化工进展 ›› 2023, Vol. 42 ›› Issue (11): 5981-5992.DOI: 10.16085/j.issn.1000-6613.2022-2259
• 资源与环境化工 • 上一篇
柯玉鑫1,2(), 朱晓丽1,2(), 司绍诚1,2, 张婷1,2, 王军强1,3, 张子夜3
收稿日期:
2022-12-04
修回日期:
2023-04-23
出版日期:
2023-11-20
发布日期:
2023-12-15
通讯作者:
朱晓丽
作者简介:
柯玉鑫(1997—),男,博士研究生,研究方向为多介质污染物修复技术。E-mail:keyuxin_ak@163.com。
基金资助:
KE Yuxin1,2(), ZHU Xiaoli1,2(), SI Shaocheng1,2, ZHANG Ting1,2, WANG Junqiang1,3, ZHANG Ziye3
Received:
2022-12-04
Revised:
2023-04-23
Online:
2023-11-20
Published:
2023-12-15
Contact:
ZHU Xiaoli
摘要:
为有效利用食用油行业产生的白土废弃物,以及解决畜禽养殖废水中的重金属及抗生素残留问题。本研究通过热解的方式将废白土转化为新型吸附剂BE500和BE700,用于水中铜离子(Cu2+)和四环素(TC)的去除,并考察了吸附剂投加量、反应pH、离子干扰和竞争条件下的吸附效果。结果显示,BE700更适合于Cu2+的吸附,而BE500对TC的去除效率更高。相比于Cu2+,TC吸附量对溶液pH变化的敏感度更低。动力学模型拟合结果显示,BE500和BE700对Cu2+和TC的吸附主要是发生了化学反应,且吸附速率主要受到液膜扩散的控制。等温吸附和热力学模型拟合结果则表明BE500和BE700与Cu2+和TC之间主要发生了多层吸附,且吸附是自发的吸热过程。此外,离子干扰实验显示,Cl-和Na+对吸附效果的影响较小。而竞争吸附实验显示了在二元体系中BE500和BE700对Cu2+和TC的吸附量较一元体系显著增加,即Cu2+和TC之间的反应促进了Cu2+和TC的协同去除。表征结果显示孔隙填充、离子交换、络合反应、氢键和π-π相互作用均参与了对Cu2+和TC的去除机制。
中图分类号:
柯玉鑫, 朱晓丽, 司绍诚, 张婷, 王军强, 张子夜. 废白土衍生吸附剂协同去除水中的四环素和铜[J]. 化工进展, 2023, 42(11): 5981-5992.
KE Yuxin, ZHU Xiaoli, SI Shaocheng, ZHANG Ting, WANG Junqiang, ZHANG Ziye. Adsorbent derived from spent bleaching earth for the synergistic removal of tetracycline and copper in wastewater[J]. Chemical Industry and Engineering Progress, 2023, 42(11): 5981-5992.
扩散模型 | Cu2+ | TC | ||
---|---|---|---|---|
BE500 | BE700 | BE500 | BE700 | |
准一级动力学 | ||||
Qe/mg·g-1 | 13.4 | 17.0 | 30.7 | 26.9 |
k1/h-1 | 3.270 | 1.770 | 3.327 | 3.538 |
R2 | 0.423 | 0.719 | 0.698 | 0.640 |
准二级动力学 | ||||
Qe/mg·g-1 | 14.6 | 18.6 | 31.9 | 27.995 |
k2/g·mg-1·h-1 | 0.306 | 0.126 | 0.184 | 0.220 |
R2 | 0.700 | 0.873 | 0.930 | 0.917 |
液膜扩散模型 | ||||
Kfd/mg·g-1 | 0.102 | 0.104 | 0.317 | 0.292 |
R2 | 0.951 | 0.963 | 0.965 | 0.949 |
C/mg·L-1 | -0.729 | -0.519 | -1.312 | -1.249 |
颗粒内扩散模型 | ||||
Ki/mg·g-1·h0.5 | 2.158 | 3.506 | 2.398 | 2.147 |
R2 | 0.979 | 0.978 | 0.627 | 0.719 |
C/mg·L-1 | 8.396 | 7.866 | 23.245 | 20.407 |
表1 动力学、液膜扩散和颗粒内扩散模型的拟合结果
扩散模型 | Cu2+ | TC | ||
---|---|---|---|---|
BE500 | BE700 | BE500 | BE700 | |
准一级动力学 | ||||
Qe/mg·g-1 | 13.4 | 17.0 | 30.7 | 26.9 |
k1/h-1 | 3.270 | 1.770 | 3.327 | 3.538 |
R2 | 0.423 | 0.719 | 0.698 | 0.640 |
准二级动力学 | ||||
Qe/mg·g-1 | 14.6 | 18.6 | 31.9 | 27.995 |
k2/g·mg-1·h-1 | 0.306 | 0.126 | 0.184 | 0.220 |
R2 | 0.700 | 0.873 | 0.930 | 0.917 |
液膜扩散模型 | ||||
Kfd/mg·g-1 | 0.102 | 0.104 | 0.317 | 0.292 |
R2 | 0.951 | 0.963 | 0.965 | 0.949 |
C/mg·L-1 | -0.729 | -0.519 | -1.312 | -1.249 |
颗粒内扩散模型 | ||||
Ki/mg·g-1·h0.5 | 2.158 | 3.506 | 2.398 | 2.147 |
R2 | 0.979 | 0.978 | 0.627 | 0.719 |
C/mg·L-1 | 8.396 | 7.866 | 23.245 | 20.407 |
参数 | Cu2+ | TC | ||||
---|---|---|---|---|---|---|
BE500 | BE700 | BE500 | BE700 | |||
Langmuir | ||||||
15℃ | Qm | 12.999 | 15.248 | 36.124 | 36.091 | |
KL | 0.996 | 30.313 | 0.154 | 0.098 | ||
R2 | 0.469 | 0.577 | 0.933 | 0.950 | ||
25℃ | Qm | 14.098 | 17.930 | 41.090 | 36.821 | |
KL | 2.790 | 206.743 | 0.176 | 0.202 | ||
R2 | 0.534 | 0.942 | 0.942 | 0.943 | ||
35℃ | Qm | 15.790 | 20.643 | 41.950 | 46.705 | |
KL | 9.516 | 9.039 | 0.310 | 0.121 | ||
R2 | 0.832 | 0.897 | 0.908 | 0.899 | ||
Freundlich | ||||||
15℃ | KF | 7.050 | 11.959 | 8.831 | 6.348 | |
n | 21.358 | 11.485 | 2.938 | 2.529 | ||
R2 | 0.818 | 0.856 | 0.997 | 0.981 | ||
25℃ | KF | 9.314 | 14.849 | 10.442 | 9.559 | |
n | 7.463 | 13.947 | 3.037 | 3.070 | ||
R2 | 0.848 | 0.970 | 0.993 | 0.972 | ||
35℃ | KF | 11.786 | 14.645 | 12.212 | 8.519 | |
n | 9.901 | 7.680 | 3.173 | 2.456 | ||
R2 | 0.972 | 0.958 | 0.979 | 0.959 |
表2 等温吸附模型拟合参数
参数 | Cu2+ | TC | ||||
---|---|---|---|---|---|---|
BE500 | BE700 | BE500 | BE700 | |||
Langmuir | ||||||
15℃ | Qm | 12.999 | 15.248 | 36.124 | 36.091 | |
KL | 0.996 | 30.313 | 0.154 | 0.098 | ||
R2 | 0.469 | 0.577 | 0.933 | 0.950 | ||
25℃ | Qm | 14.098 | 17.930 | 41.090 | 36.821 | |
KL | 2.790 | 206.743 | 0.176 | 0.202 | ||
R2 | 0.534 | 0.942 | 0.942 | 0.943 | ||
35℃ | Qm | 15.790 | 20.643 | 41.950 | 46.705 | |
KL | 9.516 | 9.039 | 0.310 | 0.121 | ||
R2 | 0.832 | 0.897 | 0.908 | 0.899 | ||
Freundlich | ||||||
15℃ | KF | 7.050 | 11.959 | 8.831 | 6.348 | |
n | 21.358 | 11.485 | 2.938 | 2.529 | ||
R2 | 0.818 | 0.856 | 0.997 | 0.981 | ||
25℃ | KF | 9.314 | 14.849 | 10.442 | 9.559 | |
n | 7.463 | 13.947 | 3.037 | 3.070 | ||
R2 | 0.848 | 0.970 | 0.993 | 0.972 | ||
35℃ | KF | 11.786 | 14.645 | 12.212 | 8.519 | |
n | 9.901 | 7.680 | 3.173 | 2.456 | ||
R2 | 0.972 | 0.958 | 0.979 | 0.959 |
吸附剂 | 理论最大吸附量(Qm) | 参考文献 | |
---|---|---|---|
TC | Cu2+ | ||
BE500 | 41.090mg/g | 本研究 | |
BE700 | 17.930mg/g | 本研究 | |
茶渣生物炭 | 8.081mg/g | [ | |
壳聚糖 | 4.24mg/g | [ | |
改性石英砂 | 25.60mg/g | [ | |
多基团秸秆纤维 | 4.71mg/g | [ | |
自养硝化颗粒污泥 | 15.02mg/g | [ | |
苹果树枝生物炭 | 15.85mg/g | [ |
表3 废白土衍生吸附剂与其他吸附剂材料的性能比较
吸附剂 | 理论最大吸附量(Qm) | 参考文献 | |
---|---|---|---|
TC | Cu2+ | ||
BE500 | 41.090mg/g | 本研究 | |
BE700 | 17.930mg/g | 本研究 | |
茶渣生物炭 | 8.081mg/g | [ | |
壳聚糖 | 4.24mg/g | [ | |
改性石英砂 | 25.60mg/g | [ | |
多基团秸秆纤维 | 4.71mg/g | [ | |
自养硝化颗粒污泥 | 15.02mg/g | [ | |
苹果树枝生物炭 | 15.85mg/g | [ |
吸附剂 | 温度/K | Cu2+ | TC | ||||||
---|---|---|---|---|---|---|---|---|---|
lnKd | ΔG/kJ∙mol-1 | ΔH/kJ∙mol-1 | ΔS/J∙mol-1∙K-1 | lnKd | ΔG/kJ∙mol-1 | ΔH/kJ∙mol-1 | ΔS/J∙mol-1∙K-1 | ||
BE500 | 288 | 2.215 | -5.307 | 0.665 | 0.030 | 2.023 | -4.846 | 2.494 | 0.034 |
298 | 3.329 | -8.251 | 2.449 | -6.070 | |||||
308 | 4.903 | -12.561 | 2.712 | -6.949 | |||||
BE700 | 288 | 5.793 | -13.878 | 0.083 | 0.027 | 1.324 | -3.173 | 1.663 | 0.032 |
298 | 8.178 | -20.273 | 2.034 | -5.043 | |||||
308 | 5.208 | -13.342 | 1.903 | -4.874 |
表4 热力学模型拟合参数
吸附剂 | 温度/K | Cu2+ | TC | ||||||
---|---|---|---|---|---|---|---|---|---|
lnKd | ΔG/kJ∙mol-1 | ΔH/kJ∙mol-1 | ΔS/J∙mol-1∙K-1 | lnKd | ΔG/kJ∙mol-1 | ΔH/kJ∙mol-1 | ΔS/J∙mol-1∙K-1 | ||
BE500 | 288 | 2.215 | -5.307 | 0.665 | 0.030 | 2.023 | -4.846 | 2.494 | 0.034 |
298 | 3.329 | -8.251 | 2.449 | -6.070 | |||||
308 | 4.903 | -12.561 | 2.712 | -6.949 | |||||
BE700 | 288 | 5.793 | -13.878 | 0.083 | 0.027 | 1.324 | -3.173 | 1.663 | 0.032 |
298 | 8.178 | -20.273 | 2.034 | -5.043 | |||||
308 | 5.208 | -13.342 | 1.903 | -4.874 |
1 | KANG Jin, LIU Huijuan, ZHENG Yuming, et al. Systematic study of synergistic and antagonistic effects on adsorption of tetracycline and copper onto a chitosan[J]. Journal of Colloid and Interface Science, 2010, 344(1): 117-125. |
2 | HU Hao, ZHOU Qi, LI Xiang, et al. Phytoremediation of anaerobically digested swine wastewater contaminated by oxytetracycline via Lemna aequinoctialis: Nutrient removal, growth characteristics and degradation pathways[J]. Bioresource Technology, 2019, 291: 121853. |
3 | PRICE Michael S, CLASSEN John J, PAYNE Gary A. Aspergillus niger absorbs copper and zinc from swine wastewater[J]. Bioresource Technology, 2001, 77(1): 41-49. |
4 | 冯爱玲, 王海北, 赵磊, 等. 粉煤基沸石对Cu2+吸附行为的实验研究[J]. 有色金属工程, 2017, 7(5): 60-64. |
FENG Ailing, WANG Haibei, ZHAO Lei, et al. Experimental study on copper adsorption behavior of zeolitized fly ash[J]. Nonferrous Metals Engineering, 2017, 7(5): 60-64. | |
5 | CHANG Yii Shiuan, Pek Ing AU, MUBARAK Nabisab Mujawar, et al. Adsorption of Cu(Ⅱ) and Ni(Ⅱ) ions from wastewater onto bentonite and bentonite/GO composite[J]. Environmental Science and Pollution Research, 2020, 27(26): 33270-33296. |
6 | LIU Yan, CHEN Qin, SINGH Rajendra Prasad. Low-cost RSAC and adsorption characteristics in the removal of copper ions from wastewater[J]. Applied Sciences, 2022, 12(11): 5612. |
7 | 柴琴琴, 呼世斌, 刘建伟, 等. 有机改性对凹凸棒黏土吸附四环素类抗生素的影响[J]. 中国环境监测, 2018, 34(5): 95-103. |
CHAI Qinqin, HU Shibin, LIU Jianwei, et al. Effects of the organic modification on the attapulgite adsorption for tetracycline antibiotics[J]. Environmental Monitoring in China, 2018, 34(5): 95-103. | |
8 | 刘总堂, 邵江, 李艳, 等. 碱改性小麦秸秆生物炭对水中四环素的吸附性能[J]. 中国环境科学, 2022, 42(8): 3736-3743. |
LIU Zongtang, SHAO Jiang, LI Yan, et al. Adsorption performance of tetracycline in water by alkali-modified wheat straw biochars[J]. China Environmental Science, 2022, 42(8): 3736-3743. | |
9 | ZHAO Rui, MA Tingting, ZHAO Shuai, et al. Uniform and stable immobilization of metal-organic frameworks into chitosan matrix for enhanced tetracycline removal from water[J]. Chemical Engineering Journal, 2020, 382: 122893. |
10 | 武占省. 食用油脂脱色用高效活性白土的研制及其吸附性能研究[D]. 石河子: 石河子大学, 2006. |
WU Zhansheng. The development of acid activated bentonite for edible oil bleaching and investigation of its adsorption property[D]. Shihezi: Shihezi University, 2006. | |
11 | BACHMANN Suyanne Angie Lunelli, DE CÁSSIA SIQUEIRA CURTO VALLE Rita, VEGINI Atilano Antonio, et al. Determination of optimum conditions for thermal regeneration and characterization of a spent bleaching earth[J]. Journal of Environmental Chemical Engineering, 2020, 8(2): 103503. |
12 | BESHARA Abdelhamid, CHEESEMAN Christopher R. Reuse of spent bleaching earth by polymerisation of residual organics[J]. Waste Management, 2014, 34(10): 1770-1774. |
13 | 乔宝权, 周丹, 李琪, 等. 以废白土为原料制备生物柴油及其资源化利用[J]. 化工进展, 2016, 35(8): 2398-2405. |
QIAO Baoquan, ZHOU Dan, LI Qi, et al. Biodiesel production from spent bleaching clay and its resource utilization[J]. Chemical Industry and Engineering Progress, 2016, 35(8): 2398-2405. | |
14 | 陈兆辉. 基于废白土的炭材料制备及其去除水中Pb(Ⅱ)的研究[D]. 郑州: 河南工业大学, 2020. |
CHEN Zhaohui. Preparation of carbon material based on spent bleaching earth and study of Pb(Ⅱ) removal in water[D]. Zhengzhou: Henan University of Technology, 2020. | |
15 | CUI Song, KE Yuxin, FU Qiang, et al. Optimization preparation of biochar from garden waste and quantitative analysis for Cd2+ adsorption mechanism in aqueous solution[J]. Biomass Conversion and Biorefinery, 2022: 1-13. |
16 | SUI Long, TANG Chunyu, DU Qing, et al. Preparation and characterization of boron-doped corn straw biochar: Fe(Ⅱ) removal equilibrium and kinetics[J]. Journal of Environmental Sciences, 2021, 106: 116-123. |
17 | 余剑, 丁恒, 张智霖, 等. 改性菱角壳生物炭吸附水中土霉素性能与机理[J]. 中国环境科学, 2021, 41(12): 5688-5700. |
YU Jian, DING Heng, ZHANG Zhilin, et al. Sorption characteristics and mechanism of oxytetracycline in water by modified biochar derived from chestnut shell[J]. China Environmental Science, 2021, 41(12): 5688-5700. | |
18 | KANG Xirui, GENG Na, LI Yaping, et al. Treatment of cadmium and zinc-contaminated water systems using modified biochar: contaminant uptake, adsorption ability, and mechanism[J]. Bioresource Technology, 2022, 363: 127817. |
19 | ZHOU Yaoyu, LIU Xiaocheng, XIANG Yujia, et al. Modification of biochar derived from sawdust and its application in removal of tetracycline and copper from aqueous solution: adsorption mechanism and modelling[J]. Bioresource Technology, 2017, 245: 266-273. |
20 | KE Yuxin, CUI Song, FU Qiang, et al. Effects of pyrolysis temperature and aging treatment on the adsorption of Cd2+ and Zn2+ by coffee grounds biochar[J]. Chemosphere, 2022, 296: 134051. |
21 | 朱晓丽, 张婷, 王军强, 等. 改性废白土炭复合材料对恩诺沙星的吸附效应分析[J]. 农业环境科学学报, 2022, 41(2): 346-356. |
ZHU Xiaoli, ZHANG Ting, WANG Junqiang, et al. Adsorption effects of enrofloxacin by modified spent bleaching earth carbon composites[J]. Journal of Agro-Environment Science, 2022, 41(2): 346-356. | |
22 | YANG Jiwen, JI Guozhao, GAO Yuan, et al. High-yield and high-performance porous biochar produced from pyrolysis of peanut shell with low-dose ammonium polyphosphate for chloramphenicol adsorption[J]. Journal of Cleaner Production, 2020, 264: 121516. |
23 | 李燕, 陈梅芹, 乔艳辉, 等. 废白土-花生壳生物炭吸附剂的制备及对Pb(Ⅱ)的吸附[J]. 材料导报, 2022, 36(6): 33-38. |
LI Yan, CHEN Meiqin, QIAO Yanhui, et al. Preparation of spent bleaching earth-peanut shell biochar adsorbent for removal of Pb(Ⅱ) in water[J]. Materials Reports, 2022, 36(6): 33-38. | |
24 | QIN Wenxiu, SUN Na, WANG Guozhong, et al. Seaweed-derived hierarchically porous carbon for highly efficient removal of tetracycline[J]. Chinese Journal of Chemical Physics, 2022, 35(3): 578-588. |
25 | 徐龙凤, 魏群山, 吕强, 等. 水体模拟颗粒物对四环素的吸附特性及基本规律[J]. 环境科学, 2018, 39(4): 1668-1676. |
XU Longfeng, WEI Qunshan, LU Qiang, et al. Adsorption of tetracycline on simulated suspended particles in water[J]. Environmental Science, 2018, 39(4): 1668-1676. | |
26 | TAN Yuehui, WAN Xirui, ZHOU Ting, et al. Novel Zn-Fe engineered kiwi branch biochar for the removal of Pb(Ⅱ) from aqueous solution[J]. Journal of Hazardous Materials, 2022, 424: 127349. |
27 | CUI Limei, WANG Yaoguang, HU Lihua, et al. Mechanism of Pb(Ⅱ) and methylene blue adsorption onto magnetic carbonate hydroxyapatite/graphene oxide[J]. RSC Advances, 2015, 5(13): 9759-9770. |
28 | ZHOU Yaoyu, LIU Xiaocheng, TANG Lin, et al. Insight into highly efficient co-removal of p-nitrophenol and lead by nitrogen-functionalized magnetic ordered mesoporous carbon: Performance and modelling[J]. Journal of Hazardous Materials, 2017, 333: 80-87. |
29 | 杨育红, 寇丽栋, 范庆峰, 等. 镁改性污泥基生物炭去除水中磷和抗生素[J]. 中国环境科学, 2022, 42(9): 4137-4144. |
YANG Yuhong, KOU Lidong, FAN Qingfeng, et al. Removal of phosphate and antibiotics by magnesium modified sludge-derived biochar[J]. China Environmental Science, 2022, 42(9): 4137-4144. | |
30 | 杜恩菊, 李杨, 冯伟, 等. 丝瓜络固定颤藻吸附Pb2+的动力学及机理[J]. 中国环境科学, 2021, 41(12): 5701-5709. |
DU Enju, LI Yang, FENG Wei, et al. Kinetics and mechanism of adsorption Pb2+ by immobilized oscillatoria lutea with loofah[J]. China Environmental Science, 2021, 41(12): 5701-5709. | |
31 | 刘秀芸, 王刚, 雷雨昕, 等. 巯基改性玉米秸秆对水中Cu(Ⅱ)的吸附特性[J]. 中国环境科学, 2022, 42(3): 1220-1229. |
LIU Xiuyun, WANG Gang, LEI Yuxin, et al. Adsorption performance and mechanism of mercaptoacetyl corn straw for Cu(Ⅱ) in aqueous solution[J]. China Environmental Science, 2022, 42(3): 1220-1229. | |
32 | 范世锁, 刘文浦, 王锦涛, 等. 茶渣生物炭制备及其对溶液中四环素的去除特性[J]. 环境科学, 2020, 41(3): 1308-1318. |
FAN Shisuo, LIU Wenpu, WANG Jingtao, et al. Preparation of tea waste biochar and tts application in tetracycline removal from aqueous solution[J]. Environmental Science, 2020, 41(3): 1308-1318. | |
33 | TURAN Busra, SARIGOL Gulhan, DEMIRCIVI Pelin. Adsorption of tetracycline antibiotics using metal and clay embedded cross-linked chitosan[J]. Materials Chemistry and Physics, 2022, 279: 125781. |
34 | 李川, 刘元慧, 王让, 等. 改性石英砂吸附水中四环素的机制研究[J]. 中国给水排水, 2019, 35(3): 71-77. |
LI Chuan, LIU Yuanhui, WANG Rang, et al. Adsorption mechanism of tetracycline by modified quartz sand[J]. China Water and Wastewater, 2019, 35(3): 71-77. | |
35 | 孟佩佩, 张丹凤, 伦乐豪, 等. 多基团秸秆纤维对水体中铜/磺胺甲恶唑复合污染物的定量吸附性能[J]. 环境工程学报,2023, 17(2): 390-403. |
MENG Peipei, ZHANG Danfeng, Lehao LUN, et al. Quantitative adsorption behavior of copper/sulfonamides compound pollutants in aqueous solution by multi-groups straw fibers[J]. Chinese Journal of Environmental Engineering, 2023, 17(2): 390-403. | |
36 | 张斌超, 曾敏静, 张立楠, 等. 自养硝化颗粒污泥吸附铜离子性能及吸附等温线[J]. 化工进展, 2020, 39(4): 1583-1590. |
ZHANG Binchao, ZENG Minjing, ZHANG Linan, et al. Adsorption of Cu2+ by autotrophic nitrifying granular sludge and its adsorption isotherm[J] Chemical Industry and Engineering Progress, 2020, 39(4): 1583-1590. | |
37 | 王彤彤, 马江波, 曲东, 等. 两种木材生物炭对铜离子的吸附特性及其机制[J]. 环境科学, 2017, 38(5): 2161-2171. |
WANG Tongtong, MA Jiangbo, QU Dong, et al. Characteristics and mechanism of copper adsorption from aqueous solutions on biochar produced from sawdust and apple branch[J]. Environmental Science, 2017, 38(5): 2161-2171. | |
38 | 唐玉婷, 丁思淳, 韩承霖. 腐殖酸负载对凹凸棒土吸附Zn(Ⅱ)的影响[J]. 华南理工大学学报(自然科学版), 2022, 50(4): 110-118. |
TANG Yuting, DING Sichun, HAN Chenglin. Effect of humic acid loading on palygorskite’s adsorption of Zn(Ⅱ)[J]. Journal of South China University of Technology (Natural Science Edition), 2022, 50(4): 110-118. | |
39 | 孙宁妍, 邱海燕, 兰贵红, 等. 磁性羟基磷灰石改性氮化硼对Pb2+的吸附特性[J]. 精细化工, 2022, 39(4): 725-733. |
SUN Ningyan, QIU Haiyan, LAN Guihong, et al. Adsorption performance of Pb2+ by magnetic hydroxyapatite modified boron nitride[J]. Fine Chemicals, 2022, 39(4): 725-733. | |
40 | 王超, 王迎亚, 陈宁华, 等. 磁性膨润土对四环素的吸附特性[J]. 精细化工, 2017, 34(10): 1185-1193. |
WANG Chao, WANG Yingya, CHEN Ninghua, et al. Adsorption of tetracycline by magnetic bentonite[J]. Fine Chemicals, 2017, 34(10): 1185-1193. | |
41 | WANG Rongzhong, HUANG Danlian, LIU Yunguo, et al. Synergistic removal of copper and tetracycline from aqueous solution by steam-activated bamboo-derived biochar[J]. Journal of Hazardous Materials, 2020, 384: 121470. |
42 | WANG Ke, WANG Yue, ZHANG Shiyu, et al. Tailoring a novel hierarchical cheese-like porous biochar from algae residue to boost sulfathiazole removal[J]. Environmental Science and Ecotechnology, 2022, 10: 100168. |
43 | SHI Jindou, GUO Caili, LEI Changyang, et al. High-performance biochar derived from the residue of Chaga mushroom (Inonotus obliquus) for pollutants removal[J]. Bioresource Technology, 2022, 344: 126268. |
44 | YAO Guangyuan, LIU Yuqiang, ZHENG Shuilin, et al. High removal efficiency of diatomite-based X zeolite for Cu2+ and Zn2+ [J]. Materials, 2021, 14(21): 6525. |
45 | 郭志伟, 赵宝龙, 郑志宏, 等. 碳化改性硅藻土对四环素的吸附[J]. 环境工程, 2022, 40(5): 44-52. |
GUO Zhiwei, ZHAO Baolong, ZHENG Zhihong, et al. Preparation of modified diatomite via carbonization and its adsorption performance on tetracycline[J]. Environmental Engineering, 2022, 40(5): 44-52. |
[1] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 张杰, 白忠波, 冯宝鑫, 彭肖林, 任伟伟, 张菁丽, 刘二勇. PEG及其复合添加剂对电解铜箔后处理的影响[J]. 化工进展, 2023, 42(S1): 374-381. |
[4] | 王耀刚, 韩子姗, 高嘉辰, 王新宇, 李思琪, 杨全红, 翁哲. 铜基催化剂电还原二氧化碳选择性的调控策略[J]. 化工进展, 2023, 42(8): 4043-4057. |
[5] | 杨静, 李博, 李文军, 刘晓娜, 汤刘元, 刘月, 钱天伟. 焦化污染场地中萘降解菌的分离及降解特性[J]. 化工进展, 2023, 42(8): 4351-4361. |
[6] | 张雪伟, 黄亚继, 许月阳, 程好强, 朱志成, 李金壘, 丁雪宇, 王圣, 张荣初. 碱性吸附剂对燃煤烟气中SO3的吸附特性[J]. 化工进展, 2023, 42(7): 3855-3864. |
[7] | 陆洋, 周劲松, 周启昕, 王瑭, 刘壮, 李博昊, 周灵涛. CeO2/TiO2吸附剂煤气脱汞产物的浸出规律[J]. 化工进展, 2023, 42(7): 3875-3883. |
[8] | 王久衡, 荣鼐, 刘开伟, 韩龙, 水滔滔, 吴岩, 穆正勇, 廖徐情, 孟文佳. 水蒸气强化纤维素模板改性钙基吸附剂固碳性能及强度[J]. 化工进展, 2023, 42(6): 3217-3225. |
[9] | 赵重阳, 赵磊, 石详文, 黄俊, 李治尧, 沈凯, 张亚平. O2/H2O/SO2 对改性富铁凹凸棒石高温吸附PbCl2 的影响[J]. 化工进展, 2023, 42(4): 2190-2200. |
[10] | 郭帅帅, 陈锦路, 金梁程龙, 陶醉, 陈小丽, 彭国文. 基于海水提铀的多孔芳香框架材料研究进展[J]. 化工进展, 2023, 42(3): 1426-1436. |
[11] | 郭亚宁, 季军荣, 焦妍惠, 张庆年, 周洲, 韦德恩, 童张法, 李立硕. 机械活化重质碳酸钙制备复合碳酸钙及其对溶液中的Cu2+吸附性能[J]. 化工进展, 2023, 42(11): 5861-5870. |
[12] | 王胜楠, 郑旭. 空气取水用活性炭纤维复合吸附剂的研究[J]. 化工进展, 2023, 42(10): 5567-5573. |
[13] | 吴中杰, 谢连科, 王晶辉, 黄仁亮. 多级结构羟基硝酸铜纳米酶的制备及其对酚类污染物的降解[J]. 化工进展, 2023, 42(1): 497-505. |
[14] | 曹正凯, 米晓斌, 吴子明, 孙士可, 曹均丰, 彭德强, 梁相程. 煤合成气净化除尘装置压降问题分析及应用优化[J]. 化工进展, 2022, 41(S1): 15-21. |
[15] | 王子航, 梁瑞升, 邓超和, 王佳韵. 离子凝胶复合吸附剂的制备及空气取水性能[J]. 化工进展, 2022, 41(S1): 389-396. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |