ZHANG Shuai, HUANG Ying, WANG Jiaming, et al. Ti3C2T x /g-C3N4 heterostructure films with outstanding capacitance for flexible solid-state supercapacitors[J]. Applied Surface Science, 2022, 599: 154015. |
51 | BAVATHARANI C, MUTHUSANKAR E, WABAIDUR S M, et al. Electrospinning technique for production of polyaniline nanocomposites/nanofibres for multi-functional applications: A review[J]. Synthetic Metals, 2021, 271: 116609. |
52 | ZHOU Shixiang, TAO Xueyu, MA Jie, et al. Synthesis of flower-like PANI/g-C3N4 nanocomposite as supercapacitor electrode[J]. Vacuum, 2018, 149: 175-179. |
53 | DONG Guangzhi, FAN Huiqing, FU Ke, et al. The evaluation of super-capacitive performance of novel g-C3N4/PPy nanocomposite electrode material with sandwich-like structure[J]. Composites Part B Engineering, 2019, 162: 369-377. |
54 | SUN Shibin, GUO Lin, CHANG Xueting, et al. MnO2/g-C3N4@PPy nanocomposite for high-performance supercapacitor[J]. Materials Letters, 2019, 236: 558-561. |
[1] | 胡喜, 王明珊, 李恩智, 黄思鸣, 陈俊臣, 郭秉淑, 于博, 马志远, 李星. 二硫化钨复合材料制备与储钠性能研究进展[J]. 化工进展, 2023, 42(S1): 344-355. |
[2] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[3] | 林晓鹏, 肖友华, 管奕琛, 鲁晓东, 宗文杰, 傅深渊. 离子聚合物-金属复合材料(IPMC)柔性电极的研究进展[J]. 化工进展, 2023, 42(9): 4770-4782. |
[4] | 汪健生, 张辉鹏, 刘雪玲, 傅煜郭, 朱剑啸. 多孔介质结构对储层内流动和换热特性的影响[J]. 化工进展, 2023, 42(8): 4212-4220. |
[5] | 王帅晴, 杨思文, 李娜, 孙占英, 安浩然. 元素掺杂生物质炭材料在电化学储能中的研究进展[J]. 化工进展, 2023, 42(8): 4296-4306. |
[6] | 叶振东, 刘涵, 吕静, 张亚宁, 刘洪芝. 基于钙镁二元盐的热化学储能反应器的性能优化[J]. 化工进展, 2023, 42(8): 4307-4314. |
[7] | 张耀杰, 张传祥, 孙悦, 曾会会, 贾建波, 蒋振东. 煤基石墨烯量子点在超级电容器中的应用[J]. 化工进展, 2023, 42(8): 4340-4350. |
[8] | 杨鹏威, 于琳竹, 王放放, 蒋昊轩, 赵光金, 李琦, 杜铭哲, 马双忱. 氨储能在新型电力系统的应用前景、挑战及发展[J]. 化工进展, 2023, 42(8): 4432-4446. |
[9] | 李艳玲, 卓振, 池亮, 陈曦, 孙堂磊, 刘鹏, 雷廷宙. 氮掺杂生物炭的制备与应用研究进展[J]. 化工进展, 2023, 42(7): 3720-3735. |
[10] | 单雪影, 张濛, 张家傅, 李玲玉, 宋艳, 李锦春. 阻燃型环氧树脂的燃烧数值模拟[J]. 化工进展, 2023, 42(7): 3413-3419. |
[11] | 于志庆, 黄文斌, 王晓晗, 邓开鑫, 魏强, 周亚松, 姜鹏. B掺杂Al2O3@C负载CoMo型加氢脱硫催化剂性能[J]. 化工进展, 2023, 42(7): 3550-3560. |
[12] | 杨竞莹, 施万胜, 黄振兴, 谢利娟, 赵明星, 阮文权. 改性纳米零价铁材料制备的研究进展[J]. 化工进展, 2023, 42(6): 2975-2986. |
[13] | 许春树, 姚庆达, 梁永贤, 周华龙. 氧化石墨烯/碳纳米管对几种典型高分子材料的性能影响[J]. 化工进展, 2023, 42(6): 3012-3028. |
[14] | 朱雅静, 徐岩, 简美鹏, 李海燕, 王崇臣. 金属有机框架材料用于海水提铀的研究进展[J]. 化工进展, 2023, 42(6): 3029-3048. |
[15] | 朱薇, 齐鹏刚, 苏银海, 张书平, 熊源泉. 生物油分级多孔碳超级电容器电极材料的制备及性能[J]. 化工进展, 2023, 42(6): 3077-3086. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |