化工进展 ›› 2023, Vol. 42 ›› Issue (11): 5811-5830.DOI: 10.16085/j.issn.1000-6613.2023-0004
• 材料科学与技术 • 上一篇
姜帅1(), 王姗2, 韩旭辉2, 张奇1(), 柴春鹏2()
收稿日期:
2023-01-04
修回日期:
2023-02-26
出版日期:
2023-11-20
发布日期:
2023-12-15
通讯作者:
张奇,柴春鹏
作者简介:
姜帅(1997—),男,硕士研究生,研究方向为聚酰亚胺基复合材料。E-mail:jiangshuai2023@163.com。
JIANG Shuai1(), WANG Shan2, HAN Xuhui2, ZHANG Qi1(), CHAI Chunpeng2()
Received:
2023-01-04
Revised:
2023-02-26
Online:
2023-11-20
Published:
2023-12-15
Contact:
ZHANG Qi, CHAI Chunpeng
摘要:
聚酰亚胺(PI)具有优异的热学性能、力学性能、化学稳定性和低介电常数,被广泛应用在轴承、齿轮、制动器和微电子等领域,是一类广泛使用的固体润滑有机高分子材料。然而,纯PI因摩擦系数大、磨损率高的问题,严重影响服役寿命。本文首先总结了零维(0D)、一维(1D)和二维(2D)不同维度润滑相材料影响PI摩擦性能的研究进展,探讨了单一维度润滑相材料在PI基体中减摩耐磨的作用机理。其次,分析了多维度(0D-1D、0D-2D、1D-2D)润滑相杂化材料对PI基体的润滑作用规律,相较于单一维度润滑相材料,多维度润滑相杂化材料对改善PI摩擦性能的效果较好。进一步讨论了不同维度润滑相对PI复合材料力学性能的影响。最后指出,PI基固体润滑复合材料未来的研究方向除开发新型润滑相材料外,还需深入研究PI复合材料在不同工况下的摩擦行为,同时借助模拟仿真手段,揭示润滑相材料对PI的作用机理。
中图分类号:
姜帅, 王姗, 韩旭辉, 张奇, 柴春鹏. 聚酰亚胺基固体润滑复合材料研究进展[J]. 化工进展, 2023, 42(11): 5811-5830.
JIANG Shuai, WANG Shan, HAN Xuhui, ZHANG Qi, CHAI Chunpeng. Research progress of polyimide-based solid lubricating composites[J]. Chemical Industry and Engineering Progress, 2023, 42(11): 5811-5830.
基体 | CNTs改性 方法 | 复合 方法 | 最佳添加量 /% | 摩擦系数变化 /% | 磨损率变化 /% | 参考 文献 |
---|---|---|---|---|---|---|
PI | 未改性 | 机械混合 | 0.05 | 20.0↑ | ↓ | [ |
PI | 未改性 | 机械混合 | >8.00 | ↓ | ↓ | [ |
PI | 羧酸化 | 原位聚合 | 0.70 | 14.6↓ | 12.9↓ | [ |
PI | 氨基化 | 原位聚合 | 0.70 | 25.2↓ | 73.7↓ | [ |
PI | 羧酸化 | 原位聚合 | 0.10 | 90.7↓ | 82.0↓ | [ |
PI | 酰胺化 | 溶液挥发 | 3.00 | ↑ | ↓ | [ |
表1 CNTs改善PI摩擦性能的报道
基体 | CNTs改性 方法 | 复合 方法 | 最佳添加量 /% | 摩擦系数变化 /% | 磨损率变化 /% | 参考 文献 |
---|---|---|---|---|---|---|
PI | 未改性 | 机械混合 | 0.05 | 20.0↑ | ↓ | [ |
PI | 未改性 | 机械混合 | >8.00 | ↓ | ↓ | [ |
PI | 羧酸化 | 原位聚合 | 0.70 | 14.6↓ | 12.9↓ | [ |
PI | 氨基化 | 原位聚合 | 0.70 | 25.2↓ | 73.7↓ | [ |
PI | 羧酸化 | 原位聚合 | 0.10 | 90.7↓ | 82.0↓ | [ |
PI | 酰胺化 | 溶液挥发 | 3.00 | ↑ | ↓ | [ |
1 | MENG Yonggang, XU Jun, JIN Zhongmin, et al. A review of recent advances in tribology[J]. Friction, 2020, 8(2): 221-300. |
2 | OUYANG Jiahu, LI Yufeng, ZHANG Yunzhuo, et al. High-temperature solid lubricants and self-lubricating composites: A critical review[J]. Lubricants, 2022, 10(8): 177. |
3 | 杨威锋. 固体自润滑材料及其研究趋势[J]. 润滑与密封, 2007, 32(12): 118-120, 122. |
YANG Weifeng. Solid self-lubricating materials and their research trend[J]. Lubrication Engineering, 2007, 32(12): 118-120, 122. | |
4 | 王静, 胡建军, 刘妤. 金属基固体自润滑复合涂层研究进展[J]. 化学工程与装备, 2017(12): 258-260. |
WANG Jing, HU Jianjun, LIU Yu. Research progress of metal-based solid self-lubricating composite coatings[J]. Chemical Engineering & Equipment, 2017(12): 258-260. | |
5 | 祁渊. 纳米粒子增强PEEK/PTFE复合材料摩擦转移膜特性研究[D]. 兰州: 兰州理工大学, 2020. |
QI Yuan. The research on characteristics of tribological transfer films of PEEK/PTFE composites reinforced with nanoparticles[D]. Lanzhou: Lanzhou University of Technology, 2020. | |
6 | 潘泽波. 热塑性聚酰亚胺复合材料的磨擦磨损性能[D]. 南京: 南京工业大学, 2004. |
PAN Zebo. The tribological performance for the thermoplastic polyimide composites[D]. Nanjing: Nanjing University of Technology, 2004. | |
7 | KURDI Abdulaziz, CHANG Li. Recent advances in high performance polymers—Tribological aspects[J]. Lubricants, 2018, 7(1): 2. |
8 | 黄挺. 聚酰亚胺的摩擦学改性研究[D]. 上海: 复旦大学, 2014. |
HUANG Ting. Study on tribological modification of polyimide[D]. Shanghai: Fudan University, 2014. | |
9 | NATARAJAN E, SANTHOSH M S, MARKANDAN K, et al. Mechanical and wear behaviour of PEEK, PTFE and PU: Review and experimental study[J]. Journal of Polymer Engineering, 2022, 42(5): 407-417. |
10 | BOGERT M T, RENSHAW R R. 4-Amino-0-phthalic acid and some of its derivatives[J]. Journal of the American Chemical Society, 1908, 30(7): 1135-1144. |
11 | NI Hongjiang, LIU Jingang, WANG Zhenhe, et al. A review on colorless and optically transparent polyimide films: Chemistry, process and engineering applications[J]. Journal of Industrial and Engineering Chemistry, 2015, 28: 16-27. |
12 | GOUZMAN Irina, GROSSMAN Eitan, VERKER Ronen, et al. Advances in polyimide-based materials for space applications[J]. Advanced Materials, 2019, 31(18): 1807738. |
13 | DING Yichun, HOU Haoqing, ZHAO Yong, et al. Electrospun polyimide nanofibers and their applications[J]. Progress in Polymer Science, 2016, 61: 67-103. |
14 | LV Yuanyuan, XU Wei, LIN Fuwen, et al. Electrospun nanofibers of porphyrinated polyimide for the ultra-sensitive detection of trace TNT[J]. Sensors and Actuators B: Chemical, 2013, 184: 205-211. |
15 | TAKEMORI Ryouhei, KAWAKAMI Hiroyoshi. Electrospun nanofibrous blend membranes for fuel cell electrolytes[J]. Journal of Power Sources, 2010, 195(18): 5957-5961. |
16 | LIU Xuejie, ZHENG Mingsheng, CHEN George, et al. High-temperature polyimide dielectric materials for energy storage: Theory, design, preparation and properties[J]. Energy & Environmental Science, 2022, 15(1): 56-81. |
17 | CHITSAZ-ZADEH M R, EISS N S. Friction and wear of polyimide thin films[J]. Wear, 1986, 110(3/4): 359-368. |
18 | FUSARO R L. Tribological properties and thermal stability of various types of polyimide films[J]. ASLE Transactions, 1982, 25(4): 465-477. |
19 | ALLAM I M. Solid lubricants for applications at elevated temperatures[J]. Journal of Materials Science, 1991, 26: 3977-3984. |
20 | JONES J W, EISS N S. Effect of chemical structure on the friction and wear of polyimide thin films[M]. Washington D C: American Chemical Society, 1985: 135-148. |
21 | WANG Yanming, WANG Tingmei, WANG Qihua. Effect of molecular weight on tribological properties of thermosetting polyimide under high temperature[J]. Tribology International, 2014, 78: 47-59. |
22 | OGBONNA V E, POPOOLA P I, POPOOLA O M, et al. A review on recent advances on improving polyimide matrix nanocomposites for mechanical, thermal, and tribological applications: Challenges and recommendations for future improvement[J]. Journal of Thermoplastic Composite Materials, 2023, 36(2): 836-865. |
23 | ZHU Shengyu, CHENG Jun, QIAO Zhuhui, et al. High temperature solid-lubricating materials: A review[J]. Tribology International, 2019, 133: 206-223. |
24 | JOHN M, MENEZES P L. Self-lubricating materials for extreme condition applications[J]. Materials, 2021, 14(19): 5588. |
25 | GUO J F, LIU J, SUN C N, et al. Effects of nano-Al2O3 particle addition on grain structure evolution and mechanical behaviour of friction-stir-processed Al[J]. Materials Science and Engineering: A, 2014, 602: 143-149. |
26 | CAI Hui, YAN Fengyuan, XUE Qunji, et al. Investigation of tribological properties of Al2O3-polyimide nanocomposites[J]. Polymer Testing, 2003, 22(8): 875-882. |
27 | Mei LYU, WANG Qihua, WANG Tingmei, et al. Effects of atomic oxygen exposure on the tribological performance of ZrO2-reinforced polyimide nanocomposites for low earth orbit space applications[J]. Composites Part B: Engineering, 2015, 77: 215-222. |
28 | MU Liwen, ZHU Jiahua, FAN Jingdeng, et al. Self-lubricating polytetrafluoroethylene/polyimide blends reinforced with zinc oxide nanoparticles[J]. Journal of Nanomaterials, 2015, 16(1): 373. |
29 | GONG Deli, ZHANG Bing, XUE Qunji, et al. Investigation of adhesion wear of filled polytetrafluoroethylene by ESCA, AES and XRD[J]. Wear, 1990, 137(1): 25-39. |
30 | DUAN Chunjian, HE Ren, LI Song, et al. Exploring the friction and wear behaviors of Ag-Mo hybrid modified thermosetting polyimide composites at high temperature[J]. Friction, 2020, 8(5): 893-904. |
31 | ZHOU Shidong, NIU Xiaoxing, ZHANG Xiuli, et al. The effect of silica and copper nanoparticles in polyimide on the friction and wear of polyethersulfone/polyimide mixture[J]. Polymers and Polymer Composites, 2022, 30: 096739112211334. |
32 | UFLYAND I E, ZHINZHILO V A, BURLAKOVA V E. Metal-containing nanomaterials as lubricant additives: State-of-the-art and future development[J]. Friction, 2019, 7(2): 93-116. |
33 | PAN Zihe, WANG Tianchang, CHEN Li, et al. Effects of rare earth oxide additive on surface and tribological properties of polyimide composites[J]. Applied Surface Science, 2017, 416: 536-546. |
34 | CAI Peng, XU Chengpeng, ZHENG Fei, et al. Molecular dynamics study on the mechanical and tribological properties of polyimide reinforced by lanthana[J]. Industrial Lubrication and Tribology, 2021, 73(10): 1319-1324. |
35 | YU Yuanhao, SONG Jingfu, ZHAO Gai, et al. Effect of rare earth oxide on the mechanical and tribological properties of polyimide nanocomposites[J]. Industrial Lubrication and Tribology, 2020, 72(3): 433-437. |
36 | QI Huimin, LI Guitao, ZHANG Ga, et al. Impact of counterpart materials and nanoparticles on the transfer film structures of polyimide composites[J]. Materials & Design, 2016, 109: 367-377. |
37 | ZHAO Yuanliang, QI Xiaowen, DONG Yu, et al. Mechanical, thermal and tribological properties of polyimide/nano-SiO2 composites synthesized using an in situ polymerization[J]. Tribology International, 2016, 103: 599-608. |
38 | ZHANG Ziyan, KONG Deyan, LI Xiaofeng, et al. High temperature shape memory polymer with high wear resistance[J]. Smart Materials and Structures, 2019, 28(10): 105005. |
39 | LIU Dan, ZHAO Wenjie, LIU Shuan, et al. Comparative tribological and corrosion resistance properties of epoxy composite coatings reinforced with functionalized fullerene C60 and graphene[J]. Surface and Coatings Technology, 2016, 286: 354-364. |
40 | 万长鑫, 詹胜鹏, 陈辉, 等. 功能性填料改性聚合物材料的摩擦学研究进展[J]. 材料工程, 2022, 50(2): 73-83. |
WAN Changxin, ZHAN Shengpeng, CHEN Hui, et al. Tribology research progress of functional fillers modified polymer materials[J]. Journal of Materials Engineering, 2022, 50(2): 73-83. | |
41 | POZDNYAKOV A O, KUDRYAVTSEV V V, FRIEDRICH K. Sliding wear of polyimide-C60 composite coatings[J]. Wear, 2003, 254(5/6): 501-513. |
42 | QI Huimin, LEI Yang, YU Jiaxin, et al. Role of fullerene carbon on tribological performance of polyimide composites at a large temperature span[J]. Tribology International, 2022, 173: 107628. |
43 | MIN Chunying, NIE Peng, TU Wenjun, et al. Preparation and tribological properties of polyimide/carbon sphere microcomposite films under seawater condition[J]. Tribology International, 2015, 90: 175-184. |
44 | 何闯, 鄂爽, 闫鸿浩, 等. 碳点在润滑领域中的应用[J]. 化学进展, 2022, 34(2): 356-369. |
HE Chuang, Shuang E, YAN Honghao, et al. Carbon dots in lubrication applications[J]. Progress in Chemistry, 2022, 34(2): 356-369. | |
45 | SHANG Wangji, CAI Tao, ZHANG Yunxiao, et al. Facile one pot pyrolysis synthesis of carbon quantum dots and graphene oxide nanomaterials: All carbon hybrids as eco-environmental lubricants for low friction and remarkable wear-resistance[J]. Tribology International, 2018, 118: 373-380. |
46 | 王剑平. 生物质纳米颗粒涂层的制备及其性能研究[D]. 合肥: 合肥学院, 2022. |
WANG Jianping. Preparation and properties of biomass nanoparticles coating[D]. Hefei: Hefei University, 2022. | |
47 | LI Zhihua. Addition of CF on tribological properties of POM composite[J]. Materials Technology, 2012, 27(3): 230-232. |
48 | LI Tongsheng, CONG Peihong, LIU Xujun, et al. Tribophysical and tribochemical effects of a thermoplastic polyimide[J]. Journal of Materials Science, 2000, 35(10): 2597-2601. |
49 | SAMYN P, SCHOUKENS G, BAETS P D. Micro- to nanoscale surface morphology and friction response of tribological polyimide surfaces[J]. Applied Surface Science, 2010, 256(11): 3394-3408. |
50 | SAMYN Pieter, SCHOUKENS Gustaaf. The lubricity of graphite flake inclusions in sintered polyimides affected by chemical reactions at high temperatures[J]. Carbon, 2008, 46(7): 1072-1084. |
51 | SAMYN Pieter, SCHOUKENS Gustaaf. Thermochemical sliding interactions of short carbon fiber polyimide composites at high PV-conditions[J]. Materials Chemistry and Physics, 2009, 115(1): 185-195. |
52 | DONG Fengxia, HOU Guoliang, CAO Fengxiang, et al. The lubricity and reinforcement of carbon fibers in polyimide at high temperatures[J]. Tribology International, 2016, 101: 291-300. |
53 | 周良, 雷洋, 余家欣, 等. 宽温域环境下不同纤维织物/聚酰亚胺复合材料的摩擦学性能研究[J]. 表面技术, 2022, 51(12): 91-100. |
ZHOU Liang, LEI Yang, YU Jiaxin, et al. Tribological properties of polyimide composites filled with different fiber fabrics in a wide temperature range[J]. Surface Technology, 2022, 51(12): 91-100. | |
54 | ZHANG Xinrui, PEI Xianqiang, WANG Qihua. The tribological properties of acid- and diamine-modified carbon fiber reinforced polyimide composites[J]. Materials Chemistry and Physics, 2009, 115(2/3): 825-830. |
55 | SONG Haojie, LI Luying, JIN Yang, et al. Fabrication of polydopamine-modified carbon fabric/polyimide composites with enhanced mechanical and tribological properties[J]. Polymer Composites, 2019, 40(5): 1911-1918. |
56 | 董凤霞, 侯国梁, 刘亮, 等. 稀土改性对碳纤维增强聚酰亚胺复合材料在不同温度下摩擦学性能的影响[J]. 摩擦学学报, 2017, 37(2): 148-154. |
DONG Fengxia, HOU Guoliang, LIU Liang, et al. Effect of surface treatment on carbon fibre by rare earth on the tribological properties of carbon fiber reinforced polyimide composite at elevated temperatures[J]. Tribology, 2017, 37(2): 148-154. | |
57 | ROY Amit, MU Liwen, SHI Yijun. Tribological properties of polyimide coating filled with carbon nanotube at elevated temperatures[J]. Polymer Composites, 2020, 41(7): 2652-2661. |
58 | SATYANARAYANA N, SKANDESH RAJAN K S, SINHA S K, et al. Carbon nanotube reinforced polyimide thin-film for high wear durability[J]. Tribology Letters, 2007, 27(2): 181-188. |
59 | CAI Hui, YAN Fengyuan, XUE Qunji. Investigation of tribological properties of polyimide/carbon nanotube nanocomposites[J]. Materials Science and Engineering: A, 2004, 364(1/2): 94-100. |
60 | NIE Peng, MIN Chunying, SONG Haojie, et al. Preparation and tribological properties of polyimide/carboxyl-functionalized multi-walled carbon nanotube nanocomposite films under seawater lubrication[J]. Tribology Letters, 2015, 58(1): 7. |
61 | MIN Chunying, LIU Dengdeng, HE Zengbao, et al. Preparation of novel polyimide nanocomposites with high mechanical and tribological performance using covalent modified carbon nanotubes via Friedel-Crafts reaction[J]. Polymer, 2018, 150: 223-231. |
62 | HU Chao, QI Huimin, YU Jiaxin, et al. Significant improvement on tribological performance of polyimide composites by tuning the tribofilm nanostructures[J]. Journal of Materials Processing Technology, 2020, 281: 116602. |
63 | KIM J, IM H, CHO M H. Tribological performance of fluorinated polyimide-based nanocomposite coatings reinforced with PMMA-grafted-MWCNT[J]. Wear, 2011, 271(7/8): 1029-1038. |
64 | MIN Chunying, NIE Peng, SONG Haojie, et al. Study of tribological properties of polyimide/graphene oxide nanocomposite films under seawater-lubricated condition[J]. Tribology International, 2014, 80: 131-140. |
65 | MIN Chunying, LIU Dengdeng, HE Zengbao, et al. Novel polyimide nanocomposites enhanced by covalent modified graphene nanosheets based on Friedel-Crafts reaction[J]. Journal of Materials Science, 2019, 54(7): 5484-5497. |
66 | YE Xiangyuan, LIU Xiaohong, YANG Zhigang, et al. Tribological properties of fluorinated graphene reinforced polyimide composite coatings under different lubricated conditions[J]. Composites Part A: Applied Science and Manufacturing, 2016, 81: 282-288. |
67 | CHEN Yue, LI Duxin, YANG Wenyan, et al. Effects of different amine-functionalized graphene on the mechanical, thermal, and tribological properties of polyimide nanocomposites synthesized by in situ polymerization[J]. Polymer, 2018, 140: 56-72. |
68 | WANG Mingyue, ZHOU Ming, LI Xiao, et al. Research progress of surface-modified graphene-based materials for tribological applications[J]. Materials Research Express, 2021, 8(4): 042002. |
69 | CARRIÓN F J, ESPEJO C, SANES J, et al. Single-walled carbon nanotubes modified by ionic liquid as antiwear additives of thermoplastics[J]. Composites Science and Technology, 2010, 70(15): 2160-2167. |
70 | RUAN Hong, ZHANG Qiu, LIAO Weiqiang, et al. Enhancing tribological, mechanical, and thermal properties of polyimide composites by the synergistic effect between graphene and ionic liquid[J]. Materials & Design, 2020, 189: 108527. |
71 | OUYANG Yuting, ZHANG Qiu, LIU Xiukun, et al. Effects of ionic liquid types on the tribological, mechanical, and thermal properties of ionic liquid modified graphene/polyimide shape memory composites[J]. High Performance Polymers, 2021, 33(8): 881-891. |
72 | QIN Songlv, CHEN Cheng, CUI Mingjun, et al. Facile preparation of polyimide/graphene nanocomposites via an in situ polymerization approach[J]. RSC Advances, 2017, 7(5): 3003-3011. |
73 | QIN Songlv, CUI Mingjun, DAI Zhendong, et al. Noncovalent functionalized graphene-filled polyimides with improved thermal, mechanical, and wear resistance properties[J]. Tribology Letters, 2018, 66(2): 69. |
74 | YUE Ruiheng, LIU Yingliang, XIA Shaoling, et al. Raman imaging evidence for mechanical/tribological quasi-steady state in GO-strengthening polyurethane/epoxy interpenetrating polymer network[J]. Macromolecular Research, 2022, 30(7): 477-485. |
75 | LIAN Weiqi, Yongjin MAI, LIU Cansen, et al. Two-dimensional Ti3C2 coating as an emerging protective solid-lubricant for tribology[J]. Ceramics International, 2018, 44(16): 20154-20162. |
76 | HUANG Ting, XIN Yuanshi, LI Tongsheng, et al. Modified graphene/polyimide nanocomposites: Reinforcing and tribological effects[J]. ACS Applied Materials & Interfaces, 2013, 5(11): 4878-4891. |
77 | WAN Changxin, ZHAN Shengpeng, JIA Dan, et al. Tribological behavior of nanographite/polyimide composite under drying sliding condition[J]. Wear, 2022, 494: 204271. |
78 | ZHOU Shengguo, LI Wentao, ZHAO Wenjie, et al. Tribological behaviors of polyimide composite films enhanced with fluorographene[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 580: 123707. |
79 | YANG Ming, ZHANG Chunhong, SU Guangdong, et al. Preparation and wear resistance properties of thermosetting polyimide composites containing solid lubricant fillers[J]. Materials Chemistry and Physics, 2020, 241: 122034. |
80 | LIU Baixing, PEI Xianqiang, WANG Qihua, et al. Effects of proton and electron irradiation on the structural and tribological properties of MoS2/polyimide[J]. Applied Surface Science, 2011, 258(3): 1097-1102. |
81 | FU Jingguo, LI Meng, LIU Gengshuo, et al. Robust ceramic based self-lubricating coating on Al-Si alloys prepared via PEO and spin-coating methods[J]. Wear, 2020, 458/459: 203405. |
82 | AO Xinling, KONG Deyan, ZHANG Ziyan, et al. Enhancing recovery speed and anti-wear capability of high-temperature shape memory polymer with modified boron nitride nanoparticles[J]. Journal of Materials Science, 2020, 55(10): 4292-4302. |
83 | DUAN Chunjian, YUAN Dongming, YANG Zenghui, et al. High wear-resistant performance of thermosetting polyimide reinforced by graphitic carbon nitride (g-C3N4) under high temperature[J]. Composites Part A: Applied Science and Manufacturing, 2018, 113: 200-208. |
84 | LI Zhenhua. The effect of titanium dioxide on the tribological properties of carbon fiber-reinforced polyimide composites[J]. Journal of Thermoplastic Composite Materials, 2015, 28(2): 257-264. |
85 | CHEN Beibei, LI Xiaofang, LI Xiang, et al. Hierarchical carbon fiber-SiO2 hybrid/polyimide composites with enhanced thermal, mechanical, and tribological properties[J]. Polymer Composites, 2018, 39(S3): E1626-E1634. |
86 | DONG Zhe, CHEN Beibei, ZHANG Mengjie, et al. One-step preparation of carbon fiber-ZrO2 hybrid and its enhancement on the wear-resistant properties of polyimide[J]. Polymer Composites, 2021, 42(5): 2598-2607. |
87 | WU Liangfei, ZHANG Zhaozhu, YANG Mingming, et al. Facile synthesis of CuO/g-C3N4 hybrids for enhancing the wear resistance of polyimide composite[J]. European Polymer Journal, 2019, 116: 463-470. |
88 | LIU Hong, JIA Yongfeng, WANG Hongding, et al. Ultra-high compre-ssion and wear resistant hybrid filled polyimide composite: Synergistic effect of Fe2O3 decorated RGO[J]. Journal of Applied Polymer Science, 2020, 137(40): 49222. |
89 | LUO Rong, HE Yan, LIU Hong, et al. “Particle-on-plane” hybrid of ZnO-reduced graphene oxide: Roles on mechanical and tribological performances of thermosetting polyimide[J]. Polymer Engineering & Science, 2022, 62(7): 2312-2321. |
90 | WU Jianyu, LIU Hong, WANG Hongding, et al. Effects of TiO2 decorated reduced graphene oxide on mechanical and tribological properties of thermosetting polyimide[J]. Composite Interfaces, 2022, 29(9): 985-998. |
91 | HE Guorong, LI Yong, WU Liangfei, et al. Synergy of core-shell Cu@rGO hybrids for significantly improved thermal and tribological properties of polyimide composites[J]. Tribology International, 2021, 161: 107091. |
92 | CHEN Beibei, LI Xiang, JIA Yuhan, et al. MoS2 nanosheets-decorated carbon fiber hybrid for improving the friction and wear properties of polyimide composite[J]. Composites Part A: Applied Science and Manufacturing, 2018, 109: 232-238. |
93 | YAN Yunfeng, MENG Zhaojie, WANG Jianzhang, et al. The effect of different grafting extent of PBO-MoS2 hybrids on the tribological performance of TPI-based composites at high temperatures[J]. Polymers for Advanced Technologies, 2021, 32(5): 2030-2041. |
94 | YANG Jin, XIAO Qingfeng, LIN Zhe, et al. Growth of ultra-dense MoS2 nanosheets on carbon fibers to improve the mechanical and tribological properties of polyimide composites[J]. Friction, 2021, 9(5): 1150-1162. |
95 | MIN Chunying, LIU Dengdeng, SHEN Chen, et al. Unique synergistic effects of graphene oxide and carbon nanotube hybrids on the tribological properties of polyimide nanocomposites[J]. Tribology International, 2018, 117: 217-224. |
96 | ZHOU Shengguo, LI Wentao, ZHAO Wenjie, et al. Tribological behaviors of polyimide composite coatings containing carbon nanotubes and fluorinated graphene with hybrid phase or blend phase[J]. Progress in Organic Coatings, 2020, 147: 105800. |
97 | REN Yilong, ZHANG Lin, XIE Guoxin, et al. A review on tribology of polymer composite coatings[J]. Friction, 2021, 9(3): 429-470. |
98 | WANG Xingyu, TANG Fujian, CAO Qi, et al. Comparative study of three carbon additives: Carbon nanotubes, graphene, and fullerene-C60, for synthesizing enhanced polymer nanocomposites[J]. Nanomaterials, 2020, 10(5): 838. |
99 | LAI Shiquan, LI Tongsheng, WANG Fandong, et al. The effect of silica size on the friction and wear behaviors of polyimide/silica hybrids by sol-gel processing[J]. Wear, 2007, 262(9/10): 1048-1055. |
100 | LIU Hong, WANG Tingmei, WANG Qihua. Tribological properties of thermosetting polyimide/TiO2 nanocomposites under dry sliding and water-lubricated conditions[J]. Journal of Macromolecular Science, Part B, 2012, 51(11): 2284-2296. |
101 | LIU Lizhu, SHI Hui, WENG Ling, et al. The effects of particle size on the morphology and properties of polyimide/nano-Al2O3 composite films[J]. Polymers and Polymer Composites, 2014, 22(2): 117-122. |
102 | DONG Fengxia, HOU Guoliang, LIU Hao, et al. An investigation on the mechanical and tribological properties of carbon fiber/polyimide composites at elevated temperatures[J]. Polymer Composites, 2018, 39(S2): E869-E882. |
103 | LI J. The effect of surface modification with nitric acid on the mechanical and tribological properties of carbon fiber-reinforced thermoplastic polyimide composite[J]. Surface and Interface Analysis, 2009, 41(9): 759-763. |
104 | LI J, CHENG X H. Effect of rare earth solution on mechanical and tribological properties of carbon fiber reinforced thermoplastic polyimide composite[J]. Tribology Letters, 2007, 25(3): 207-214. |
105 | WANG J Y, YANG S Y, HUANG Y L, et al. Preparation and properties of graphene oxide/polyimide composite films with low dielectric constant and ultrahigh strength via in situ polymerization[J]. Journal of Materials Chemistry, 2011, 21(35): 13569-13575. |
106 | LIANG Zhou, QI Huimin, YANG Lei, et al. Ti3C2 MXene induced high tribological performance of polyimide/polyurea copolymer at a wide temperature range[J]. Applied Surface Science, 2023, 608: 155157. |
107 | YE Xiangyuan, GONG Peiwei, WANG Jinqing, et al. Fluorinated graphene reinforced polyimide films with the improved thermal and mechanical properties[J]. Composites Part A: Applied Science and Manufacturing, 2015, 75: 96-103. |
108 | WU Zhitao, JIA Weihong LI Zhangpeng, et al. The effect of α-zirconium phosphate nanosheets on thermal, mechanical, and tribological properties of polyimide[J]. Macromolecular Materials and Engineering, 2020, 305(6): 2000043. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 胡喜, 王明珊, 李恩智, 黄思鸣, 陈俊臣, 郭秉淑, 于博, 马志远, 李星. 二硫化钨复合材料制备与储钠性能研究进展[J]. 化工进展, 2023, 42(S1): 344-355. |
[3] | 林晓鹏, 肖友华, 管奕琛, 鲁晓东, 宗文杰, 傅深渊. 离子聚合物-金属复合材料(IPMC)柔性电极的研究进展[J]. 化工进展, 2023, 42(9): 4770-4782. |
[4] | 向硕, 卢鹏, 石伟年, 杨鑫, 何燕, 朱立业, 孔祥微. 二维WS2纳米片的规模化可控制备及其摩擦学性能[J]. 化工进展, 2023, 42(9): 4783-4790. |
[5] | 单雪影, 张濛, 张家傅, 李玲玉, 宋艳, 李锦春. 阻燃型环氧树脂的燃烧数值模拟[J]. 化工进展, 2023, 42(7): 3413-3419. |
[6] | 王硕, 张亚新, 朱博韬. 基于灰色预测模型的水煤浆输送管道冲蚀磨损寿命预测[J]. 化工进展, 2023, 42(7): 3431-3442. |
[7] | 于志庆, 黄文斌, 王晓晗, 邓开鑫, 魏强, 周亚松, 姜鹏. B掺杂Al2O3@C负载CoMo型加氢脱硫催化剂性能[J]. 化工进展, 2023, 42(7): 3550-3560. |
[8] | 杨竞莹, 施万胜, 黄振兴, 谢利娟, 赵明星, 阮文权. 改性纳米零价铁材料制备的研究进展[J]. 化工进展, 2023, 42(6): 2975-2986. |
[9] | 许春树, 姚庆达, 梁永贤, 周华龙. 氧化石墨烯/碳纳米管对几种典型高分子材料的性能影响[J]. 化工进展, 2023, 42(6): 3012-3028. |
[10] | 朱雅静, 徐岩, 简美鹏, 李海燕, 王崇臣. 金属有机框架材料用于海水提铀的研究进展[J]. 化工进展, 2023, 42(6): 3029-3048. |
[11] | 张宁, 吴海滨, 李钰, 李剑锋, 程芳琴. 漂浮型光催化材料的制备及其在水处理领域的应用研究进展[J]. 化工进展, 2023, 42(5): 2475-2485. |
[12] | 陈飞, 刘成宝, 陈丰, 钱君超, 邱永斌, 孟宪荣, 陈志刚. g-C3N4基超级电容器用电极材料的研究进展[J]. 化工进展, 2023, 42(5): 2566-2576. |
[13] | 刘念, 陈葵, 武斌, 纪利俊, 吴艳阳, 韩金玲. 蛋黄-壳介孔磁性炭微球的制备及其对红霉素的高效吸附[J]. 化工进展, 2023, 42(5): 2724-2732. |
[14] | 马润梅, 杨海超, 李正大, 李双喜, 赵祥, 章国庆. 表面强化镀层对高速轴承腔密封端面变形及摩擦磨损影响分析[J]. 化工进展, 2023, 42(4): 1688-1697. |
[15] | 陈仪, 郭耀励, 叶海星, 李宇璇, 牛青山. 二维纳米材料在渗透汽化脱盐膜中的应用[J]. 化工进展, 2023, 42(3): 1437-1447. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |